Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 * Copyright (c) 2017, 2020 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr/kernel.h>
#include <zephyr/syscall_handler.h>
#include <zephyr/ztest.h>
#include <zephyr/linker/linker-defs.h>
#include "test_syscalls.h"
#include <mmu.h>

#define BUF_SIZE	32

#if defined(CONFIG_BOARD_FVP_BASE_REVC_2XAEMV8A)
#define SLEEP_MS_LONG	30000
#else
#define SLEEP_MS_LONG	15000
#endif

#if defined(CONFIG_BOARD_NUCLEO_F429ZI) || defined(CONFIG_BOARD_NUCLEO_F207ZG) \
	|| defined(CONFIG_BOARD_NUCLEO_L073RZ) \
	|| defined(CONFIG_BOARD_RONOTH_LODEV)
#define FAULTY_ADDRESS 0x0FFFFFFF
#elif defined(CONFIG_BOARD_QEMU_CORTEX_R5)
#define FAULTY_ADDRESS 0xBFFFFFFF
#elif CONFIG_MMU
/* Just past the zephyr image mapping should be a non-present page */
#define FAULTY_ADDRESS Z_FREE_VM_START
#else
#define FAULTY_ADDRESS 0xFFFFFFF0
#endif

char kernel_string[BUF_SIZE];
char kernel_buf[BUF_SIZE];
ZTEST_BMEM char user_string[BUF_SIZE];

void k_sys_fatal_error_handler(unsigned int reason, const z_arch_esf_t *pEsf)
{
	printk("Caught system error -- reason %d\n", reason);
	printk("Unexpected fault during test\n");
	printk("PROJECT EXECUTION FAILED\n");
	k_fatal_halt(reason);
}

size_t z_impl_string_nlen(char *src, size_t maxlen, int *err)
{
	return z_user_string_nlen(src, maxlen, err);
}

static inline size_t z_vrfy_string_nlen(char *src, size_t maxlen, int *err)
{
	int err_copy;
	size_t ret;

	ret = z_impl_string_nlen((char *)src, maxlen, &err_copy);
	if (!err_copy && Z_SYSCALL_MEMORY_READ(src, ret + 1)) {
		err_copy = -1;
	}

	Z_OOPS(z_user_to_copy((int *)err, &err_copy, sizeof(err_copy)));

	return ret;
}
#include <syscalls/string_nlen_mrsh.c>

int z_impl_string_alloc_copy(char *src)
{
	if (!strcmp(src, kernel_string)) {
		return 0;
	} else {
		return -2;
	}
}

static inline int z_vrfy_string_alloc_copy(char *src)
{
	char *src_copy;
	int ret;

	src_copy = z_user_string_alloc_copy((char *)src, BUF_SIZE);
	if (!src_copy) {
		return -1;
	}

	ret = z_impl_string_alloc_copy(src_copy);
	k_free(src_copy);

	return ret;
}
#include <syscalls/string_alloc_copy_mrsh.c>

int z_impl_string_copy(char *src)
{
	if (!strcmp(src, kernel_string)) {
		return 0;
	} else {
		return ESRCH;
	}
}

static inline int z_vrfy_string_copy(char *src)
{
	int ret = z_user_string_copy(kernel_buf, (char *)src, BUF_SIZE);

	if (ret) {
		return ret;
	}

	return z_impl_string_copy(kernel_buf);
}
#include <syscalls/string_copy_mrsh.c>

/* Not actually used, but will copy wrong string if called by mistake instead
 * of the handler
 */
int z_impl_to_copy(char *dest)
{
	memcpy(dest, kernel_string, BUF_SIZE);
	return 0;
}

static inline int z_vrfy_to_copy(char *dest)
{
	return z_user_to_copy((char *)dest, user_string, BUF_SIZE);
}
#include <syscalls/to_copy_mrsh.c>

int z_impl_syscall_arg64(uint64_t arg)
{
	/* "Hash" (heh) the return to avoid accidental false positives
	 * due to using common/predictable values.
	 */
	return (int)(arg + 0x8c32a9eda4ca2621ULL + (size_t)&kernel_string);
}

static inline int z_vrfy_syscall_arg64(uint64_t arg)
{
	return z_impl_syscall_arg64(arg);
}
#include <syscalls/syscall_arg64_mrsh.c>

/* Bigger 64 bit arg syscall to exercise marshalling 7+ words of
 * arguments (this one happens to need 9), and to test generation of
 * 64 bit return values.
 */
uint64_t z_impl_syscall_arg64_big(uint32_t arg1, uint32_t arg2,
			       uint64_t arg3, uint32_t arg4,
			       uint32_t arg5, uint64_t arg6)
{
	uint64_t args[] = { arg1, arg2, arg3, arg4, arg5, arg6 };
	uint64_t ret = 0xae751a24ef464cc0ULL;

	for (int i = 0; i < ARRAY_SIZE(args); i++) {
		ret += args[i];
		ret = (ret << 11) | (ret >> 53);
	}

	return ret;
}

static inline uint64_t z_vrfy_syscall_arg64_big(uint32_t arg1, uint32_t arg2,
					     uint64_t arg3, uint32_t arg4,
					     uint32_t arg5, uint64_t arg6)
{
	return z_impl_syscall_arg64_big(arg1, arg2, arg3, arg4, arg5, arg6);
}
#include <syscalls/syscall_arg64_big_mrsh.c>

uint32_t z_impl_more_args(uint32_t arg1, uint32_t arg2, uint32_t arg3,
			  uint32_t arg4, uint32_t arg5, uint32_t arg6,
			  uint32_t arg7)
{
	uint32_t ret = 0x4ef464cc;
	uint32_t args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 };

	for (int i = 0; i < ARRAY_SIZE(args); i++) {
		ret += args[i];
		ret = (ret << 11) | (ret >> 5);
	}

	return ret;
}

static inline uint32_t z_vrfy_more_args(uint32_t arg1, uint32_t arg2,
					uint32_t arg3, uint32_t arg4,
					uint32_t arg5, uint32_t arg6,
					uint32_t arg7)
{
	return z_impl_more_args(arg1, arg2, arg3, arg4, arg5, arg6, arg7);
}
#include <syscalls/more_args_mrsh.c>

/**
 * @brief Test to demonstrate usage of z_user_string_nlen()
 *
 * @details The test will be called from user mode and kernel
 * mode to check the behavior of z_user_string_nlen()
 *
 * @ingroup kernel_memprotect_tests
 *
 * @see z_user_string_nlen()
 */
ZTEST_USER(syscalls, test_string_nlen)
{
	int err;
	size_t ret;

	ret = string_nlen(kernel_string, BUF_SIZE, &err);
	if (arch_is_user_context()) {
		zassert_equal(err, -1,
			      "kernel string did not fault on user access");
	} else {
		zassert_equal(err, 0, "kernel string faulted in kernel mode");
		zassert_equal(ret, strlen(kernel_string),
			      "incorrect length returned");
	}

	/* Valid usage */
	ret = string_nlen(user_string, BUF_SIZE, &err);
	zassert_equal(err, 0, "user string faulted");
	zassert_equal(ret, strlen(user_string), "incorrect length returned");

	/* Skip this scenario for nsim_sem emulated board, unfortunately
	 * the emulator doesn't set up memory as specified in DTS and poking
	 * this address doesn't fault
	 * Also skip this scenario for em_starterkit_7d, which won't generate
	 * exceptions when unmapped address is accessed.
	 *
	 * In addition to the above, skip the scenario for Non-Secure Cortex-M
	 * builds; Zephyr running in Non-Secure mode will generate SecureFault
	 * if it attempts to access any address outside the image Flash or RAM
	 * boundaries, and the program will hang.
	 */
#if !((defined(CONFIG_BOARD_NSIM) && defined(CONFIG_SOC_NSIM_SEM)) || \
	defined(CONFIG_SOC_EMSK_EM7D) || \
	(defined(CONFIG_CPU_CORTEX_M) && \
		defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)))
	/* Try to blow up the kernel */
	ret = string_nlen((char *)FAULTY_ADDRESS, BUF_SIZE, &err);
	zassert_equal(err, -1, "nonsense string address did not fault");
#endif
}

/**
 * @brief Test to verify syscall for string alloc copy
 *
 * @ingroup kernel_memprotect_tests
 *
 * @see z_user_string_alloc_copy(), strcmp()
 */
ZTEST_USER(syscalls, test_user_string_alloc_copy)
{
	int ret;

	ret = string_alloc_copy("asdkajshdazskjdh");
	zassert_equal(ret, -2, "got %d", ret);

	ret = string_alloc_copy(
	    "asdkajshdazskjdhikfsdjhfskdjfhsdkfjhskdfjhdskfjhs");
	zassert_equal(ret, -1, "got %d", ret);

	ret = string_alloc_copy(kernel_string);
	zassert_equal(ret, -1, "got %d", ret);

	ret = string_alloc_copy("this is a kernel string");
	zassert_equal(ret, 0, "string should have matched");
}

/**
 * @brief Test sys_call for string copy
 *
 * @ingroup kernel_memprotect_tests
 *
 * @see z_user_string_copy(), strcmp()
 */
ZTEST_USER(syscalls, test_user_string_copy)
{
	int ret;

	ret = string_copy("asdkajshdazskjdh");
	zassert_equal(ret, ESRCH, "got %d", ret);

	ret = string_copy("asdkajshdazskjdhikfsdjhfskdjfhsdkfjhskdfjhdskfjhs");
	zassert_equal(ret, EINVAL, "got %d", ret);

	ret = string_copy(kernel_string);
	zassert_equal(ret, EFAULT, "got %d", ret);

	ret = string_copy("this is a kernel string");
	zassert_equal(ret, 0, "string should have matched");
}

/**
 * @brief Test to demonstrate system call for copy
 *
 * @ingroup kernel_memprotect_tests
 *
 * @see memcpy(), z_user_to_copy()
 */
ZTEST_USER(syscalls, test_to_copy)
{
	char buf[BUF_SIZE];
	int ret;

	ret = to_copy(kernel_buf);
	zassert_equal(ret, EFAULT, "should have faulted");

	ret = to_copy(buf);
	zassert_equal(ret, 0, "copy should have been a success");
	ret = strcmp(buf, user_string);
	zassert_equal(ret, 0, "string should have matched");
}

void run_test_arg64(void)
{
	zassert_equal(syscall_arg64(54321),
		      z_impl_syscall_arg64(54321),
		      "syscall didn't match impl");

	zassert_equal(syscall_arg64_big(1, 2, 3, 4, 5, 6),
		      z_impl_syscall_arg64_big(1, 2, 3, 4, 5, 6),
		      "syscall didn't match impl");
}

ZTEST_USER(syscalls, test_arg64)
{
	run_test_arg64();
}

ZTEST_USER(syscalls, test_more_args)
{
	zassert_equal(more_args(1, 2, 3, 4, 5, 6, 7),
		      z_impl_more_args(1, 2, 3, 4, 5, 6, 7),
		      "syscall didn't match impl");
}

#define NR_THREADS	(arch_num_cpus() * 4)
#define MAX_NR_THREADS	(CONFIG_MP_MAX_NUM_CPUS * 4)
#define STACK_SZ	(1024 + CONFIG_TEST_EXTRA_STACK_SIZE)

struct k_thread torture_threads[MAX_NR_THREADS];
K_THREAD_STACK_ARRAY_DEFINE(torture_stacks, MAX_NR_THREADS, STACK_SZ);

void syscall_torture(void *arg1, void *arg2, void *arg3)
{
	int count = 0;
	uintptr_t id = (uintptr_t)arg1;
	int ret, err;
	char buf[BUF_SIZE];

	for (;; ) {
		/* Run a bunch of our test syscalls in scenarios that are
		 * expected to succeed in a tight loop to look
		 * for concurrency problems.
		 */
		ret = string_nlen(user_string, BUF_SIZE, &err);
		zassert_equal(err, 0, "user string faulted");
		zassert_equal(ret, strlen(user_string),
			      "incorrect length returned");

		ret = string_alloc_copy("this is a kernel string");
		zassert_equal(ret, 0, "string should have matched");

		ret = string_copy("this is a kernel string");
		zassert_equal(ret, 0, "string should have matched");

		ret = to_copy(buf);
		zassert_equal(ret, 0, "copy should have been a success");
		ret = strcmp(buf, user_string);
		zassert_equal(ret, 0, "string should have matched");

		run_test_arg64();

		if (count++ == 30000) {
			printk("%ld", id);
			count = 0;
		}
	}
}

ZTEST(syscalls, test_syscall_torture)
{
	uintptr_t i;

	printk("Running syscall torture test with %d threads on %d cpu(s)\n",
	       NR_THREADS, arch_num_cpus());

	for (i = 0; i < NR_THREADS; i++) {
		k_thread_create(&torture_threads[i], torture_stacks[i],
				STACK_SZ, syscall_torture,
				(void *)i, NULL, NULL,
				2, K_INHERIT_PERMS | K_USER, K_NO_WAIT);
	}

	/* Let the torture threads hog the system for several seconds before
	 * we abort them.
	 * They will all be hammering the cpu(s) with system calls,
	 * hopefully smoking out any issues and causing a crash.
	 */
	k_sleep(K_MSEC(SLEEP_MS_LONG));

	for (i = 0; i < NR_THREADS; i++) {
		k_thread_abort(&torture_threads[i]);
	}

	printk("\n");
}

bool z_impl_syscall_context(void)
{
	return z_is_in_user_syscall();
}

static inline bool z_vrfy_syscall_context(void)
{
	return z_impl_syscall_context();
}
#include <syscalls/syscall_context_mrsh.c>

void test_syscall_context_user(void *p1, void *p2, void *p3)
{
	ARG_UNUSED(p1);
	ARG_UNUSED(p2);
	ARG_UNUSED(p3);

	zassert_true(syscall_context(),
		     "not reported in user syscall");
}

/* Show that z_is_in_syscall() works properly */
ZTEST(syscalls, test_syscall_context)
{
	/* We're a regular supervisor thread. */
	zassert_false(z_is_in_user_syscall(),
		      "reported in user syscall when in supv. thread ctx");

	/* Make a system call from supervisor mode. The check in the
	 * implementation function should return false.
	 */
	zassert_false(syscall_context(),
		      "reported in user syscall when called from supervisor");

	/* Remainder of the test in user mode */
	k_thread_user_mode_enter(test_syscall_context_user, NULL, NULL, NULL);
}

K_HEAP_DEFINE(test_heap, BUF_SIZE * (4 * MAX_NR_THREADS));

void *syscalls_setup(void)
{
	sprintf(kernel_string, "this is a kernel string");
	sprintf(user_string, "this is a user string");
	k_thread_heap_assign(k_current_get(), &test_heap);

	return NULL;
}

ZTEST_SUITE(syscalls, NULL, syscalls_setup, NULL, NULL, NULL);