Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/* h4.c - H:4 UART based Bluetooth driver */

/*
 * Copyright (c) 2015-2016 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <errno.h>
#include <stddef.h>

#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>

#include <zephyr/init.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/byteorder.h>
#include <string.h>

#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/drivers/bluetooth/hci_driver.h>

#define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(bt_driver);

#include "common/bt_str.h"

#include "../util.h"

#define H4_NONE 0x00
#define H4_CMD  0x01
#define H4_ACL  0x02
#define H4_SCO  0x03
#define H4_EVT  0x04
#define H4_ISO  0x05

static K_KERNEL_STACK_DEFINE(rx_thread_stack, CONFIG_BT_DRV_RX_STACK_SIZE);
static struct k_thread rx_thread_data;

static struct {
	struct net_buf *buf;
	struct k_fifo   fifo;

	uint16_t    remaining;
	uint16_t    discard;

	bool     have_hdr;
	bool     discardable;

	uint8_t     hdr_len;

	uint8_t     type;
	union {
		struct bt_hci_evt_hdr evt;
		struct bt_hci_acl_hdr acl;
		struct bt_hci_iso_hdr iso;
		uint8_t hdr[4];
	};
} rx = {
	.fifo = Z_FIFO_INITIALIZER(rx.fifo),
};

static struct {
	uint8_t type;
	struct net_buf *buf;
	struct k_fifo   fifo;
} tx = {
	.fifo = Z_FIFO_INITIALIZER(tx.fifo),
};

static const struct device *const h4_dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_bt_uart));

static inline void h4_get_type(void)
{
	/* Get packet type */
	if (uart_fifo_read(h4_dev, &rx.type, 1) != 1) {
		LOG_WRN("Unable to read H:4 packet type");
		rx.type = H4_NONE;
		return;
	}

	switch (rx.type) {
	case H4_EVT:
		rx.remaining = sizeof(rx.evt);
		rx.hdr_len = rx.remaining;
		break;
	case H4_ACL:
		rx.remaining = sizeof(rx.acl);
		rx.hdr_len = rx.remaining;
		break;
	case H4_ISO:
		if (IS_ENABLED(CONFIG_BT_ISO)) {
			rx.remaining = sizeof(rx.iso);
			rx.hdr_len = rx.remaining;
			break;
		}
		__fallthrough;
	default:
		LOG_ERR("Unknown H:4 type 0x%02x", rx.type);
		rx.type = H4_NONE;
	}
}

static void h4_read_hdr(void)
{
	int bytes_read = rx.hdr_len - rx.remaining;
	int ret;

	ret = uart_fifo_read(h4_dev, rx.hdr + bytes_read, rx.remaining);
	if (unlikely(ret < 0)) {
		LOG_ERR("Unable to read from UART (ret %d)", ret);
	} else {
		rx.remaining -= ret;
	}
}

static inline void get_acl_hdr(void)
{
	h4_read_hdr();

	if (!rx.remaining) {
		struct bt_hci_acl_hdr *hdr = &rx.acl;

		rx.remaining = sys_le16_to_cpu(hdr->len);
		LOG_DBG("Got ACL header. Payload %u bytes", rx.remaining);
		rx.have_hdr = true;
	}
}

static inline void get_iso_hdr(void)
{
	h4_read_hdr();

	if (!rx.remaining) {
		struct bt_hci_iso_hdr *hdr = &rx.iso;

		rx.remaining = bt_iso_hdr_len(sys_le16_to_cpu(hdr->len));
		LOG_DBG("Got ISO header. Payload %u bytes", rx.remaining);
		rx.have_hdr = true;
	}
}

static inline void get_evt_hdr(void)
{
	struct bt_hci_evt_hdr *hdr = &rx.evt;

	h4_read_hdr();

	if (rx.hdr_len == sizeof(*hdr) && rx.remaining < sizeof(*hdr)) {
		switch (rx.evt.evt) {
		case BT_HCI_EVT_LE_META_EVENT:
			rx.remaining++;
			rx.hdr_len++;
			break;
#if defined(CONFIG_BT_BREDR)
		case BT_HCI_EVT_INQUIRY_RESULT_WITH_RSSI:
		case BT_HCI_EVT_EXTENDED_INQUIRY_RESULT:
			rx.discardable = true;
			break;
#endif
		}
	}

	if (!rx.remaining) {
		if (rx.evt.evt == BT_HCI_EVT_LE_META_EVENT &&
		    (rx.hdr[sizeof(*hdr)] == BT_HCI_EVT_LE_ADVERTISING_REPORT)) {
			LOG_DBG("Marking adv report as discardable");
			rx.discardable = true;
		}

		rx.remaining = hdr->len - (rx.hdr_len - sizeof(*hdr));
		LOG_DBG("Got event header. Payload %u bytes", hdr->len);
		rx.have_hdr = true;
	}
}


static inline void copy_hdr(struct net_buf *buf)
{
	net_buf_add_mem(buf, rx.hdr, rx.hdr_len);
}

static void reset_rx(void)
{
	rx.type = H4_NONE;
	rx.remaining = 0U;
	rx.have_hdr = false;
	rx.hdr_len = 0U;
	rx.discardable = false;
}

static struct net_buf *get_rx(k_timeout_t timeout)
{
	LOG_DBG("type 0x%02x, evt 0x%02x", rx.type, rx.evt.evt);

	switch (rx.type) {
	case H4_EVT:
		return bt_buf_get_evt(rx.evt.evt, rx.discardable, timeout);
	case H4_ACL:
		return bt_buf_get_rx(BT_BUF_ACL_IN, timeout);
	case H4_ISO:
		if (IS_ENABLED(CONFIG_BT_ISO)) {
			return bt_buf_get_rx(BT_BUF_ISO_IN, timeout);
		}
	}

	return NULL;
}

static void rx_thread(void *p1, void *p2, void *p3)
{
	struct net_buf *buf;

	ARG_UNUSED(p1);
	ARG_UNUSED(p2);
	ARG_UNUSED(p3);

	LOG_DBG("started");

	while (1) {
		LOG_DBG("rx.buf %p", rx.buf);

		/* We can only do the allocation if we know the initial
		 * header, since Command Complete/Status events must use the
		 * original command buffer (if available).
		 */
		if (rx.have_hdr && !rx.buf) {
			rx.buf = get_rx(K_FOREVER);
			LOG_DBG("Got rx.buf %p", rx.buf);
			if (rx.remaining > net_buf_tailroom(rx.buf)) {
				LOG_ERR("Not enough space in buffer");
				rx.discard = rx.remaining;
				reset_rx();
			} else {
				copy_hdr(rx.buf);
			}
		}

		/* Let the ISR continue receiving new packets */
		uart_irq_rx_enable(h4_dev);

		buf = net_buf_get(&rx.fifo, K_FOREVER);
		do {
			uart_irq_rx_enable(h4_dev);

			LOG_DBG("Calling bt_recv(%p)", buf);
			bt_recv(buf);

			/* Give other threads a chance to run if the ISR
			 * is receiving data so fast that rx.fifo never
			 * or very rarely goes empty.
			 */
			k_yield();

			uart_irq_rx_disable(h4_dev);
			buf = net_buf_get(&rx.fifo, K_NO_WAIT);
		} while (buf);
	}
}

static size_t h4_discard(const struct device *uart, size_t len)
{
	uint8_t buf[33];
	int err;

	err = uart_fifo_read(uart, buf, MIN(len, sizeof(buf)));
	if (unlikely(err < 0)) {
		LOG_ERR("Unable to read from UART (err %d)", err);
		return 0;
	}

	return err;
}

static inline void read_payload(void)
{
	struct net_buf *buf;
	uint8_t evt_flags;
	int read;

	if (!rx.buf) {
		size_t buf_tailroom;

		rx.buf = get_rx(K_NO_WAIT);
		if (!rx.buf) {
			if (rx.discardable) {
				LOG_WRN("Discarding event 0x%02x", rx.evt.evt);
				rx.discard = rx.remaining;
				reset_rx();
				return;
			}

			LOG_WRN("Failed to allocate, deferring to rx_thread");
			uart_irq_rx_disable(h4_dev);
			return;
		}

		LOG_DBG("Allocated rx.buf %p", rx.buf);

		buf_tailroom = net_buf_tailroom(rx.buf);
		if (buf_tailroom < rx.remaining) {
			LOG_ERR("Not enough space in buffer %u/%zu", rx.remaining, buf_tailroom);
			rx.discard = rx.remaining;
			reset_rx();
			return;
		}

		copy_hdr(rx.buf);
	}

	read = uart_fifo_read(h4_dev, net_buf_tail(rx.buf), rx.remaining);
	if (unlikely(read < 0)) {
		LOG_ERR("Failed to read UART (err %d)", read);
		return;
	}

	net_buf_add(rx.buf, read);
	rx.remaining -= read;

	LOG_DBG("got %d bytes, remaining %u", read, rx.remaining);
	LOG_DBG("Payload (len %u): %s", rx.buf->len, bt_hex(rx.buf->data, rx.buf->len));

	if (rx.remaining) {
		return;
	}

	buf = rx.buf;
	rx.buf = NULL;

	if (rx.type == H4_EVT) {
		evt_flags = bt_hci_evt_get_flags(rx.evt.evt);
		bt_buf_set_type(buf, BT_BUF_EVT);
	} else {
		evt_flags = BT_HCI_EVT_FLAG_RECV;
		bt_buf_set_type(buf, BT_BUF_ACL_IN);
	}

	reset_rx();

	if (IS_ENABLED(CONFIG_BT_RECV_BLOCKING) &&
	    (evt_flags & BT_HCI_EVT_FLAG_RECV_PRIO)) {
		LOG_DBG("Calling bt_recv_prio(%p)", buf);
		bt_recv_prio(buf);
	}

	if (evt_flags & BT_HCI_EVT_FLAG_RECV) {
		LOG_DBG("Putting buf %p to rx fifo", buf);
		net_buf_put(&rx.fifo, buf);
	}
}

static inline void read_header(void)
{
	switch (rx.type) {
	case H4_NONE:
		h4_get_type();
		return;
	case H4_EVT:
		get_evt_hdr();
		break;
	case H4_ACL:
		get_acl_hdr();
		break;
	case H4_ISO:
		if (IS_ENABLED(CONFIG_BT_ISO)) {
			get_iso_hdr();
			break;
		}
		__fallthrough;
	default:
		CODE_UNREACHABLE;
		return;
	}

	if (rx.have_hdr && rx.buf) {
		if (rx.remaining > net_buf_tailroom(rx.buf)) {
			LOG_ERR("Not enough space in buffer");
			rx.discard = rx.remaining;
			reset_rx();
		} else {
			copy_hdr(rx.buf);
		}
	}
}

static inline void process_tx(void)
{
	int bytes;

	if (!tx.buf) {
		tx.buf = net_buf_get(&tx.fifo, K_NO_WAIT);
		if (!tx.buf) {
			LOG_ERR("TX interrupt but no pending buffer!");
			uart_irq_tx_disable(h4_dev);
			return;
		}
	}

	if (!tx.type) {
		switch (bt_buf_get_type(tx.buf)) {
		case BT_BUF_ACL_OUT:
			tx.type = H4_ACL;
			break;
		case BT_BUF_CMD:
			tx.type = H4_CMD;
			break;
		case BT_BUF_ISO_OUT:
			if (IS_ENABLED(CONFIG_BT_ISO)) {
				tx.type = H4_ISO;
				break;
			}
			__fallthrough;
		default:
			LOG_ERR("Unknown buffer type");
			goto done;
		}

		bytes = uart_fifo_fill(h4_dev, &tx.type, 1);
		if (bytes != 1) {
			LOG_WRN("Unable to send H:4 type");
			tx.type = H4_NONE;
			return;
		}
	}

	bytes = uart_fifo_fill(h4_dev, tx.buf->data, tx.buf->len);
	if (unlikely(bytes < 0)) {
		LOG_ERR("Unable to write to UART (err %d)", bytes);
	} else {
		net_buf_pull(tx.buf, bytes);
	}

	if (tx.buf->len) {
		return;
	}

done:
	tx.type = H4_NONE;
	net_buf_unref(tx.buf);
	tx.buf = net_buf_get(&tx.fifo, K_NO_WAIT);
	if (!tx.buf) {
		uart_irq_tx_disable(h4_dev);
	}
}

static inline void process_rx(void)
{
	LOG_DBG("remaining %u discard %u have_hdr %u rx.buf %p len %u", rx.remaining, rx.discard,
		rx.have_hdr, rx.buf, rx.buf ? rx.buf->len : 0);

	if (rx.discard) {
		rx.discard -= h4_discard(h4_dev, rx.discard);
		return;
	}

	if (rx.have_hdr) {
		read_payload();
	} else {
		read_header();
	}
}

static void bt_uart_isr(const struct device *unused, void *user_data)
{
	ARG_UNUSED(unused);
	ARG_UNUSED(user_data);

	while (uart_irq_update(h4_dev) && uart_irq_is_pending(h4_dev)) {
		if (uart_irq_tx_ready(h4_dev)) {
			process_tx();
		}

		if (uart_irq_rx_ready(h4_dev)) {
			process_rx();
		}
	}
}

static int h4_send(struct net_buf *buf)
{
	LOG_DBG("buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len);

	net_buf_put(&tx.fifo, buf);
	uart_irq_tx_enable(h4_dev);

	return 0;
}

/** Setup the HCI transport, which usually means to reset the Bluetooth IC
  *
  * @param dev The device structure for the bus connecting to the IC
  *
  * @return 0 on success, negative error value on failure
  */
int __weak bt_hci_transport_setup(const struct device *dev)
{
	h4_discard(h4_dev, 32);
	return 0;
}

static int h4_open(void)
{
	int ret;
	k_tid_t tid;

	LOG_DBG("");

	uart_irq_rx_disable(h4_dev);
	uart_irq_tx_disable(h4_dev);

	ret = bt_hci_transport_setup(h4_dev);
	if (ret < 0) {
		return -EIO;
	}

	uart_irq_callback_set(h4_dev, bt_uart_isr);

	tid = k_thread_create(&rx_thread_data, rx_thread_stack,
			      K_KERNEL_STACK_SIZEOF(rx_thread_stack),
			      rx_thread, NULL, NULL, NULL,
			      K_PRIO_COOP(CONFIG_BT_RX_PRIO),
			      0, K_NO_WAIT);
	k_thread_name_set(tid, "bt_rx_thread");

	return 0;
}

#if defined(CONFIG_BT_HCI_SETUP)
static int h4_setup(void)
{
	/* Extern bt_h4_vnd_setup function.
	 * This function executes vendor-specific commands sequence to
	 * initialize BT Controller before BT Host executes Reset sequence.
	 * bt_h4_vnd_setup function must be implemented in vendor-specific HCI
	 * extansion module if CONFIG_BT_HCI_SETUP is enabled.
	 */
	extern int bt_h4_vnd_setup(const struct device *dev);

	return bt_h4_vnd_setup(h4_dev);
}
#endif

static const struct bt_hci_driver drv = {
	.name		= "H:4",
	.bus		= BT_HCI_DRIVER_BUS_UART,
	.open		= h4_open,
	.send		= h4_send,
#if defined(CONFIG_BT_HCI_SETUP)
	.setup		= h4_setup
#endif
};

static int bt_uart_init(void)
{

	if (!device_is_ready(h4_dev)) {
		return -ENODEV;
	}

	bt_hci_driver_register(&drv);

	return 0;
}

SYS_INIT(bt_uart_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);