Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 | /* main.c - Application main entry point */ /* * Copyright (c) 2017 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <zephyr/sys/printk.h> #include <zephyr/settings/settings.h> #include <zephyr/devicetree.h> #include <zephyr/device.h> #include <zephyr/drivers/gpio.h> #include <zephyr/drivers/hwinfo.h> #include <zephyr/sys/byteorder.h> #include <zephyr/bluetooth/bluetooth.h> #include <zephyr/bluetooth/mesh.h> #include "board.h" #define OP_ONOFF_GET BT_MESH_MODEL_OP_2(0x82, 0x01) #define OP_ONOFF_SET BT_MESH_MODEL_OP_2(0x82, 0x02) #define OP_ONOFF_SET_UNACK BT_MESH_MODEL_OP_2(0x82, 0x03) #define OP_ONOFF_STATUS BT_MESH_MODEL_OP_2(0x82, 0x04) static void attention_on(struct bt_mesh_model *mod) { board_led_set(true); } static void attention_off(struct bt_mesh_model *mod) { board_led_set(false); } static const struct bt_mesh_health_srv_cb health_cb = { .attn_on = attention_on, .attn_off = attention_off, }; static struct bt_mesh_health_srv health_srv = { .cb = &health_cb, }; BT_MESH_HEALTH_PUB_DEFINE(health_pub, 0); static const char *const onoff_str[] = { "off", "on" }; static struct { bool val; uint8_t tid; uint16_t src; uint32_t transition_time; struct k_work_delayable work; } onoff; /* OnOff messages' transition time and remaining time fields are encoded as an * 8 bit value with a 6 bit step field and a 2 bit resolution field. * The resolution field maps to: * 0: 100 ms * 1: 1 s * 2: 10 s * 3: 20 min */ static const uint32_t time_res[] = { 100, MSEC_PER_SEC, 10 * MSEC_PER_SEC, 10 * 60 * MSEC_PER_SEC, }; static inline int32_t model_time_decode(uint8_t val) { uint8_t resolution = (val >> 6) & BIT_MASK(2); uint8_t steps = val & BIT_MASK(6); if (steps == 0x3f) { return SYS_FOREVER_MS; } return steps * time_res[resolution]; } static inline uint8_t model_time_encode(int32_t ms) { if (ms == SYS_FOREVER_MS) { return 0x3f; } for (int i = 0; i < ARRAY_SIZE(time_res); i++) { if (ms >= BIT_MASK(6) * time_res[i]) { continue; } uint8_t steps = DIV_ROUND_UP(ms, time_res[i]); return steps | (i << 6); } return 0x3f; } static int onoff_status_send(struct bt_mesh_model *model, struct bt_mesh_msg_ctx *ctx) { uint32_t remaining; BT_MESH_MODEL_BUF_DEFINE(buf, OP_ONOFF_STATUS, 3); bt_mesh_model_msg_init(&buf, OP_ONOFF_STATUS); remaining = k_ticks_to_ms_floor32( k_work_delayable_remaining_get(&onoff.work)) + onoff.transition_time; /* Check using remaining time instead of "work pending" to make the * onoff status send the right value on instant transitions. As the * work item is executed in a lower priority than the mesh message * handler, the work will be pending even on instant transitions. */ if (remaining) { net_buf_simple_add_u8(&buf, !onoff.val); net_buf_simple_add_u8(&buf, onoff.val); net_buf_simple_add_u8(&buf, model_time_encode(remaining)); } else { net_buf_simple_add_u8(&buf, onoff.val); } return bt_mesh_model_send(model, ctx, &buf, NULL, NULL); } static void onoff_timeout(struct k_work *work) { if (onoff.transition_time) { /* Start transition. * * The LED should be on as long as the transition is in * progress, regardless of the target value, according to the * Bluetooth Mesh Model specification, section 3.1.1. */ board_led_set(true); k_work_reschedule(&onoff.work, K_MSEC(onoff.transition_time)); onoff.transition_time = 0; return; } board_led_set(onoff.val); } /* Generic OnOff Server message handlers */ static int gen_onoff_get(struct bt_mesh_model *model, struct bt_mesh_msg_ctx *ctx, struct net_buf_simple *buf) { onoff_status_send(model, ctx); return 0; } static int gen_onoff_set_unack(struct bt_mesh_model *model, struct bt_mesh_msg_ctx *ctx, struct net_buf_simple *buf) { uint8_t val = net_buf_simple_pull_u8(buf); uint8_t tid = net_buf_simple_pull_u8(buf); int32_t trans = 0; int32_t delay = 0; if (buf->len) { trans = model_time_decode(net_buf_simple_pull_u8(buf)); delay = net_buf_simple_pull_u8(buf) * 5; } /* Only perform change if the message wasn't a duplicate and the * value is different. */ if (tid == onoff.tid && ctx->addr == onoff.src) { /* Duplicate */ return 0; } if (val == onoff.val) { /* No change */ return 0; } printk("set: %s delay: %d ms time: %d ms\n", onoff_str[val], delay, trans); onoff.tid = tid; onoff.src = ctx->addr; onoff.val = val; onoff.transition_time = trans; /* Schedule the next action to happen on the delay, and keep * transition time stored, so it can be applied in the timeout. */ k_work_reschedule(&onoff.work, K_MSEC(delay)); return 0; } static int gen_onoff_set(struct bt_mesh_model *model, struct bt_mesh_msg_ctx *ctx, struct net_buf_simple *buf) { (void)gen_onoff_set_unack(model, ctx, buf); onoff_status_send(model, ctx); return 0; } static const struct bt_mesh_model_op gen_onoff_srv_op[] = { { OP_ONOFF_GET, BT_MESH_LEN_EXACT(0), gen_onoff_get }, { OP_ONOFF_SET, BT_MESH_LEN_MIN(2), gen_onoff_set }, { OP_ONOFF_SET_UNACK, BT_MESH_LEN_MIN(2), gen_onoff_set_unack }, BT_MESH_MODEL_OP_END, }; /* Generic OnOff Client */ static int gen_onoff_status(struct bt_mesh_model *model, struct bt_mesh_msg_ctx *ctx, struct net_buf_simple *buf) { uint8_t present = net_buf_simple_pull_u8(buf); if (buf->len) { uint8_t target = net_buf_simple_pull_u8(buf); int32_t remaining_time = model_time_decode(net_buf_simple_pull_u8(buf)); printk("OnOff status: %s -> %s: (%d ms)\n", onoff_str[present], onoff_str[target], remaining_time); return 0; } printk("OnOff status: %s\n", onoff_str[present]); return 0; } static const struct bt_mesh_model_op gen_onoff_cli_op[] = { {OP_ONOFF_STATUS, BT_MESH_LEN_MIN(1), gen_onoff_status}, BT_MESH_MODEL_OP_END, }; /* This application only needs one element to contain its models */ static struct bt_mesh_model models[] = { BT_MESH_MODEL_CFG_SRV, BT_MESH_MODEL_HEALTH_SRV(&health_srv, &health_pub), BT_MESH_MODEL(BT_MESH_MODEL_ID_GEN_ONOFF_SRV, gen_onoff_srv_op, NULL, NULL), BT_MESH_MODEL(BT_MESH_MODEL_ID_GEN_ONOFF_CLI, gen_onoff_cli_op, NULL, NULL), }; static struct bt_mesh_elem elements[] = { BT_MESH_ELEM(0, models, BT_MESH_MODEL_NONE), }; static const struct bt_mesh_comp comp = { .cid = BT_COMP_ID_LF, .elem = elements, .elem_count = ARRAY_SIZE(elements), }; /* Provisioning */ static int output_number(bt_mesh_output_action_t action, uint32_t number) { printk("OOB Number: %u\n", number); board_output_number(action, number); return 0; } static void prov_complete(uint16_t net_idx, uint16_t addr) { board_prov_complete(); } static void prov_reset(void) { bt_mesh_prov_enable(BT_MESH_PROV_ADV | BT_MESH_PROV_GATT); } static uint8_t dev_uuid[16]; static const struct bt_mesh_prov prov = { .uuid = dev_uuid, .output_size = 4, .output_actions = BT_MESH_DISPLAY_NUMBER, .output_number = output_number, .complete = prov_complete, .reset = prov_reset, }; /** Send an OnOff Set message from the Generic OnOff Client to all nodes. */ static int gen_onoff_send(bool val) { struct bt_mesh_msg_ctx ctx = { .app_idx = models[3].keys[0], /* Use the bound key */ .addr = BT_MESH_ADDR_ALL_NODES, .send_ttl = BT_MESH_TTL_DEFAULT, }; static uint8_t tid; if (ctx.app_idx == BT_MESH_KEY_UNUSED) { printk("The Generic OnOff Client must be bound to a key before " "sending.\n"); return -ENOENT; } BT_MESH_MODEL_BUF_DEFINE(buf, OP_ONOFF_SET_UNACK, 2); bt_mesh_model_msg_init(&buf, OP_ONOFF_SET_UNACK); net_buf_simple_add_u8(&buf, val); net_buf_simple_add_u8(&buf, tid++); printk("Sending OnOff Set: %s\n", onoff_str[val]); return bt_mesh_model_send(&models[3], &ctx, &buf, NULL, NULL); } static void button_pressed(struct k_work *work) { if (bt_mesh_is_provisioned()) { (void)gen_onoff_send(!onoff.val); return; } /* Self-provision with an arbitrary address. * * NOTE: This should never be done in a production environment. * Addresses should be assigned by a provisioner, and keys should * be generated from true random numbers. It is done in this * sample to allow testing without a provisioner. */ static uint8_t net_key[16]; static uint8_t dev_key[16]; static uint8_t app_key[16]; uint16_t addr; int err; if (IS_ENABLED(CONFIG_HWINFO)) { addr = sys_get_le16(&dev_uuid[0]) & BIT_MASK(15); } else { addr = k_uptime_get_32() & BIT_MASK(15); } printk("Self-provisioning with address 0x%04x\n", addr); err = bt_mesh_provision(net_key, 0, 0, 0, addr, dev_key); if (err) { printk("Provisioning failed (err: %d)\n", err); return; } /* Add an application key to both Generic OnOff models: */ err = bt_mesh_app_key_add(0, 0, app_key); if (err) { printk("App key add failed (err: %d)\n", err); return; } /* Models must be bound to an app key to send and receive messages with * it: */ models[2].keys[0] = 0; models[3].keys[0] = 0; printk("Provisioned and configured!\n"); } static void bt_ready(int err) { if (err) { printk("Bluetooth init failed (err %d)\n", err); return; } printk("Bluetooth initialized\n"); err = bt_mesh_init(&prov, &comp); if (err) { printk("Initializing mesh failed (err %d)\n", err); return; } if (IS_ENABLED(CONFIG_SETTINGS)) { settings_load(); } /* This will be a no-op if settings_load() loaded provisioning info */ bt_mesh_prov_enable(BT_MESH_PROV_ADV | BT_MESH_PROV_GATT); printk("Mesh initialized\n"); } int main(void) { static struct k_work button_work; int err = -1; printk("Initializing...\n"); if (IS_ENABLED(CONFIG_HWINFO)) { err = hwinfo_get_device_id(dev_uuid, sizeof(dev_uuid)); } if (err < 0) { dev_uuid[0] = 0xdd; dev_uuid[1] = 0xdd; } k_work_init(&button_work, button_pressed); err = board_init(&button_work); if (err) { printk("Board init failed (err: %d)\n", err); return 0; } k_work_init_delayable(&onoff.work, onoff_timeout); /* Initialize the Bluetooth Subsystem */ err = bt_enable(bt_ready); if (err) { printk("Bluetooth init failed (err %d)\n", err); } return 0; } |