Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*
 * Copyright (c) 2021, NXP
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Note: this file is linked to RAM. Any functions called while changing clocks
 * to the flexspi modules must be linked to RAM, or within this file
 */

#include <zephyr/init.h>
#include <power_rt10xx.h>
#include <zephyr/kernel.h>
#include <fsl_clock.h>

/*
 * Clock configuration structures populated at boot time. These structures are
 * used to reinitialize the PLLs after exiting low power mode.
 */
#ifdef CONFIG_INIT_ARM_PLL
static clock_arm_pll_config_t arm_pll_config;
#endif
#ifdef CONFIG_INIT_VIDEO_PLL
static clock_video_pll_config_t video_pll_config;
#endif
#ifdef CONFIG_INIT_ENET_PLL
static clock_enet_pll_config_t enet_pll_config;
#endif
static clock_sys_pll_config_t sys_pll_config;
static clock_usb_pll_config_t usb1_pll_config;

#define IMX_RT_SYS_PFD_FRAC(reg, pfd_num) \
	(((reg) >> (8U * pfd_num)) &\
	CCM_ANALOG_PFD_528_PFD0_FRAC_MASK)
#define IMX_RT_USB1_PFD_FRAC(reg, pfd_num) \
	(((reg) >> (8U * pfd_num)) &\
	CCM_ANALOG_PFD_480_PFD0_FRAC_MASK)

uint8_t sys_pll_pfd0_frac;
uint8_t sys_pll_pfd1_frac;
uint8_t sys_pll_pfd2_frac;
uint8_t sys_pll_pfd3_frac;

uint8_t usb1_pll_pfd1_frac;
uint8_t usb1_pll_pfd2_frac;
uint8_t usb1_pll_pfd3_frac;

uint32_t flexspi_div;

/*
 * Duplicate implementation of CLOCK_SetMux() provided by SDK. This function
 * must be linked to ITCM, as it will be used to change the clocks of the
 * FLEXSPI and SEMC peripherals.
 * Any function called from this function must also reside in ITCM
 */
static void clock_set_mux(clock_mux_t mux, uint32_t value)
{
	uint32_t busy_shift;

	busy_shift = (uint32_t)CCM_TUPLE_BUSY_SHIFT(mux);
	CCM_TUPLE_REG(CCM, mux) = (CCM_TUPLE_REG(CCM, mux) & (~CCM_TUPLE_MASK(mux))) |
		  (((uint32_t)((value) << CCM_TUPLE_SHIFT(mux))) & CCM_TUPLE_MASK(mux));

	/* Clock switch need Handshake? */
	if (busy_shift != CCM_NO_BUSY_WAIT) {
		/* Wait until CCM internal handshake finish. */
		while ((CCM->CDHIPR & ((1UL << busy_shift))) != 0UL) {
		}
	}
}

/*
 * Duplicate implementation of CLOCK_SetDiv() provided by SDK. This function
 * must be linked to ITCM, as it will be used to change the clocks of the
 * FLEXSPI and SEMC peripherals.
 * Any function called from this function must also reside in ITCM
 */
static void clock_set_div(clock_div_t divider, uint32_t value)
{
	uint32_t busy_shift;

	busy_shift = CCM_TUPLE_BUSY_SHIFT(divider);
	CCM_TUPLE_REG(CCM, divider) = (CCM_TUPLE_REG(CCM, divider) & (~CCM_TUPLE_MASK(divider))) |
		(((uint32_t)((value) << CCM_TUPLE_SHIFT(divider))) & CCM_TUPLE_MASK(divider));

	/* Clock switch need Handshake? */
	if (busy_shift != CCM_NO_BUSY_WAIT) {
		/* Wait until CCM internal handshake finish. */
		while ((CCM->CDHIPR & ((uint32_t)(1UL << busy_shift))) != 0UL) {
		}
	}
}

/*
 * Duplicate implementation of CLOCK_InitUsb1Pll() provided by SDK. This function
 * must be linked to ITCM, as it will be used to change the clocks of the
 * FLEXSPI and SEMC peripherals.
 * Any function called from this function must also reside in ITCM
 */
static void clock_init_usb1_pll(const clock_usb_pll_config_t *config)
{
	/* Bypass PLL first */
	CCM_ANALOG->PLL_USB1 = (CCM_ANALOG->PLL_USB1 & (~CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC_MASK)) |
		CCM_ANALOG_PLL_USB1_BYPASS_MASK | CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC(config->src);

	CCM_ANALOG->PLL_USB1 = (CCM_ANALOG->PLL_USB1 & (~CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK)) |
		CCM_ANALOG_PLL_USB1_ENABLE_MASK | CCM_ANALOG_PLL_USB1_POWER_MASK |
		CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK |
		CCM_ANALOG_PLL_USB1_DIV_SELECT(config->loopDivider);

	while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0UL) {
		;
	}

	/* Disable Bypass */
	CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_BYPASS_MASK;
}

static void flexspi_enter_critical(void)
{
#if CONFIG_CODE_FLEXSPI2
	/* Wait for flexspi to be inactive, and gate the clock */
	while (!((FLEXSPI2->STS0 & FLEXSPI_STS0_ARBIDLE_MASK) &&
			(FLEXSPI2->STS0 & FLEXSPI_STS0_SEQIDLE_MASK))) {
	}
	FLEXSPI2->MCR0 |= FLEXSPI_MCR0_MDIS_MASK;

	/* Disable clock gate of flexspi2. */
	CCM->CCGR7 &= (~CCM_CCGR7_CG1_MASK);
#elif CONFIG_CODE_FLEXSPI
	/* Wait for flexspi to be inactive, and gate the clock */
	while (!((FLEXSPI->STS0 & FLEXSPI_STS0_ARBIDLE_MASK) &&
			(FLEXSPI->STS0 & FLEXSPI_STS0_SEQIDLE_MASK))) {
	}
	FLEXSPI->MCR0 |= FLEXSPI_MCR0_MDIS_MASK;

	/* Disable clock of flexspi. */
	CCM->CCGR6 &= (~CCM_CCGR6_CG5_MASK);
#endif
}

static void flexspi_exit_critical(void)
{
#if CONFIG_CODE_FLEXSPI2
	/* Enable clock gate of flexspi2. */
	CCM->CCGR7 |= (CCM_CCGR7_CG1_MASK);

	FLEXSPI2->MCR0 &= ~FLEXSPI_MCR0_MDIS_MASK;
	FLEXSPI2->MCR0 |= FLEXSPI_MCR0_SWRESET_MASK;
	while (FLEXSPI2->MCR0 & FLEXSPI_MCR0_SWRESET_MASK) {
	}
	while (!((FLEXSPI2->STS0 & FLEXSPI_STS0_ARBIDLE_MASK) &&
		(FLEXSPI2->STS0 & FLEXSPI_STS0_SEQIDLE_MASK))) {
	}
#elif CONFIG_CODE_FLEXSPI
	/* Enable clock of flexspi. */
	CCM->CCGR6 |= CCM_CCGR6_CG5_MASK;

	FLEXSPI->MCR0 &= ~FLEXSPI_MCR0_MDIS_MASK;
	FLEXSPI->MCR0 |= FLEXSPI_MCR0_SWRESET_MASK;
	while (FLEXSPI->MCR0 & FLEXSPI_MCR0_SWRESET_MASK) {
	}
	while (!((FLEXSPI->STS0 & FLEXSPI_STS0_ARBIDLE_MASK) &&
		(FLEXSPI->STS0 & FLEXSPI_STS0_SEQIDLE_MASK))) {
	}
#endif
	/* Invalidate I-cache after flexspi clock changed. */
	if (SCB_CCR_IC_Msk == (SCB_CCR_IC_Msk & SCB->CCR)) {
		SCB_InvalidateICache();
	}
}


void clock_full_power(void)
{
	/* Power up PLLS */
	/* Set arm PLL div to divide by 2*/
	clock_set_div(kCLOCK_ArmDiv, 1);
#ifdef CONFIG_INIT_ARM_PLL
	/* Reinit arm pll based on saved configuration */
	CLOCK_InitArmPll(&arm_pll_config);
#endif

#ifdef CONFIG_INIT_VIDEO_PLL
	/* Reinit video pll */
	CLOCK_InitVideoPll(&video_pll_config);
#endif

#ifdef CONFIG_INIT_ENET_PLL
	/* Reinit enet pll */
	CLOCK_InitEnetPll(&enet_pll_config);
#endif
	/* Init SYS PLL */
	CLOCK_InitSysPll(&sys_pll_config);

	/* Enable USB PLL PFD 1 2 3 */
	CLOCK_InitUsb1Pfd(kCLOCK_Pfd1, usb1_pll_pfd1_frac);
	CLOCK_InitUsb1Pfd(kCLOCK_Pfd2, usb1_pll_pfd2_frac);
	CLOCK_InitUsb1Pfd(kCLOCK_Pfd3, usb1_pll_pfd3_frac);

	/* Enable SYS PLL PFD0 1 2 3 */
	CLOCK_InitSysPfd(kCLOCK_Pfd0, sys_pll_pfd0_frac);
	CLOCK_InitSysPfd(kCLOCK_Pfd1, sys_pll_pfd1_frac);
	CLOCK_InitSysPfd(kCLOCK_Pfd2, sys_pll_pfd2_frac);
	CLOCK_InitSysPfd(kCLOCK_Pfd3, sys_pll_pfd3_frac);

	/* Switch to full speed clocks */
#if (defined(XIP_EXTERNAL_FLASH) && (XIP_EXTERNAL_FLASH == 1))
	flexspi_enter_critical();
#endif

	/* Set Flexspi divider before increasing frequency of PLL3 PDF0. */
#if CONFIG_CODE_FLEXSPI
	clock_set_div(kCLOCK_FlexspiDiv, flexspi_div);
	clock_set_mux(kCLOCK_FlexspiMux, 3);
#elif CONFIG_CODE_FLEXSPI2
	clock_set_div(kCLOCK_Flexspi2Div, flexspi_div);
	clock_set_mux(kCLOCK_Flexspi2Mux, 1);
#endif
	/* Init USB1 PLL. This will disable the PLL3 bypass. */
	clock_init_usb1_pll(&usb1_pll_config);

	/* Switch SEMC clock to PLL2_PFD2 clock */
	clock_set_mux(kCLOCK_SemcMux, 1);

	/* CORE CLK to 600MHz, AHB, IPG to 150MHz, PERCLK to 75MHz */
	clock_set_div(kCLOCK_PerclkDiv, 1);
	clock_set_div(kCLOCK_IpgDiv, 3);
	clock_set_div(kCLOCK_AhbDiv, 0);
	/* PERCLK mux to IPG CLK */
	clock_set_mux(kCLOCK_PerclkMux, 0);
	/* MUX to ENET_500M (RT1010-1024) / ARM_PODF (RT1050-1064) */
	clock_set_mux(kCLOCK_PrePeriphMux, 3);
	/* PERIPH mux to periph clock 2 output */
	clock_set_mux(kCLOCK_PeriphMux, 0);

#if (defined(XIP_EXTERNAL_FLASH) && (XIP_EXTERNAL_FLASH == 1))
	flexspi_exit_critical();
#endif

}

void clock_low_power(void)
{
#if (defined(XIP_EXTERNAL_FLASH) && (XIP_EXTERNAL_FLASH == 1))
	flexspi_enter_critical();
#endif
	/* Switch to 24MHz core clock, so ARM PLL can power down */
	clock_set_div(kCLOCK_PeriphClk2Div, 0);
	/* Switch to OSC clock */
	clock_set_mux(kCLOCK_PeriphClk2Mux, 1);
	/* Switch peripheral mux to 24MHz source */
	clock_set_mux(kCLOCK_PeriphMux, 1);
	/* Set PLL3 to bypass mode, output 24M clock */
	CCM_ANALOG->PLL_USB1_SET = CCM_ANALOG_PLL_USB1_BYPASS_MASK;
	CCM_ANALOG->PLL_USB1_SET = CCM_ANALOG_PLL_USB1_ENABLE_MASK;
	CCM_ANALOG->PFD_480_CLR = CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK;
	/* Change flexspi to use PLL3 PFD0 with no divisor (24M flexspi clock) */
#if CONFIG_CODE_FLEXSPI
	clock_set_div(kCLOCK_FlexspiDiv, 0);
	/* FLEXSPI1 mux to PLL3 PFD0 BYPASS */
	clock_set_mux(kCLOCK_FlexspiMux, 3);
#elif CONFIG_CODE_FLEXSPI2
	clock_set_div(kCLOCK_Flexspi2Div, 0);
	/* FLEXSPI2 mux to PLL3 PFD0 BYPASS */
	clock_set_mux(kCLOCK_Flexspi2Mux, 1);
#endif
	/* CORE CLK to 24MHz and AHB, IPG, PERCLK to 12MHz */
	clock_set_div(kCLOCK_PerclkDiv, 0);
	clock_set_div(kCLOCK_IpgDiv, 1);
	clock_set_div(kCLOCK_AhbDiv, 0);
	/* PERCLK mux to IPG CLK */
	clock_set_mux(kCLOCK_PerclkMux, 0);
	/* Switch SEMC clock to peripheral clock */
	clock_set_mux(kCLOCK_SemcMux, 0);
#if (defined(XIP_EXTERNAL_FLASH) && (XIP_EXTERNAL_FLASH == 1))
	flexspi_exit_critical();
#endif
	/* After switching clocks, it is safe to power down the PLLs */
#ifdef CONFIG_INIT_ARM_PLL
	/* Deinit ARM PLL */
	CLOCK_DeinitArmPll();
#endif
	/* Deinit SYS PLL */
	CLOCK_DeinitSysPll();

	/* Deinit SYS PLL PFD 0 1 2 3 */
	CLOCK_DeinitSysPfd(kCLOCK_Pfd0);
	CLOCK_DeinitSysPfd(kCLOCK_Pfd1);
	CLOCK_DeinitSysPfd(kCLOCK_Pfd2);
	CLOCK_DeinitSysPfd(kCLOCK_Pfd3);


	/* Deinit USB1 PLL PFD 1 2 3 */
	CLOCK_DeinitUsb1Pfd(kCLOCK_Pfd1);
	CLOCK_DeinitUsb1Pfd(kCLOCK_Pfd2);
	CLOCK_DeinitUsb1Pfd(kCLOCK_Pfd3);

	/* Deinit VIDEO PLL */
	CLOCK_DeinitVideoPll();

	/* Deinit ENET PLL */
	CLOCK_DeinitEnetPll();
}

void clock_lpm_init(void)
{
	uint32_t tmp_reg = 0;

	CLOCK_SetMode(kCLOCK_ModeRun);
	/* Enable RC OSC. It needs at least 4ms to be stable, so self tuning need to be enabled. */
	XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
	/* Configure RC OSC */
	XTALOSC24M->OSC_CONFIG0 = XTALOSC24M_OSC_CONFIG0_RC_OSC_PROG_CUR(0x4) |
					XTALOSC24M_OSC_CONFIG0_SET_HYST_MINUS(0x2) |
					XTALOSC24M_OSC_CONFIG0_RC_OSC_PROG(0xA7) |
					XTALOSC24M_OSC_CONFIG0_START_MASK |
					XTALOSC24M_OSC_CONFIG0_ENABLE_MASK;
	XTALOSC24M->OSC_CONFIG1 = XTALOSC24M_OSC_CONFIG1_COUNT_RC_CUR(0x40) |
		XTALOSC24M_OSC_CONFIG1_COUNT_RC_TRG(0x2DC);
	/* Take some delay */
	SDK_DelayAtLeastUs(4000, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
	/* Add some hysteresis */
	tmp_reg = XTALOSC24M->OSC_CONFIG0;
	tmp_reg &= ~(XTALOSC24M_OSC_CONFIG0_HYST_PLUS_MASK |
				XTALOSC24M_OSC_CONFIG0_HYST_MINUS_MASK);
	tmp_reg |= XTALOSC24M_OSC_CONFIG0_HYST_PLUS(3) | XTALOSC24M_OSC_CONFIG0_HYST_MINUS(3);
	XTALOSC24M->OSC_CONFIG0 = tmp_reg;
	/* Set COUNT_1M_TRG */
	tmp_reg = XTALOSC24M->OSC_CONFIG2;
	tmp_reg &= ~XTALOSC24M_OSC_CONFIG2_COUNT_1M_TRG_MASK;
	tmp_reg |= XTALOSC24M_OSC_CONFIG2_COUNT_1M_TRG(0x2d7);
	XTALOSC24M->OSC_CONFIG2 = tmp_reg;
	/* Hardware requires to read OSC_CONFIG0 or OSC_CONFIG1 to make OSC_CONFIG2 write work */
	tmp_reg = XTALOSC24M->OSC_CONFIG1;
	XTALOSC24M->OSC_CONFIG1 = tmp_reg;
}

static int imxrt_lpm_init(const struct device *dev)
{
	ARG_UNUSED(dev);

	struct clock_callbacks callbacks;
	uint32_t usb1_pll_pfd0_frac;

	callbacks.clock_set_run = clock_full_power;
	callbacks.clock_set_low_power = clock_low_power;
	callbacks.clock_lpm_init = clock_lpm_init;

	/*
	 * Read the boot time configuration of all PLLs.
	 * This is required because not all PLLs preserve register state
	 * when powered down. Additionally, populating these configuration
	 * structures enables the rest of the code to use the fsl_clock HAL api.
	 */
#ifdef CONFIG_INIT_ARM_PLL
	/* Read configuration values for arm pll */
	arm_pll_config.src = ((CCM_ANALOG->PLL_ARM &
		CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC_MASK) >>
		CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC_SHIFT);
	arm_pll_config.loopDivider = ((CCM_ANALOG->PLL_ARM &
		CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
		CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT);
#endif
	/* Read configuration values for sys pll */
	sys_pll_config.src = ((CCM_ANALOG->PLL_SYS &
		CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC_MASK) >>
		CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC_SHIFT);
	sys_pll_config.loopDivider = ((CCM_ANALOG->PLL_SYS &
		CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK) >>
		CCM_ANALOG_PLL_SYS_DIV_SELECT_SHIFT);
	sys_pll_config.numerator = CCM_ANALOG->PLL_SYS_NUM;
	sys_pll_config.denominator = CCM_ANALOG->PLL_SYS_DENOM;
	sys_pll_config.ss_step = ((CCM_ANALOG->PLL_SYS_SS &
			CCM_ANALOG_PLL_SYS_SS_STEP_MASK) >>
			CCM_ANALOG_PLL_SYS_SS_STEP_SHIFT);
	sys_pll_config.ss_enable = ((CCM_ANALOG->PLL_SYS_SS &
			CCM_ANALOG_PLL_SYS_SS_ENABLE_MASK) >>
			CCM_ANALOG_PLL_SYS_SS_ENABLE_SHIFT);
	sys_pll_config.ss_stop = ((CCM_ANALOG->PLL_SYS_SS &
			CCM_ANALOG_PLL_SYS_SS_STOP_MASK) >>
			CCM_ANALOG_PLL_SYS_SS_STOP_SHIFT);

	/* Read configuration values for usb1 pll */
	usb1_pll_config.src = ((CCM_ANALOG->PLL_USB1 &
		CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC_MASK) >>
		CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC_SHIFT);
	usb1_pll_config.loopDivider = ((CCM_ANALOG->PLL_USB1 &
		CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK) >>
		CCM_ANALOG_PLL_USB1_DIV_SELECT_SHIFT);
#ifdef CONFIG_INIT_VIDEO_PLL
	/* Read configuration values for video pll */
	video_pll_config.src = ((CCM_ANALOG->PLL_VIDEO &
		CCM_ANALOG_PLL_VIDEO_BYPASS_CLK_SRC_MASK) >>
		CCM_ANALOG_PLL_VIDEO_BYPASS_CLK_SRC_SHIFT);
	video_pll_config.loopDivider = ((CCM_ANALOG->PLL_VIDEO &
		CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK) >>
		CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT);
	video_pll_config.numerator = CCM_ANALOG->PLL_VIDEO_NUM;
	video_pll_config.denominator = CCM_ANALOG->PLL_VIDEO_DENOM;
	switch ((CCM_ANALOG->PLL_VIDEO &
		CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_MASK) >>
		CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_SHIFT) {
		case 0:
			video_pll_config.postDivider = 16;
			break;
		case 1:
			if (CCM_ANALOG->MISC2 & CCM_ANALOG_MISC2_VIDEO_DIV(3)) {
				video_pll_config.postDivider = 8;
			} else {
				video_pll_config.postDivider = 2;
			}
			break;
		case 2:
			if (CCM_ANALOG->MISC2 & CCM_ANALOG_MISC2_VIDEO_DIV(3)) {
				video_pll_config.postDivider = 4;
			} else {
				video_pll_config.postDivider = 1;
			}
			break;
		default:
			video_pll_config.postDivider = 1;
	}
#endif
#if CONFIG_INIT_ENET_PLL
	enet_pll_config.src = ((CCM_ANALOG->PLL_ENET &
		CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC_MASK) >>
		CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC_SHIFT);
	enet_pll_config.loopDivider = ((CCM_ANALOG->PLL_ENET &
		CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK) >>
		CCM_ANALOG_PLL_ENET_DIV_SELECT_SHIFT);
	enet_pll_config.loopDivider1 = ((CCM_ANALOG->PLL_ENET &
		CCM_ANALOG_PLL_ENET_ENET2_DIV_SELECT_MASK) >>
		CCM_ANALOG_PLL_ENET_ENET2_DIV_SELECT_SHIFT);
	enet_pll_config.enableClkOutput = (CCM_ANALOG->PLL_ENET &
		CCM_ANALOG_PLL_ENET_ENABLE_MASK);
	enet_pll_config.enableClkOutput1 = (CCM_ANALOG->PLL_ENET &
		CCM_ANALOG_PLL_ENET_ENET2_REF_EN_MASK);
	enet_pll_config.enableClkOutput25M = (CCM_ANALOG->PLL_ENET &
		CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK);
#endif

	/* Record all pll PFD values that we intend to disable in low power mode */
	sys_pll_pfd0_frac = IMX_RT_SYS_PFD_FRAC(CCM_ANALOG->PFD_528, kCLOCK_Pfd0);
	sys_pll_pfd1_frac = IMX_RT_SYS_PFD_FRAC(CCM_ANALOG->PFD_528, kCLOCK_Pfd1);
	sys_pll_pfd2_frac = IMX_RT_SYS_PFD_FRAC(CCM_ANALOG->PFD_528, kCLOCK_Pfd2);
	sys_pll_pfd3_frac = IMX_RT_SYS_PFD_FRAC(CCM_ANALOG->PFD_528, kCLOCK_Pfd3);

	usb1_pll_pfd0_frac = IMX_RT_USB1_PFD_FRAC(CCM_ANALOG->PFD_480, kCLOCK_Pfd0);
	/* The target full power frequency for the flexspi clock is ~100MHz.
	 * Use the PFD0 value currently set to calculate the div we should use for
	 * the full power flexspi div
	 * PFD output frequency formula = (480 * 18) / pfd0_frac
	 * flexspi div formula = FLOOR((480*18) / (pfd0_frac * target_full_power_freq))
	 */
	flexspi_div = (480 * 18) / (usb1_pll_pfd0_frac * 100);


	usb1_pll_pfd1_frac = IMX_RT_USB1_PFD_FRAC(CCM_ANALOG->PFD_480, kCLOCK_Pfd1);
	usb1_pll_pfd2_frac = IMX_RT_USB1_PFD_FRAC(CCM_ANALOG->PFD_480, kCLOCK_Pfd2);
	usb1_pll_pfd3_frac = IMX_RT_USB1_PFD_FRAC(CCM_ANALOG->PFD_480, kCLOCK_Pfd3);

	/* Install LPM callbacks */
	imxrt_clock_pm_callbacks_register(&callbacks);
	return 0;
}


SYS_INIT(imxrt_lpm_init, PRE_KERNEL_1, 0);