Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 | /* * Copyright (c) 2018 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include <zephyr/tc_util.h> #include <zephyr/ztest.h> #include <zephyr/kernel.h> #include <ksched.h> #include <zephyr/kernel_structs.h> #if CONFIG_MP_MAX_NUM_CPUS < 2 #error SMP test requires at least two CPUs! #endif #define RUN_FACTOR (CONFIG_SMP_TEST_RUN_FACTOR / 100.0) #define T2_STACK_SIZE (2048 + CONFIG_TEST_EXTRA_STACK_SIZE) #define STACK_SIZE (384 + CONFIG_TEST_EXTRA_STACK_SIZE) #define DELAY_US 50000 #define TIMEOUT 1000 #define EQUAL_PRIORITY 1 #define TIME_SLICE_MS 500 #define THREAD_DELAY 1 #define SLEEP_MS_LONG ((int)(15000 * RUN_FACTOR)) struct k_thread t2; K_THREAD_STACK_DEFINE(t2_stack, T2_STACK_SIZE); volatile int t2_count; volatile int sync_count = -1; static int main_thread_id; static int child_thread_id; volatile int rv; K_SEM_DEFINE(cpuid_sema, 0, 1); K_SEM_DEFINE(sema, 0, 1); static struct k_mutex smutex; static struct k_sem smp_sem; #define MAX_NUM_THREADS CONFIG_MP_MAX_NUM_CPUS struct thread_info { k_tid_t tid; int executed; int priority; int cpu_id; }; static ZTEST_BMEM volatile struct thread_info tinfo[MAX_NUM_THREADS]; static struct k_thread tthread[MAX_NUM_THREADS]; static K_THREAD_STACK_ARRAY_DEFINE(tstack, MAX_NUM_THREADS, STACK_SIZE); static volatile int thread_started[MAX_NUM_THREADS - 1]; static struct k_poll_signal tsignal[MAX_NUM_THREADS]; static struct k_poll_event tevent[MAX_NUM_THREADS]; static int curr_cpu(void) { unsigned int k = arch_irq_lock(); int ret = arch_curr_cpu()->id; arch_irq_unlock(k); return ret; } /** * @brief SMP * @defgroup kernel_smp_tests SMP Tests * @ingroup all_tests * @{ * @} */ /** * @defgroup kernel_smp_integration_tests SMP Integration Tests * @ingroup kernel_smp_tests * @{ * @} */ /** * @defgroup kernel_smp_module_tests SMP Module Tests * @ingroup kernel_smp_tests * @{ * @} */ static void t2_fn(void *a, void *b, void *c) { ARG_UNUSED(a); ARG_UNUSED(b); ARG_UNUSED(c); t2_count = 0; /* This thread simply increments a counter while spinning on * the CPU. The idea is that it will always be iterating * faster than the other thread so long as it is fairly * scheduled (and it's designed to NOT be fairly schedulable * without a separate CPU!), so the main thread can always * check its progress. */ while (1) { k_busy_wait(DELAY_US); t2_count++; } } /** * @brief Verify SMP with 2 cooperative threads * * @ingroup kernel_smp_tests * * @details Multi processing is verified by checking whether * 2 cooperative threads run simultaneously at different cores */ ZTEST(smp, test_smp_coop_threads) { int i, ok = 1; if (!IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) { /* The spawned thread enters an infinite loop, so it can't be * successfully aborted via an IPI. Just skip in that * configuration. */ ztest_test_skip(); } k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, t2_fn, NULL, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT); /* Wait for the other thread (on a separate CPU) to actually * start running. We want synchrony to be as perfect as * possible. */ t2_count = -1; while (t2_count == -1) { } for (i = 0; i < 10; i++) { /* Wait slightly longer than the other thread so our * count will always be lower */ k_busy_wait(DELAY_US + (DELAY_US / 8)); if (t2_count <= i) { ok = 0; break; } } k_thread_abort(tid); k_thread_join(tid, K_FOREVER); zassert_true(ok, "SMP test failed"); } static void child_fn(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); int parent_cpu_id = POINTER_TO_INT(p1); zassert_true(parent_cpu_id != curr_cpu(), "Parent isn't on other core"); sync_count++; k_sem_give(&cpuid_sema); } /** * @brief Verify CPU IDs of threads in SMP * * @ingroup kernel_smp_tests * * @details Verify whether thread running on other core is * parent thread from child thread */ ZTEST(smp, test_cpu_id_threads) { /* Make sure idle thread runs on each core */ k_sleep(K_MSEC(1000)); int parent_cpu_id = curr_cpu(); k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, child_fn, INT_TO_POINTER(parent_cpu_id), NULL, NULL, K_PRIO_PREEMPT(2), 0, K_NO_WAIT); while (sync_count == -1) { } k_sem_take(&cpuid_sema, K_FOREVER); k_thread_abort(tid); k_thread_join(tid, K_FOREVER); } static void thread_entry(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); int thread_num = POINTER_TO_INT(p1); int count = 0; tinfo[thread_num].executed = 1; tinfo[thread_num].cpu_id = curr_cpu(); while (count++ < 5) { k_busy_wait(DELAY_US); } } static void spin_for_threads_exit(void) { unsigned int num_threads = arch_num_cpus(); for (int i = 0; i < num_threads - 1; i++) { volatile uint8_t *p = &tinfo[i].tid->base.thread_state; while (!(*p & _THREAD_DEAD)) { } } k_busy_wait(DELAY_US); } static void spawn_threads(int prio, int thread_num, int equal_prio, k_thread_entry_t thread_entry, int delay) { int i; /* Spawn threads of priority higher than * the previously created thread */ for (i = 0; i < thread_num; i++) { if (equal_prio) { tinfo[i].priority = prio; } else { /* Increase priority for each thread */ tinfo[i].priority = prio - 1; prio = tinfo[i].priority; } tinfo[i].tid = k_thread_create(&tthread[i], tstack[i], STACK_SIZE, thread_entry, INT_TO_POINTER(i), NULL, NULL, tinfo[i].priority, 0, K_MSEC(delay)); if (delay) { /* Increase delay for each thread */ delay = delay + 10; } } } static void abort_threads(int num) { for (int i = 0; i < num; i++) { k_thread_abort(tinfo[i].tid); } for (int i = 0; i < num; i++) { k_thread_join(tinfo[i].tid, K_FOREVER); } } static void cleanup_resources(void) { unsigned int num_threads = arch_num_cpus(); for (int i = 0; i < num_threads; i++) { tinfo[i].tid = 0; tinfo[i].executed = 0; tinfo[i].priority = 0; } } static void __no_optimization thread_ab_entry(void *p1, void *p2, void *p3) { ARG_UNUSED(p1); ARG_UNUSED(p2); ARG_UNUSED(p3); while (true) { } } #define SPAWN_AB_PRIO K_PRIO_COOP(10) /** * @brief Verify the code path when we do context switch in k_thread_abort on SMP system * * @ingroup kernel_smp_tests * * @details test logic: * - The ztest thread has cooperative priority. * - From ztest thread we spawn N number of cooperative threads, where N = number of CPUs. * - The spawned cooperative are executing infinite loop (so they occupy CPU core until they are * aborted). * - We have (number of CPUs - 1) spawned threads run and executing infinite loop, as current CPU * is occupied by ztest cooperative thread. Due to that the last of spawned threads is ready but * not executing. * - We abort spawned threads one-by-one from the ztest thread. * - At the first k_thread_abort call the ztest thread will be preempted by the remaining spawned * thread which has higher priority than ztest thread. * But... k_thread_abort call should has destroyed one of the spawned threads, so ztest thread * should have a CPU available to run on. * - We expect that all spawned threads will be aborted successfully. * * This was the test case for zephyrproject-rtos/zephyr#58040 issue where this test caused system * hang. */ ZTEST(smp, test_coop_switch_in_abort) { k_tid_t tid[MAX_NUM_THREADS]; unsigned int num_threads = arch_num_cpus(); unsigned int i; zassert_true(_current->base.prio < 0, "test case relies on ztest thread be cooperative"); zassert_true(_current->base.prio > SPAWN_AB_PRIO, "spawn test need to have higher priority than ztest thread"); /* Spawn N number of cooperative threads, where N = number of CPUs */ for (i = 0; i < num_threads; i++) { tid[i] = k_thread_create(&tthread[i], tstack[i], STACK_SIZE, thread_ab_entry, NULL, NULL, NULL, SPAWN_AB_PRIO, 0, K_NO_WAIT); } /* Wait for some time to let spawned threads on other cores run and start executing infinite * loop. */ k_busy_wait(DELAY_US * 4); /* At this time we have (number of CPUs - 1) spawned threads run and executing infinite loop * on other CPU cores, as current CPU is occupied by this ztest cooperative thread. * Due to that the last of spawned threads is ready but not executing. */ /* Abort all spawned threads one-by-one. At the first k_thread_abort call the context * switch will happen and the last 'spawned' thread will start. * We should successfully abort all threads. */ for (i = 0; i < num_threads; i++) { k_thread_abort(tid[i]); } /* Cleanup */ for (i = 0; i < num_threads; i++) { zassert_equal(k_thread_join(tid[i], K_FOREVER), 0); } } /** * @brief Test cooperative threads non-preemption * * @ingroup kernel_smp_tests * * @details Spawn cooperative threads equal to number of cores * supported. Main thread will already be running on 1 core. * Check if the last thread created preempts any threads * already running. */ ZTEST(smp, test_coop_resched_threads) { unsigned int num_threads = arch_num_cpus(); /* Spawn threads equal to number of cores, * since we don't give up current CPU, last thread * will not get scheduled */ spawn_threads(K_PRIO_COOP(10), num_threads, !EQUAL_PRIORITY, &thread_entry, THREAD_DELAY); /* Wait for some time to let other core's thread run */ k_busy_wait(DELAY_US); /* Reassure that cooperative thread's are not preempted * by checking last thread's execution * status. We know that all threads got rescheduled on * other cores except the last one */ for (int i = 0; i < num_threads - 1; i++) { zassert_true(tinfo[i].executed == 1, "cooperative thread %d didn't run", i); } zassert_true(tinfo[num_threads - 1].executed == 0, "cooperative thread is preempted"); /* Abort threads created */ abort_threads(num_threads); cleanup_resources(); } /** * @brief Test preemptness of preemptive thread * * @ingroup kernel_smp_tests * * @details Create preemptive thread and let it run * on another core and verify if it gets preempted * if another thread of higher priority is spawned */ ZTEST(smp, test_preempt_resched_threads) { unsigned int num_threads = arch_num_cpus(); /* Spawn threads equal to number of cores, * lower priority thread should * be preempted by higher ones */ spawn_threads(K_PRIO_PREEMPT(10), num_threads, !EQUAL_PRIORITY, &thread_entry, THREAD_DELAY); spin_for_threads_exit(); for (int i = 0; i < num_threads; i++) { zassert_true(tinfo[i].executed == 1, "preemptive thread %d didn't run", i); } /* Abort threads created */ abort_threads(num_threads); cleanup_resources(); } /** * @brief Validate behavior of thread when it yields * * @ingroup kernel_smp_tests * * @details Spawn cooperative threads equal to number * of cores, so last thread would be pending, call * yield() from main thread. Now, all threads must be * executed */ ZTEST(smp, test_yield_threads) { unsigned int num_threads = arch_num_cpus(); /* Spawn threads equal to the number * of cores, so the last thread would be * pending. */ spawn_threads(K_PRIO_COOP(10), num_threads, !EQUAL_PRIORITY, &thread_entry, !THREAD_DELAY); k_yield(); k_busy_wait(DELAY_US); for (int i = 0; i < num_threads; i++) { zassert_true(tinfo[i].executed == 1, "thread %d did not execute", i); } abort_threads(num_threads); cleanup_resources(); } /** * @brief Test behavior of thread when it sleeps * * @ingroup kernel_smp_tests * * @details Spawn cooperative thread and call * sleep() from main thread. After timeout, all * threads has to be scheduled. */ ZTEST(smp, test_sleep_threads) { unsigned int num_threads = arch_num_cpus(); spawn_threads(K_PRIO_COOP(10), num_threads, !EQUAL_PRIORITY, &thread_entry, !THREAD_DELAY); k_msleep(TIMEOUT); for (int i = 0; i < num_threads; i++) { zassert_true(tinfo[i].executed == 1, "thread %d did not execute", i); } abort_threads(num_threads); cleanup_resources(); } static void thread_wakeup_entry(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); int thread_num = POINTER_TO_INT(p1); thread_started[thread_num] = 1; k_msleep(DELAY_US * 1000); tinfo[thread_num].executed = 1; } static void wakeup_on_start_thread(int tnum) { int threads_started = 0, i; /* For each thread, spin waiting for it to first flag that * it's going to sleep, and then that it's actually blocked */ for (i = 0; i < tnum; i++) { while (thread_started[i] == 0) { } while (!z_is_thread_prevented_from_running(tinfo[i].tid)) { } } for (i = 0; i < tnum; i++) { if (thread_started[i] == 1 && threads_started <= tnum) { threads_started++; k_wakeup(tinfo[i].tid); } } zassert_equal(threads_started, tnum, "All threads haven't started"); } static void check_wokeup_threads(int tnum) { int threads_woke_up = 0, i; /* k_wakeup() isn't synchronous, give the other CPU time to * schedule them */ k_busy_wait(200000); for (i = 0; i < tnum; i++) { if (tinfo[i].executed == 1 && threads_woke_up <= tnum) { threads_woke_up++; } } zassert_equal(threads_woke_up, tnum, "Threads did not wakeup"); } /** * @brief Test behavior of wakeup() in SMP case * * @ingroup kernel_smp_tests * * @details Spawn number of threads equal to number of * remaining cores and let them sleep for a while. Call * wakeup() of those threads from parent thread and check * if they are all running */ ZTEST(smp, test_wakeup_threads) { unsigned int num_threads = arch_num_cpus(); /* Spawn threads to run on all remaining cores */ spawn_threads(K_PRIO_COOP(10), num_threads - 1, !EQUAL_PRIORITY, &thread_wakeup_entry, !THREAD_DELAY); /* Check if all the threads have started, then call wakeup */ wakeup_on_start_thread(num_threads - 1); /* Count threads which are woken up */ check_wokeup_threads(num_threads - 1); /* Abort all threads and cleanup */ abort_threads(num_threads - 1); cleanup_resources(); } /* a thread for testing get current cpu */ static void thread_get_cpu_entry(void *p1, void *p2, void *p3) { int bsp_id = *(int *)p1; int cpu_id = -1; /* get current cpu number for running thread */ _cpu_t *curr_cpu = arch_curr_cpu(); /**TESTPOINT: call arch_curr_cpu() to get cpu struct */ zassert_true(curr_cpu != NULL, "test failed to get current cpu."); cpu_id = curr_cpu->id; zassert_true(bsp_id != cpu_id, "should not be the same with our BSP"); /* loop forever to ensure running on this CPU */ while (1) { k_busy_wait(DELAY_US); } } /** * @brief Test get a pointer of CPU * * @ingroup kernel_smp_module_tests * * @details * Test Objective: * - To verify architecture layer provides a mechanism to return a pointer to the * current kernel CPU record of the running CPU. * We call arch_curr_cpu() and get its member, both in main and spawned thread * separately, and compare them. They shall be different in SMP environment. * * Testing techniques: * - Interface testing, function and block box testing, * dynamic analysis and testing, * * Prerequisite Conditions: * - CONFIG_SMP=y, and the HW platform must support SMP. * * Input Specifications: * - N/A * * Test Procedure: * -# In main thread, call arch_curr_cpu() to get it's member "id",then store it * into a variable thread_id. * -# Spawn a thread t2, and pass the stored thread_id to it, then call * k_busy_wait() 50us to wait for thread run and won't be swapped out. * -# In thread t2, call arch_curr_cpu() to get pointer of current cpu data. Then * check if it not NULL. * -# Store the member id via accessing pointer of current cpu data to var cpu_id. * -# Check if cpu_id is not equaled to bsp_id that we pass into thread. * -# Call k_busy_wait() and loop forever. * -# In main thread, terminate the thread t2 before exit. * * Expected Test Result: * - The pointer of current cpu data that we got from function call is correct. * * Pass/Fail Criteria: * - Successful if the check of step 3,5 are all passed. * - Failure if one of the check of step 3,5 is failed. * * Assumptions and Constraints: * - This test using for the platform that support SMP, in our current scenario * , only x86_64, arc and xtensa supported. * * @see arch_curr_cpu() */ static int _cpu_id; ZTEST(smp, test_get_cpu) { k_tid_t thread_id; if (!IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) { /* The spawned thread enters an infinite loop, so it can't be * successfully aborted via an IPI. Just skip in that * configuration. */ ztest_test_skip(); } /* get current cpu number */ _cpu_id = arch_curr_cpu()->id; thread_id = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, (k_thread_entry_t)thread_get_cpu_entry, &_cpu_id, NULL, NULL, K_PRIO_COOP(2), K_INHERIT_PERMS, K_NO_WAIT); k_busy_wait(DELAY_US); k_thread_abort(thread_id); k_thread_join(thread_id, K_FOREVER); } #ifdef CONFIG_TRACE_SCHED_IPI /* global variable for testing send IPI */ static volatile int sched_ipi_has_called; void z_trace_sched_ipi(void) { sched_ipi_has_called++; } #endif /** * @brief Test interprocessor interrupt * * @ingroup kernel_smp_integration_tests * * @details * Test Objective: * - To verify architecture layer provides a mechanism to issue an interprocessor * interrupt to all other CPUs in the system that calls the scheduler IPI. * We simply add a hook in z_sched_ipi(), in order to check if it has been * called once in another CPU except the caller, when arch_sched_ipi() is * called. * * Testing techniques: * - Interface testing, function and block box testing, * dynamic analysis and testing * * Prerequisite Conditions: * - CONFIG_SMP=y, and the HW platform must support SMP. * - CONFIG_TRACE_SCHED_IPI=y was set. * * Input Specifications: * - N/A * * Test Procedure: * -# In main thread, given a global variable sched_ipi_has_called equaled zero. * -# Call arch_sched_ipi() then sleep for 100ms. * -# In z_sched_ipi() handler, increment the sched_ipi_has_called. * -# In main thread, check the sched_ipi_has_called is not equaled to zero. * -# Repeat step 1 to 4 for 3 times. * * Expected Test Result: * - The pointer of current cpu data that we got from function call is correct. * * Pass/Fail Criteria: * - Successful if the check of step 4 are all passed. * - Failure if one of the check of step 4 is failed. * * Assumptions and Constraints: * - This test using for the platform that support SMP, in our current scenario * , only x86_64 and arc supported. * * @see arch_sched_ipi() */ #ifdef CONFIG_SCHED_IPI_SUPPORTED ZTEST(smp, test_smp_ipi) { #ifndef CONFIG_TRACE_SCHED_IPI ztest_test_skip(); #endif TC_PRINT("cpu num=%d", arch_num_cpus()); for (int i = 0; i < 3 ; i++) { /* issue a sched ipi to tell other CPU to run thread */ sched_ipi_has_called = 0; arch_sched_ipi(); /* Need to wait longer than we think, loaded CI * systems need to wait for host scheduling to run the * other CPU's thread. */ k_msleep(100); /**TESTPOINT: check if enter our IPI interrupt handler */ zassert_true(sched_ipi_has_called != 0, "did not receive IPI.(%d)", sched_ipi_has_called); } } #endif void k_sys_fatal_error_handler(unsigned int reason, const z_arch_esf_t *esf) { static int trigger; if (reason != K_ERR_KERNEL_OOPS) { printk("wrong error reason\n"); printk("PROJECT EXECUTION FAILED\n"); k_fatal_halt(reason); } if (trigger == 0) { child_thread_id = curr_cpu(); trigger++; } else { main_thread_id = curr_cpu(); /* Verify the fatal was happened on different core */ zassert_true(main_thread_id != child_thread_id, "fatal on the same core"); } } void entry_oops(void *p1, void *p2, void *p3) { k_oops(); TC_ERROR("SHOULD NEVER SEE THIS\n"); } /** * @brief Test fatal error can be triggered on different core * @details When CONFIG_SMP is enabled, on some multiprocessor * platforms, exception can be triggered on different core at * the same time. * * @ingroup kernel_common_tests */ ZTEST(smp, test_fatal_on_smp) { /* Creat a child thread and trigger a crash */ k_thread_create(&t2, t2_stack, T2_STACK_SIZE, entry_oops, NULL, NULL, NULL, K_PRIO_PREEMPT(2), 0, K_NO_WAIT); /* hold cpu and wait for thread trigger exception and being terminated */ k_busy_wait(2 * DELAY_US); /* Verify that child thread is no longer running. We can't simply use k_thread_join here * as we don't want to introduce reschedule point here. */ zassert_true(z_is_thread_state_set(&t2, _THREAD_DEAD)); /* Manually trigger the crash in mainthread */ entry_oops(NULL, NULL, NULL); /* should not be here */ ztest_test_fail(); } static void workq_handler(struct k_work *work) { child_thread_id = curr_cpu(); } /** * @brief Test system workq run on different core * @details When macro CONFIG_SMP is enabled, workq can be run * on different core. * * @ingroup kernel_common_tests */ ZTEST(smp, test_workq_on_smp) { static struct k_work work; k_work_init(&work, workq_handler); /* submit work item on system workq */ k_work_submit(&work); /* Wait for some time to let other core's thread run */ k_busy_wait(DELAY_US); /* check work have finished */ zassert_equal(k_work_busy_get(&work), 0); main_thread_id = curr_cpu(); /* Verify the ztest thread and system workq run on different core */ zassert_true(main_thread_id != child_thread_id, "system workq run on the same core"); } static void t1_mutex_lock(void *p1, void *p2, void *p3) { /* t1 will get mutex first */ k_mutex_lock((struct k_mutex *)p1, K_FOREVER); k_msleep(2); k_mutex_unlock((struct k_mutex *)p1); } static void t2_mutex_lock(void *p1, void *p2, void *p3) { zassert_equal(_current->base.global_lock_count, 0, "thread global lock cnt %d is incorrect", _current->base.global_lock_count); k_mutex_lock((struct k_mutex *)p1, K_FOREVER); zassert_equal(_current->base.global_lock_count, 0, "thread global lock cnt %d is incorrect", _current->base.global_lock_count); k_mutex_unlock((struct k_mutex *)p1); /**TESTPOINT: z_smp_release_global_lock() has been call during * context switch but global_lock_cnt has not been decrease * because no irq_lock() was called. */ zassert_equal(_current->base.global_lock_count, 0, "thread global lock cnt %d is incorrect", _current->base.global_lock_count); } /** * @brief Test scenario that a thread release the global lock * * @ingroup kernel_smp_tests * * @details Validate the scenario that make the internal APIs of SMP * z_smp_release_global_lock() to be called. */ ZTEST(smp, test_smp_release_global_lock) { k_mutex_init(&smutex); tinfo[0].tid = k_thread_create(&tthread[0], tstack[0], STACK_SIZE, (k_thread_entry_t)t1_mutex_lock, &smutex, NULL, NULL, K_PRIO_PREEMPT(5), K_INHERIT_PERMS, K_NO_WAIT); tinfo[1].tid = k_thread_create(&tthread[1], tstack[1], STACK_SIZE, (k_thread_entry_t)t2_mutex_lock, &smutex, NULL, NULL, K_PRIO_PREEMPT(3), K_INHERIT_PERMS, K_MSEC(1)); /* Hold one of the cpu to ensure context switch as we wanted * can happen in another cpu. */ k_busy_wait(20000); k_thread_join(tinfo[1].tid, K_FOREVER); k_thread_join(tinfo[0].tid, K_FOREVER); cleanup_resources(); } #define LOOP_COUNT ((int)(20000 * RUN_FACTOR)) enum sync_t { LOCK_IRQ, LOCK_SEM, LOCK_MUTEX }; static int global_cnt; static struct k_mutex smp_mutex; static void (*sync_lock)(void *); static void (*sync_unlock)(void *); static void sync_lock_dummy(void *k) { /* no sync lock used */ } static void sync_lock_irq(void *k) { *((unsigned int *)k) = irq_lock(); } static void sync_unlock_irq(void *k) { irq_unlock(*(unsigned int *)k); } static void sync_lock_sem(void *k) { k_sem_take(&smp_sem, K_FOREVER); } static void sync_unlock_sem(void *k) { k_sem_give(&smp_sem); } static void sync_lock_mutex(void *k) { k_mutex_lock(&smp_mutex, K_FOREVER); } static void sync_unlock_mutex(void *k) { k_mutex_unlock(&smp_mutex); } static void sync_init(int lock_type) { switch (lock_type) { case LOCK_IRQ: sync_lock = sync_lock_irq; sync_unlock = sync_unlock_irq; break; case LOCK_SEM: sync_lock = sync_lock_sem; sync_unlock = sync_unlock_sem; k_sem_init(&smp_sem, 1, 3); break; case LOCK_MUTEX: sync_lock = sync_lock_mutex; sync_unlock = sync_unlock_mutex; k_mutex_init(&smp_mutex); break; default: sync_lock = sync_unlock = sync_lock_dummy; } } static void inc_global_cnt(void *a, void *b, void *c) { int key; for (int i = 0; i < LOOP_COUNT; i++) { sync_lock(&key); global_cnt++; global_cnt--; global_cnt++; sync_unlock(&key); } } static int run_concurrency(int type, void *func) { uint32_t start_t, end_t; sync_init(type); global_cnt = 0; start_t = k_cycle_get_32(); tinfo[0].tid = k_thread_create(&tthread[0], tstack[0], STACK_SIZE, (k_thread_entry_t)func, NULL, NULL, NULL, K_PRIO_PREEMPT(1), K_INHERIT_PERMS, K_NO_WAIT); tinfo[1].tid = k_thread_create(&tthread[1], tstack[1], STACK_SIZE, (k_thread_entry_t)func, NULL, NULL, NULL, K_PRIO_PREEMPT(1), K_INHERIT_PERMS, K_NO_WAIT); k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, (k_thread_entry_t)func, NULL, NULL, NULL, K_PRIO_PREEMPT(1), K_INHERIT_PERMS, K_NO_WAIT); k_thread_join(tinfo[0].tid, K_FOREVER); k_thread_join(tinfo[1].tid, K_FOREVER); k_thread_join(tid, K_FOREVER); cleanup_resources(); end_t = k_cycle_get_32(); printk("type %d: cnt %d, spend %u ms\n", type, global_cnt, k_cyc_to_ms_ceil32(end_t - start_t)); return global_cnt == (LOOP_COUNT * 3); } /** * @brief Test if the concurrency of SMP works or not * * @ingroup kernel_smp_tests * * @details Validate the global lock and unlock API of SMP are thread-safe. * We make 3 thread to increase the global count in different cpu and * they both do locking then unlocking for LOOP_COUNT times. It shall be no * deadlock happened and total global count shall be 3 * LOOP COUNT. * * We show the 4 kinds of scenario: * - No any lock used * - Use global irq lock * - Use semaphore * - Use mutex */ ZTEST(smp, test_inc_concurrency) { /* increasing global var with irq lock */ zassert_true(run_concurrency(LOCK_IRQ, inc_global_cnt), "total count %d is wrong(i)", global_cnt); /* increasing global var with irq lock */ zassert_true(run_concurrency(LOCK_SEM, inc_global_cnt), "total count %d is wrong(s)", global_cnt); /* increasing global var with irq lock */ zassert_true(run_concurrency(LOCK_MUTEX, inc_global_cnt), "total count %d is wrong(M)", global_cnt); } /** * @brief Torture test for context switching code * * @ingroup kernel_smp_tests * * @details Leverage the polling API to stress test the context switching code. * This test will hammer all the CPUs with thread swapping requests. */ static void process_events(void *arg0, void *arg1, void *arg2) { uintptr_t id = (uintptr_t) arg0; while (1) { k_poll(&tevent[id], 1, K_FOREVER); if (tevent[id].signal->result != 0x55) { ztest_test_fail(); } tevent[id].signal->signaled = 0; tevent[id].state = K_POLL_STATE_NOT_READY; k_poll_signal_reset(&tsignal[id]); } } static void signal_raise(void *arg0, void *arg1, void *arg2) { unsigned int num_threads = arch_num_cpus(); while (1) { for (uintptr_t i = 0; i < num_threads; i++) { k_poll_signal_raise(&tsignal[i], 0x55); } } } ZTEST(smp, test_smp_switch_torture) { unsigned int num_threads = arch_num_cpus(); for (uintptr_t i = 0; i < num_threads; i++) { k_poll_signal_init(&tsignal[i]); k_poll_event_init(&tevent[i], K_POLL_TYPE_SIGNAL, K_POLL_MODE_NOTIFY_ONLY, &tsignal[i]); k_thread_create(&tthread[i], tstack[i], STACK_SIZE, (k_thread_entry_t) process_events, (void *) i, NULL, NULL, K_PRIO_PREEMPT(i + 1), K_INHERIT_PERMS, K_NO_WAIT); } k_thread_create(&t2, t2_stack, T2_STACK_SIZE, signal_raise, NULL, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT); k_sleep(K_MSEC(SLEEP_MS_LONG)); k_thread_abort(&t2); k_thread_join(&t2, K_FOREVER); for (uintptr_t i = 0; i < num_threads; i++) { k_thread_abort(&tthread[i]); k_thread_join(&tthread[i], K_FOREVER); } } static void *smp_tests_setup(void) { /* Sleep a bit to guarantee that both CPUs enter an idle * thread from which they can exit correctly to run the main * test. */ k_sleep(K_MSEC(10)); return NULL; } ZTEST_SUITE(smp, NULL, smp_tests_setup, NULL, NULL, NULL); |