Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
/*
 * Copyright (c) 2017-2022 Linaro Limited.
 * Copyright (c) 2017 RnDity Sp. z o.o.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_system.h>
#include <stm32_ll_utils.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include "clock_stm32_ll_common.h"
#include "stm32_hsem.h"

/* Macros to fill up prescaler values */
#define z_hsi_divider(v) LL_RCC_HSI_DIV_ ## v
#define hsi_divider(v) z_hsi_divider(v)

#define fn_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define ahb_prescaler(v) fn_ahb_prescaler(v)

#define fn_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) fn_apb1_prescaler(v)

#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler)
#define fn_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) fn_apb2_prescaler(v)
#endif

#define fn_mco1_prescaler(v) LL_RCC_MCO1_DIV_ ## v
#define mco1_prescaler(v) fn_mco1_prescaler(v)

#define fn_mco2_prescaler(v) LL_RCC_MCO2_DIV_ ## v
#define mco2_prescaler(v) fn_mco2_prescaler(v)

#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb4_prescaler)
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK4_FREQ
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHB4Prescaler
#elif DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler)
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK3_FREQ
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHB3Prescaler
#else
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK_FREQ
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHBPrescaler
#endif

#if defined(RCC_PLLCFGR_PLLPEN)
#define RCC_PLLP_ENABLE() SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPEN)
#else
#define RCC_PLLP_ENABLE()
#endif /* RCC_PLLCFGR_PLLPEN */
#if defined(RCC_PLLCFGR_PLLQEN)
#define RCC_PLLQ_ENABLE() SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN)
#else
#define RCC_PLLQ_ENABLE()
#endif /* RCC_PLLCFGR_PLLQEN */

/**
 * @brief Return frequency for pll with 2 dividers and a multiplier
 */
__unused
static uint32_t get_pll_div_frequency(uint32_t pllsrc_freq,
				      int pllm_div,
				      int plln_mul,
				      int pllout_div)
{
	__ASSERT_NO_MSG(pllm_div && pllout_div);

	return (pllsrc_freq * plln_mul) /
		(pllm_div * pllout_div);
}

static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
	return clock / prescaler;
}

__unused
static uint32_t get_msi_frequency(void)
{
#if defined(STM32_MSI_ENABLED)
#if !defined(LL_RCC_MSIRANGESEL_RUN)
	return __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
#else
	return __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGESEL_RUN,
				      LL_RCC_MSI_GetRange());
#endif
#endif
	return 0;
}

/** @brief Verifies clock is part of active clock configuration */
__unused
static int enabled_clock(uint32_t src_clk)
{
	int r = 0;

	switch (src_clk) {
#if defined(STM32_SRC_SYSCLK)
	case STM32_SRC_SYSCLK:
		break;
#endif /* STM32_SRC_SYSCLK */
#if defined(STM32_SRC_PCLK)
	case STM32_SRC_PCLK:
		break;
#endif /* STM32_SRC_PCLK */
#if defined(STM32_SRC_HSE)
	case STM32_SRC_HSE:
		if (!IS_ENABLED(STM32_HSE_ENABLED)) {
			r = -ENOTSUP;
		}
		break;
#endif /* STM32_SRC_HSE */
#if defined(STM32_SRC_HSI)
	case STM32_SRC_HSI:
		if (!IS_ENABLED(STM32_HSI_ENABLED)) {
			r = -ENOTSUP;
		}
		break;
#endif /* STM32_SRC_HSI */
#if defined(STM32_SRC_LSE)
	case STM32_SRC_LSE:
		if (!IS_ENABLED(STM32_LSE_ENABLED)) {
			r = -ENOTSUP;
		}
		break;
#endif /* STM32_SRC_LSE */
#if defined(STM32_SRC_LSI)
	case STM32_SRC_LSI:
		if (!IS_ENABLED(STM32_LSI_ENABLED)) {
			r = -ENOTSUP;
		}
		break;
#endif /* STM32_SRC_LSI */
#if defined(STM32_SRC_HSI48)
	case STM32_SRC_HSI48:
		if (!IS_ENABLED(STM32_HSI48_ENABLED)) {
			r = -ENOTSUP;
		}
		break;
#endif /* STM32_SRC_HSI48 */
#if defined(STM32_SRC_MSI)
	case STM32_SRC_MSI:
		if (!IS_ENABLED(STM32_MSI_ENABLED)) {
			r = -ENOTSUP;
		}
		break;
#endif /* STM32_SRC_MSI */
#if defined(STM32_SRC_PLLCLK)
	case STM32_SRC_PLLCLK:
		if (!IS_ENABLED(STM32_PLL_ENABLED)) {
			r = -ENOTSUP;
		}
		break;
#endif /* STM32_SRC_PLLCLK */
#if defined(STM32_SRC_PLL_P)
	case STM32_SRC_PLL_P:
		if (!IS_ENABLED(STM32_PLL_P_ENABLED)) {
			r = -ENOTSUP;
		}
		break;
#endif /* STM32_SRC_PLL_P */
#if defined(STM32_SRC_PLL_Q)
	case STM32_SRC_PLL_Q:
		if (!IS_ENABLED(STM32_PLL_Q_ENABLED)) {
			r = -ENOTSUP;
		}
		break;
#endif /* STM32_SRC_PLL_Q */
#if defined(STM32_SRC_PLL_R)
	case STM32_SRC_PLL_R:
		if (!IS_ENABLED(STM32_PLL_R_ENABLED)) {
			r = -ENOTSUP;
		}
		break;
#endif /* STM32_SRC_PLL_R */
	default:
		return -ENOTSUP;
	}

	return r;
}

static inline int stm32_clock_control_on(const struct device *dev,
					 clock_control_subsys_t sub_system)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);

	ARG_UNUSED(dev);

	if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
		/* Attemp to change a wrong periph clock bit */
		return -ENOTSUP;
	}

	sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
		     pclken->enr);

	return 0;
}

static inline int stm32_clock_control_off(const struct device *dev,
					  clock_control_subsys_t sub_system)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);

	ARG_UNUSED(dev);

	if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
		/* Attemp to toggle a wrong periph clock bit */
		return -ENOTSUP;
	}

	sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
		       pclken->enr);

	return 0;
}

static inline int stm32_clock_control_configure(const struct device *dev,
						clock_control_subsys_t sub_system,
						void *data)
{
#if defined(STM32_SRC_SYSCLK)
	/* At least one alt src clock available */
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
	int err;

	ARG_UNUSED(dev);
	ARG_UNUSED(data);

	err = enabled_clock(pclken->bus);
	if (err < 0) {
		/* Attempt to configure a src clock not available or not valid */
		return err;
	}

	if (pclken->enr == NO_SEL) {
		/* Domain clock is fixed. Nothing to set. Exit */
		return 0;
	}

	sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
		     STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));

	return 0;
#else
	/* No src clock available: Not supported */
	return -ENOTSUP;
#endif
}

static int stm32_clock_control_get_subsys_rate(const struct device *clock,
						clock_control_subsys_t sub_system,
						uint32_t *rate)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
	/*
	 * Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
	 * SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
	 * since it will be updated after clock configuration and hence
	 * more likely to contain actual clock speed
	 */
	uint32_t ahb_clock = SystemCoreClock;
	uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER);
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler)
	uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER);
#elif defined(STM32_CLOCK_BUS_APB2)
	/* APB2 bus exists, but w/o dedicated prescaler */
	uint32_t apb2_clock = apb1_clock;
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler)
	uint32_t ahb3_clock = get_bus_clock(ahb_clock * STM32_CPU1_PRESCALER,
					    STM32_AHB3_PRESCALER);
#elif defined(STM32_CLOCK_BUS_AHB3)
	/* AHB3 bus exists, but w/o dedicated prescaler */
	uint32_t ahb3_clock = ahb_clock;
#endif

#if defined(STM32_SRC_PCLK)
	if (pclken->bus == STM32_SRC_PCLK) {
		/* STM32_SRC_PCLK can't be used to request a subsys freq */
		/* Use STM32_CLOCK_BUS_FOO instead. */
		return -ENOTSUP;
	}
#endif

	ARG_UNUSED(clock);

	switch (pclken->bus) {
	case STM32_CLOCK_BUS_AHB1:
#if defined(STM32_CLOCK_BUS_AHB2)
	case STM32_CLOCK_BUS_AHB2:
#endif
#if defined(STM32_CLOCK_BUS_IOP)
	case STM32_CLOCK_BUS_IOP:
#endif
		*rate = ahb_clock;
		break;
#if defined(STM32_CLOCK_BUS_AHB3)
	case STM32_CLOCK_BUS_AHB3:
		*rate = ahb3_clock;
		break;
#endif
	case STM32_CLOCK_BUS_APB1:
#if defined(STM32_CLOCK_BUS_APB1_2)
	case STM32_CLOCK_BUS_APB1_2:
#endif
		*rate = apb1_clock;
		break;
#if defined(STM32_CLOCK_BUS_APB2)
	case STM32_CLOCK_BUS_APB2:
		*rate = apb2_clock;
		break;
#endif
#if defined(STM32_CLOCK_BUS_APB3)
	case STM32_CLOCK_BUS_APB3:
		/* STM32WL: AHB3 and APB3 share the same clock and prescaler. */
		*rate = ahb3_clock;
		break;
#endif
#if defined(STM32_SRC_SYSCLK)
	case STM32_SRC_SYSCLK:
		*rate = SystemCoreClock * STM32_CORE_PRESCALER;
		break;
#endif
#if defined(STM32_SRC_PLLCLK) & defined(STM32_SYSCLK_SRC_PLL)
	case STM32_SRC_PLLCLK:
		if (get_pllout_frequency() == 0) {
			return -EIO;
		}
		*rate = get_pllout_frequency();
		break;
#endif
#if defined(STM32_SRC_PLL_P) & STM32_PLL_P_ENABLED
	case STM32_SRC_PLL_P:
		*rate = get_pll_div_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_P_DIVISOR);
		break;
#endif
#if defined(STM32_SRC_PLL_Q) & STM32_PLL_Q_ENABLED
	case STM32_SRC_PLL_Q:
		*rate = get_pll_div_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_Q_DIVISOR);
		break;
#endif
#if defined(STM32_SRC_PLL_R) & STM32_PLL_R_ENABLED
	case STM32_SRC_PLL_R:
		*rate = get_pll_div_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_R_DIVISOR);
		break;
#endif
/* PLLSAI1x not supported yet */
/* PLLSAI2x not supported yet */
/* PLLI2Sx not supported yet */
#if defined(STM32_SRC_LSE)
	case STM32_SRC_LSE:
		*rate = STM32_LSE_FREQ;
		break;
#endif
#if defined(STM32_SRC_LSI)
	case STM32_SRC_LSI:
		*rate = STM32_LSI_FREQ;
		break;
#endif
#if defined(STM32_SRC_HSI)
	case STM32_SRC_HSI:
		*rate = STM32_HSI_FREQ;
		break;
#endif
#if defined(STM32_SRC_MSI)
	case STM32_SRC_MSI:
		*rate = get_msi_frequency();
		break;
#endif
#if defined(STM32_SRC_HSE)
	case STM32_SRC_HSE:
		*rate = STM32_HSE_FREQ;
		break;
#endif
#if defined(STM32_HSI48_ENABLED)
	case STM32_SRC_HSI48:
		*rate = STM32_HSI48_FREQ;
		break;
#endif /* STM32_HSI48_ENABLED */
	default:
		return -ENOTSUP;
	}

	return 0;
}

static struct clock_control_driver_api stm32_clock_control_api = {
	.on = stm32_clock_control_on,
	.off = stm32_clock_control_off,
	.get_rate = stm32_clock_control_get_subsys_rate,
	.configure = stm32_clock_control_configure,
};

/*
 * Unconditionally switch the system clock source to HSI.
 */
__unused
static void stm32_clock_switch_to_hsi(void)
{
	/* Enable HSI if not enabled */
	if (LL_RCC_HSI_IsReady() != 1) {
		/* Enable HSI */
		LL_RCC_HSI_Enable();
		while (LL_RCC_HSI_IsReady() != 1) {
		/* Wait for HSI ready */
		}
	}

	/* Set HSI as SYSCLCK source */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
	}
}

/*
 * MCO configure doesn't active requested clock source,
 * so please make sure the clock source was enabled.
 */
static inline void stm32_clock_control_mco_init(void)
{
#ifndef CONFIG_CLOCK_STM32_MCO1_SRC_NOCLOCK
#ifdef CONFIG_SOC_SERIES_STM32F1X
	LL_RCC_ConfigMCO(MCO1_SOURCE);
#else
	LL_RCC_ConfigMCO(MCO1_SOURCE,
			 mco1_prescaler(CONFIG_CLOCK_STM32_MCO1_DIV));
#endif
#endif /* CONFIG_CLOCK_STM32_MCO1_SRC_NOCLOCK */

#ifndef CONFIG_CLOCK_STM32_MCO2_SRC_NOCLOCK
	LL_RCC_ConfigMCO(MCO2_SOURCE,
			 mco2_prescaler(CONFIG_CLOCK_STM32_MCO2_DIV));
#endif /* CONFIG_CLOCK_STM32_MCO2_SRC_NOCLOCK */
}

__unused
static void set_up_plls(void)
{
#if defined(STM32_PLL_ENABLED)

	/*
	 * Case of chain-loaded applications:
	 * Switch to HSI and disable the PLL before configuration.
	 * (Switching to HSI makes sure we have a SYSCLK source in
	 * case we're currently running from the PLL we're about to
	 * turn off and reconfigure.)
	 *
	 */
	if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL) {
		LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
		stm32_clock_switch_to_hsi();
	}
	LL_RCC_PLL_Disable();

#endif

#if defined(STM32_PLL2_ENABLED)
	/*
	 * Disable PLL2 after switching to HSI for SysClk
	 * and disabling PLL, but before enabling PLL again,
	 * since PLL source can be PLL2.
	 */
	LL_RCC_PLL2_Disable();

	config_pll2();

	/* Enable PLL2 */
	LL_RCC_PLL2_Enable();
	while (LL_RCC_PLL2_IsReady() != 1U) {
	/* Wait for PLL2 ready */
	}
#endif /* STM32_PLL2_ENABLED */

#if defined(STM32_PLL_ENABLED)

#if defined(STM32_SRC_PLL_P) & STM32_PLL_P_ENABLED
	MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLP, pllp(STM32_PLL_P_DIVISOR));
	RCC_PLLP_ENABLE();
#endif
#if defined(STM32_SRC_PLL_Q) & STM32_PLL_Q_ENABLED
	MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ, pllq(STM32_PLL_Q_DIVISOR));
	RCC_PLLQ_ENABLE();
#endif

	config_pll_sysclock();

	/* Enable PLL */
	LL_RCC_PLL_Enable();
	while (LL_RCC_PLL_IsReady() != 1U) {
	/* Wait for PLL ready */
	}

#endif /* STM32_PLL_ENABLED */
}

static void set_up_fixed_clock_sources(void)
{

	if (IS_ENABLED(STM32_HSE_ENABLED)) {
#if defined(STM32_HSE_BYPASS)
		/* Check if need to enable HSE bypass feature or not */
		if (IS_ENABLED(STM32_HSE_BYPASS)) {
			LL_RCC_HSE_EnableBypass();
		} else {
			LL_RCC_HSE_DisableBypass();
		}
#endif
#if STM32_HSE_TCXO
		LL_RCC_HSE_EnableTcxo();
#endif
#if STM32_HSE_DIV2
		LL_RCC_HSE_EnableDiv2();
#endif
		/* Enable HSE */
		LL_RCC_HSE_Enable();
		while (LL_RCC_HSE_IsReady() != 1) {
		/* Wait for HSE ready */
		}
	}

	if (IS_ENABLED(STM32_HSI_ENABLED)) {
		/* Enable HSI if not enabled */
		if (LL_RCC_HSI_IsReady() != 1) {
			/* Enable HSI */
			LL_RCC_HSI_Enable();
			while (LL_RCC_HSI_IsReady() != 1) {
			/* Wait for HSI ready */
			}
		}
#if STM32_HSI_DIV_ENABLED
		LL_RCC_SetHSIDiv(hsi_divider(STM32_HSI_DIVISOR));
#endif
	}

#if defined(STM32_MSI_ENABLED)
	if (IS_ENABLED(STM32_MSI_ENABLED)) {
		/* Set MSI Range */
#if defined(RCC_CR_MSIRGSEL)
		LL_RCC_MSI_EnableRangeSelection();
#endif /* RCC_CR_MSIRGSEL */

#if defined(CONFIG_SOC_SERIES_STM32L0X) || defined(CONFIG_SOC_SERIES_STM32L1X)
		LL_RCC_MSI_SetRange(STM32_MSI_RANGE << RCC_ICSCR_MSIRANGE_Pos);
#else
		LL_RCC_MSI_SetRange(STM32_MSI_RANGE << RCC_CR_MSIRANGE_Pos);
#endif /* CONFIG_SOC_SERIES_STM32L0X || CONFIG_SOC_SERIES_STM32L1X */

#if STM32_MSI_PLL_MODE
		/* Enable MSI hardware auto calibration */
		LL_RCC_MSI_EnablePLLMode();
#endif

		LL_RCC_MSI_SetCalibTrimming(0);

		/* Enable MSI if not enabled */
		if (LL_RCC_MSI_IsReady() != 1) {
			/* Enable MSI */
			LL_RCC_MSI_Enable();
			while (LL_RCC_MSI_IsReady() != 1) {
				/* Wait for MSI ready */
			}
		}
	}
#endif /* STM32_MSI_ENABLED */

	if (IS_ENABLED(STM32_LSI_ENABLED)) {
#if defined(CONFIG_SOC_SERIES_STM32WBX)
		LL_RCC_LSI1_Enable();
		while (LL_RCC_LSI1_IsReady() != 1) {
		}
#else
		LL_RCC_LSI_Enable();
		while (LL_RCC_LSI_IsReady() != 1) {
		}
#endif
	}

	if (IS_ENABLED(STM32_LSE_ENABLED)) {
		/* LSE belongs to the back-up domain, enable access.*/

		z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);

		/* Set the DBP bit in the Power control register 1 (PWR_CR1) */
		LL_PWR_EnableBkUpAccess();
		while (!LL_PWR_IsEnabledBkUpAccess()) {
			/* Wait for Backup domain access */
		}

#if STM32_LSE_DRIVING
		/* Configure driving capability */
		LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);
#endif

		if (IS_ENABLED(STM32_LSE_BYPASS)) {
			/* Configure LSE bypass */
			LL_RCC_LSE_EnableBypass();
		}

		/* Enable LSE Oscillator (32.768 kHz) */
		LL_RCC_LSE_Enable();
		while (!LL_RCC_LSE_IsReady()) {
			/* Wait for LSE ready */
		}

#ifdef RCC_BDCR_LSESYSEN
		LL_RCC_LSE_EnablePropagation();
		/* Wait till LSESYS is ready */
		while (!LL_RCC_LSE_IsPropagationReady()) {
		}
#endif /* RCC_BDCR_LSESYSEN */

		LL_PWR_DisableBkUpAccess();

		z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
	}

#if defined(STM32_HSI48_ENABLED)
	/* For all series with HSI 48 clock support */
	if (IS_ENABLED(STM32_HSI48_ENABLED)) {
#if defined(CONFIG_SOC_SERIES_STM32L0X)
		/*
		 * HSI48 requires VREFINT (see RM0376 section 7.2.4).
		 * The SYSCFG is needed to control VREFINT, so clock it.
		 */
		LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SYSCFG);
		LL_SYSCFG_VREFINT_EnableHSI48();
#endif /* CONFIG_SOC_SERIES_STM32L0X */

		/*
		 * STM32WB: Lock the CLK48 HSEM and do not release to prevent
		 * M0 core to disable this clock (used for RNG on M0).
		 * No-op on other series.
		 */
		z_stm32_hsem_lock(CFG_HW_CLK48_CONFIG_SEMID, HSEM_LOCK_DEFAULT_RETRY);

		LL_RCC_HSI48_Enable();
		while (LL_RCC_HSI48_IsReady() != 1) {
		}
	}
#endif /* STM32_HSI48_ENABLED */
}

/**
 * @brief Initialize clocks for the stm32
 *
 * This routine is called to enable and configure the clocks and PLL
 * of the soc on the board. It depends on the board definition.
 * This function is called on the startup and also to restore the config
 * when exiting for low power mode.
 *
 * @param dev clock device struct
 *
 * @return 0
 */
int stm32_clock_control_init(const struct device *dev)
{
	ARG_UNUSED(dev);

	/* Some clocks would be activated by default */
	config_enable_default_clocks();

#if defined(STM32_PLL_ENABLED) && defined(CONFIG_SOC_SERIES_STM32F7X)
	/* Assuming we stay on Power Scale default value: Power Scale 1 */
	if (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC > 180000000) {
		/* Set Overdrive if needed before configuring the Flash Latency */
		LL_PWR_EnableOverDriveMode();
		while (LL_PWR_IsActiveFlag_OD() != 1) {
		/* Wait for OverDrive mode ready */
		}
		LL_PWR_EnableOverDriveSwitching();
		while (LL_PWR_IsActiveFlag_ODSW() != 1) {
		/* Wait for OverDrive switch ready */
		}
	}
#endif /* STM32_PLL_ENABLED && CONFIG_SOC_SERIES_STM32F7X */

#if defined(FLASH_ACR_LATENCY)
	uint32_t old_flash_freq;
	uint32_t new_flash_freq;

	old_flash_freq = RCC_CALC_FLASH_FREQ(HAL_RCC_GetSysClockFreq(),
					       GET_CURRENT_FLASH_PRESCALER());

	new_flash_freq = RCC_CALC_FLASH_FREQ(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
				      STM32_FLASH_PRESCALER);

	/* If freq increases, set flash latency before any clock setting */
	if (old_flash_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
		LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
	}
#endif /* FLASH_ACR_LATENCY */

	/* Set up indiviual enabled clocks */
	set_up_fixed_clock_sources();

	/* Set up PLLs */
	set_up_plls();

	if (DT_PROP(DT_NODELABEL(rcc), undershoot_prevention) &&
		(STM32_CORE_PRESCALER == LL_RCC_SYSCLK_DIV_1) &&
		(MHZ(80) < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC)) {
		LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2);
	} else {
		LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER));
	}

#if STM32_SYSCLK_SRC_PLL
	/* Set PLL as System Clock Source */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) {
	}
#elif STM32_SYSCLK_SRC_HSE
	/* Set HSE as SYSCLCK source */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
	}
#elif STM32_SYSCLK_SRC_MSI
	/* Set MSI as SYSCLCK source */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI) {
	}
#elif STM32_SYSCLK_SRC_HSI
	stm32_clock_switch_to_hsi();
#endif /* STM32_SYSCLK_SRC_... */

	if (DT_PROP(DT_NODELABEL(rcc), undershoot_prevention) &&
		(STM32_CORE_PRESCALER == LL_RCC_SYSCLK_DIV_1) &&
		(MHZ(80) < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC)) {
		LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER));
	}

#if defined(FLASH_ACR_LATENCY)
	/* If freq not increased, set flash latency after all clock setting */
	if (old_flash_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
		LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
	}
#endif /* FLASH_ACR_LATENCY */

	SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;

	/* Set bus prescalers prescaler */
	LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER));
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler)
	LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), cpu2_prescaler)
	LL_C2_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CPU2_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler)
	LL_RCC_SetAHB3Prescaler(ahb_prescaler(STM32_AHB3_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb4_prescaler)
	LL_RCC_SetAHB4Prescaler(ahb_prescaler(STM32_AHB4_PRESCALER));
#endif

	/* configure MCO1/MCO2 based on Kconfig */
	stm32_clock_control_mco_init();

	return 0;
}

/**
 * @brief RCC device, note that priority is intentionally set to 1 so
 * that the device init runs just after SOC init
 */
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
		    &stm32_clock_control_init,
		    NULL,
		    NULL, NULL,
		    PRE_KERNEL_1,
		    CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
		    &stm32_clock_control_api);