Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
/*
 *
 * Copyright (c) 2019 Linaro Limited.
 * Copyright (c) 2020 Jeremy LOCHE
 * Copyright (c) 2021 Electrolance Solutions
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_utils.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include "stm32_hsem.h"


/* Macros to fill up prescaler values */
#define z_hsi_divider(v) LL_RCC_HSI_DIV ## v
#define hsi_divider(v) z_hsi_divider(v)

#define z_sysclk_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define sysclk_prescaler(v) z_sysclk_prescaler(v)

#define z_ahb_prescaler(v) LL_RCC_AHB_DIV_ ## v
#define ahb_prescaler(v) z_ahb_prescaler(v)

#define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) z_apb1_prescaler(v)

#define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) z_apb2_prescaler(v)

#define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v
#define apb3_prescaler(v) z_apb3_prescaler(v)

#define z_apb4_prescaler(v) LL_RCC_APB4_DIV_ ## v
#define apb4_prescaler(v) z_apb4_prescaler(v)

/* Macro to check for clock feasibility */
/* It is Cortex M7's responsibility to setup clock tree */
/* This check should only be performed for the M7 core code */
#ifdef CONFIG_CPU_CORTEX_M7

/* Choose PLL SRC */
#if defined(STM32_PLL_SRC_HSI)
#define PLLSRC_FREQ  ((STM32_HSI_FREQ)/(STM32_HSI_DIVISOR))
#elif defined(STM32_PLL_SRC_CSI)
#define PLLSRC_FREQ  STM32_CSI_FREQ
#elif defined(STM32_PLL_SRC_HSE)
#define PLLSRC_FREQ  STM32_HSE_FREQ
#else
#define PLLSRC_FREQ 0
#endif

/* Given source clock and dividers, computed the output frequency of PLLP */
#define PLLP_FREQ(pllsrc_freq, divm, divn, divp)	(((pllsrc_freq)*\
							(divn))/((divm)*(divp)))

/* PLL P output frequency value */
#define PLLP_VALUE	PLLP_FREQ(\
				PLLSRC_FREQ,\
				STM32_PLL_M_DIVISOR,\
				STM32_PLL_N_MULTIPLIER,\
				STM32_PLL_P_DIVISOR)

/* SYSCLKSRC before the D1CPRE prescaler */
#if defined(STM32_SYSCLK_SRC_PLL)
#define SYSCLKSRC_FREQ	PLLP_VALUE
#elif defined(STM32_SYSCLK_SRC_HSI)
#define SYSCLKSRC_FREQ	((STM32_HSI_FREQ)/(STM32_HSI_DIVISOR))
#elif defined(STM32_SYSCLK_SRC_CSI)
#define SYSCLKSRC_FREQ	STM32_CSI_FREQ
#elif defined(STM32_SYSCLK_SRC_HSE)
#define SYSCLKSRC_FREQ	STM32_HSE_FREQ
#endif

/* ARM Sys CPU Clock before HPRE prescaler */
#define SYSCLK_FREQ	((SYSCLKSRC_FREQ)/(STM32_D1CPRE))
#define AHB_FREQ	((SYSCLK_FREQ)/(STM32_HPRE))
#define APB1_FREQ	((AHB_FREQ)/(STM32_D2PPRE1))
#define APB2_FREQ	((AHB_FREQ)/(STM32_D2PPRE2))
#define APB3_FREQ	((AHB_FREQ)/(STM32_D1PPRE))
#define APB4_FREQ	((AHB_FREQ)/(STM32_D3PPRE))

/* Datasheet maximum frequency definitions */
#if defined(CONFIG_SOC_STM32H743XX) ||\
	defined(CONFIG_SOC_STM32H745XX) ||\
	defined(CONFIG_SOC_STM32H747XX) ||\
	defined(CONFIG_SOC_STM32H750XX) ||\
	defined(CONFIG_SOC_STM32H753XX)
/* All h7 SoC with maximum 480MHz SYSCLK */
#define SYSCLK_FREQ_MAX		480000000UL
#define AHB_FREQ_MAX		240000000UL
#define APBx_FREQ_MAX		120000000UL
#elif defined(CONFIG_SOC_STM32H723XX) ||\
	  defined(CONFIG_SOC_STM32H725XX) ||\
	  defined(CONFIG_SOC_STM32H730XX) ||\
	  defined(CONFIG_SOC_STM32H735XX)
/* All h7 SoC with maximum 550MHz SYSCLK */
#define SYSCLK_FREQ_MAX		550000000UL
#define AHB_FREQ_MAX		275000000UL
#define APBx_FREQ_MAX		137500000UL
#elif defined(CONFIG_SOC_STM32H7A3XX) || defined(CONFIG_SOC_STM32H7A3XXQ) ||\
	  defined(CONFIG_SOC_STM32H7B3XX) || defined(CONFIG_SOC_STM32H7B3XXQ)
#define SYSCLK_FREQ_MAX		280000000UL
#define AHB_FREQ_MAX		280000000UL
#define APBx_FREQ_MAX		140000000UL
#else
/* Default: All h7 SoC with maximum 280MHz SYSCLK */
#define SYSCLK_FREQ_MAX		280000000UL
#define AHB_FREQ_MAX		140000000UL
#define APBx_FREQ_MAX		70000000UL
#endif

#if SYSCLK_FREQ > SYSCLK_FREQ_MAX
#error "SYSCLK frequency is too high!"
#endif
#if AHB_FREQ > AHB_FREQ_MAX
#error "AHB frequency is too high!"
#endif
#if APB1_FREQ > APBx_FREQ_MAX
#error "APB1 frequency is too high!"
#endif
#if APB2_FREQ > APBx_FREQ_MAX
#error "APB2 frequency is too high!"
#endif
#if APB3_FREQ > APBx_FREQ_MAX
#error "APB3 frequency is too high!"
#endif
#if APB4_FREQ > APBx_FREQ_MAX
#error "APB4 frequency is too high!"
#endif

#if SYSCLK_FREQ != CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
#error "SYS clock frequency for M7 core doesn't match CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC"
#endif

/* end of clock feasability check */
#endif /* CONFIG_CPU_CORTEX_M7 */


#if defined(CONFIG_CPU_CORTEX_M7)
#if STM32_D1CPRE > 1
/*
 * D1CPRE prescaler allows to set a HCLK frequency lower than SYSCLK frequency.
 * Though, zephyr doesn't make a difference today between these two clocks.
 * So, changing this prescaler is not allowed until it is made possible to
 * use them independently in zephyr clock subsystem.
 */
#error "D1CPRE presacler can't be higher than 1"
#endif
#endif /* CONFIG_CPU_CORTEX_M7 */

#if defined(CONFIG_CPU_CORTEX_M7)
/* Offset to access bus clock registers from M7 (or only) core */
#define STM32H7_BUS_CLK_REG	DT_REG_ADDR(DT_NODELABEL(rcc))
#elif defined(CONFIG_CPU_CORTEX_M4)
/* Offset to access bus clock registers from M4 core */
#define STM32H7_BUS_CLK_REG	DT_REG_ADDR(DT_NODELABEL(rcc)) + 0x60
#endif

static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
	return clock / prescaler;
}

__unused
static uint32_t get_pllout_frequency(uint32_t pllsrc_freq,
				     int pllm_div,
				     int plln_mul,
				     int pllout_div)
{
	__ASSERT_NO_MSG(pllm_div && pllout_div);

	return (pllsrc_freq / pllm_div) * plln_mul / pllout_div;
}

__unused
static uint32_t get_pllsrc_frequency(void)
{
	switch (LL_RCC_PLL_GetSource()) {
	case LL_RCC_PLLSOURCE_HSI:
		return STM32_HSI_FREQ;
	case LL_RCC_PLLSOURCE_CSI:
		return STM32_CSI_FREQ;
	case LL_RCC_PLLSOURCE_HSE:
		return STM32_HSE_FREQ;
	case LL_RCC_PLLSOURCE_NONE:
	default:
		return 0;
	}
}

__unused
static uint32_t get_hclk_frequency(void)
{
	uint32_t sysclk = 0;

	/* Get the current system clock source */
	switch (LL_RCC_GetSysClkSource()) {
	case LL_RCC_SYS_CLKSOURCE_STATUS_HSI:
		sysclk = STM32_HSI_FREQ/STM32_HSI_DIVISOR;
		break;
	case LL_RCC_SYS_CLKSOURCE_STATUS_CSI:
		sysclk = STM32_CSI_FREQ;
		break;
	case LL_RCC_SYS_CLKSOURCE_STATUS_HSE:
		sysclk = STM32_HSE_FREQ;
		break;
#if defined(STM32_PLL_ENABLED)
	case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1:
		sysclk = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_P_DIVISOR);
		break;
#endif /* STM32_PLL_ENABLED */
	}

	return get_bus_clock(sysclk, STM32_HPRE);
}

#if !defined(CONFIG_CPU_CORTEX_M4)

static int32_t prepare_regulator_voltage_scale(void)
{
	/* Apply system power supply configuration */
#if defined(SMPS) && defined(CONFIG_POWER_SUPPLY_DIRECT_SMPS)
	LL_PWR_ConfigSupply(LL_PWR_DIRECT_SMPS_SUPPLY);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT_AND_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT_AND_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT);
#elif defined(CONFIG_POWER_SUPPLY_EXTERNAL_SOURCE)
	LL_PWR_ConfigSupply(LL_PWR_EXTERNAL_SOURCE_SUPPLY);
#else
	LL_PWR_ConfigSupply(LL_PWR_LDO_SUPPLY);
#endif

	/* Make sure to put the CPU in highest Voltage scale during clock configuration */
	/* Highest voltage is SCALE0 */
	LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
	while (LL_PWR_IsActiveFlag_VOS() == 0) {
	}
	return 0;
}

static int32_t optimize_regulator_voltage_scale(uint32_t sysclk_freq)
{

	/* After sysclock is configured, tweak the voltage scale down */
	/* to reduce power consumption */

	/* Needs some smart work to configure properly */
	/* LL_PWR_REGULATOR_SCALE3 is lowest power consumption */
	/* Must be done in accordance to the Maximum allowed frequency vs VOS*/
	/* See RM0433 page 352 for more details */
#if defined(SMPS) && defined(CONFIG_POWER_SUPPLY_DIRECT_SMPS)
	LL_PWR_ConfigSupply(LL_PWR_DIRECT_SMPS_SUPPLY);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT_AND_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT_AND_LDO)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT)
	LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT);
#elif defined(CONFIG_POWER_SUPPLY_EXTERNAL_SOURCE)
	LL_PWR_ConfigSupply(LL_PWR_EXTERNAL_SOURCE_SUPPLY);
#else
	LL_PWR_ConfigSupply(LL_PWR_LDO_SUPPLY);
#endif
	LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
	while (LL_PWR_IsActiveFlag_VOS() == 0) {
	}
	return 0;
}

__unused
static int get_vco_input_range(uint32_t m_div, uint32_t *range)
{
	uint32_t vco_freq;

	vco_freq = PLLSRC_FREQ / m_div;

	if (MHZ(1) <= vco_freq && vco_freq <= MHZ(2)) {
		*range = LL_RCC_PLLINPUTRANGE_1_2;
	} else if (MHZ(2) < vco_freq && vco_freq <= MHZ(4)) {
		*range = LL_RCC_PLLINPUTRANGE_2_4;
	} else if (MHZ(4) < vco_freq && vco_freq <= MHZ(8)) {
		*range = LL_RCC_PLLINPUTRANGE_4_8;
	} else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) {
		*range = LL_RCC_PLLINPUTRANGE_8_16;
	} else {
		return -ERANGE;
	}

	return 0;
}

__unused
static uint32_t get_vco_output_range(uint32_t vco_input_range)
{
	if (vco_input_range == LL_RCC_PLLINPUTRANGE_1_2) {
		return LL_RCC_PLLVCORANGE_MEDIUM;
	}

	return LL_RCC_PLLVCORANGE_WIDE;
}

#endif /* ! CONFIG_CPU_CORTEX_M4 */

/** @brief Verifies clock is part of actve clock configuration */
static int enabled_clock(uint32_t src_clk)
{

	if ((src_clk == STM32_SRC_SYSCLK) ||
	    ((src_clk == STM32_SRC_CKPER) && IS_ENABLED(STM32_CKPER_ENABLED)) ||
	    ((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) ||
	    ((src_clk == STM32_SRC_HSI_KER) && IS_ENABLED(STM32_HSI_ENABLED)) ||
	    ((src_clk == STM32_SRC_CSI_KER) && IS_ENABLED(STM32_CSI_ENABLED)) ||
	    ((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) ||
	    ((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) ||
	    ((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL2_P) && IS_ENABLED(STM32_PLL2_P_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL2_Q) && IS_ENABLED(STM32_PLL2_Q_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL2_R) && IS_ENABLED(STM32_PLL2_R_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL3_P) && IS_ENABLED(STM32_PLL3_P_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL3_Q) && IS_ENABLED(STM32_PLL3_Q_ENABLED)) ||
	    ((src_clk == STM32_SRC_PLL3_R) && IS_ENABLED(STM32_PLL3_R_ENABLED))) {
		return 0;
	}

	return -ENOTSUP;
}

static inline int stm32_clock_control_on(const struct device *dev,
					 clock_control_subsys_t sub_system)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);

	ARG_UNUSED(dev);

	if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
		/* Attemp to toggle a wrong periph clock bit */
		return -ENOTSUP;
	}

	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);

	sys_set_bits(STM32H7_BUS_CLK_REG + pclken->bus, pclken->enr);

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

	return 0;
}

static inline int stm32_clock_control_off(const struct device *dev,
					  clock_control_subsys_t sub_system)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);

	ARG_UNUSED(dev);

	if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
		/* Attemp to toggle a wrong periph clock bit */
		return -ENOTSUP;
	}

	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);

	sys_clear_bits(STM32H7_BUS_CLK_REG + pclken->bus, pclken->enr);

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

	return 0;
}

static inline int stm32_clock_control_configure(const struct device *dev,
						clock_control_subsys_t sub_system,
						void *data)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
	int err;

	ARG_UNUSED(dev);
	ARG_UNUSED(data);

	err = enabled_clock(pclken->bus);
	if (err < 0) {
		/* Attemp to configure a src clock not available or not valid */
		return err;
	}

	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);

	sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
		     STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

	return 0;
}

static int stm32_clock_control_get_subsys_rate(const struct device *clock,
					       clock_control_subsys_t sub_system,
					       uint32_t *rate)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
	/*
	 * Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
	 * SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
	 * since it will be updated after clock configuration and hence
	 * more likely to contain actual clock speed
	 */
#if defined(CONFIG_CPU_CORTEX_M4)
	uint32_t ahb_clock = SystemCoreClock;
#else
	uint32_t ahb_clock = get_bus_clock(SystemCoreClock, STM32_HPRE);
#endif
	uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_D2PPRE1);
	uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_D2PPRE2);
	uint32_t apb3_clock = get_bus_clock(ahb_clock, STM32_D1PPRE);
	uint32_t apb4_clock = get_bus_clock(ahb_clock, STM32_D3PPRE);

	ARG_UNUSED(clock);

	switch (pclken->bus) {
	case STM32_CLOCK_BUS_AHB1:
	case STM32_CLOCK_BUS_AHB2:
	case STM32_CLOCK_BUS_AHB3:
	case STM32_CLOCK_BUS_AHB4:
		*rate = ahb_clock;
		break;
	case STM32_CLOCK_BUS_APB1:
	case STM32_CLOCK_BUS_APB1_2:
		*rate = apb1_clock;
		break;
	case STM32_CLOCK_BUS_APB2:
		*rate = apb2_clock;
		break;
	case STM32_CLOCK_BUS_APB3:
		*rate = apb3_clock;
		break;
	case STM32_CLOCK_BUS_APB4:
		*rate = apb4_clock;
		break;
	case STM32_SRC_SYSCLK:
		*rate = get_hclk_frequency();
		break;
#if defined(STM32_CKPER_ENABLED)
	case STM32_SRC_CKPER:
		*rate = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
		break;
#endif /* STM32_CKPER_ENABLED */
#if defined(STM32_HSE_ENABLED)
	case STM32_SRC_HSE:
		*rate = STM32_HSE_FREQ;
		break;
#endif /* STM32_HSE_ENABLED */
#if defined(STM32_LSE_ENABLED)
	case STM32_SRC_LSE:
		*rate = STM32_LSE_FREQ;
		break;
#endif /* STM32_LSE_ENABLED */
#if defined(STM32_LSI_ENABLED)
	case STM32_SRC_LSI:
		*rate = STM32_LSI_FREQ;
		break;
#endif /* STM32_LSI_ENABLED */
#if defined(STM32_HSI48_ENABLED)
	case STM32_SRC_HSI48:
		*rate = STM32_HSI48_FREQ;
		break;
#endif /* STM32_HSI48_ENABLED */
#if defined(STM32_PLL_ENABLED)
	case STM32_SRC_PLL1_P:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_P_DIVISOR);
		break;
	case STM32_SRC_PLL1_Q:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_Q_DIVISOR);
		break;
	case STM32_SRC_PLL1_R:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL_M_DIVISOR,
					      STM32_PLL_N_MULTIPLIER,
					      STM32_PLL_R_DIVISOR);
		break;
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLL2_ENABLED)
	case STM32_SRC_PLL2_P:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL2_M_DIVISOR,
					      STM32_PLL2_N_MULTIPLIER,
					      STM32_PLL2_P_DIVISOR);
		break;
	case STM32_SRC_PLL2_Q:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL2_M_DIVISOR,
					      STM32_PLL2_N_MULTIPLIER,
					      STM32_PLL2_Q_DIVISOR);
		break;
	case STM32_SRC_PLL2_R:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL2_M_DIVISOR,
					      STM32_PLL2_N_MULTIPLIER,
					      STM32_PLL2_R_DIVISOR);
		break;
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL3_ENABLED)
	case STM32_SRC_PLL3_P:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL3_M_DIVISOR,
					      STM32_PLL3_N_MULTIPLIER,
					      STM32_PLL3_P_DIVISOR);
		break;
	case STM32_SRC_PLL3_Q:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL3_M_DIVISOR,
					      STM32_PLL3_N_MULTIPLIER,
					      STM32_PLL3_Q_DIVISOR);
		break;
	case STM32_SRC_PLL3_R:
		*rate = get_pllout_frequency(get_pllsrc_frequency(),
					      STM32_PLL3_M_DIVISOR,
					      STM32_PLL3_N_MULTIPLIER,
					      STM32_PLL3_R_DIVISOR);
		break;
#endif /* STM32_PLL3_ENABLED */
	default:
		return -ENOTSUP;
	}

	return 0;
}

static struct clock_control_driver_api stm32_clock_control_api = {
	.on = stm32_clock_control_on,
	.off = stm32_clock_control_off,
	.get_rate = stm32_clock_control_get_subsys_rate,
	.configure = stm32_clock_control_configure,
};

__unused
static void set_up_fixed_clock_sources(void)
{

	if (IS_ENABLED(STM32_HSE_ENABLED)) {
		/* Enable HSE oscillator */
		if (IS_ENABLED(STM32_HSE_BYPASS)) {
			LL_RCC_HSE_EnableBypass();
		} else {
			LL_RCC_HSE_DisableBypass();
		}

		LL_RCC_HSE_Enable();
		while (LL_RCC_HSE_IsReady() != 1) {
		}
	}

	if (IS_ENABLED(STM32_HSI_ENABLED)) {
		/* Enable HSI oscillator */
		LL_RCC_HSI_Enable();
		while (LL_RCC_HSI_IsReady() != 1) {
		}
		/* HSI divider configuration */
		LL_RCC_HSI_SetDivider(hsi_divider(STM32_HSI_DIVISOR));
	}

	if (IS_ENABLED(STM32_CSI_ENABLED)) {
		/* Enable CSI oscillator */
		LL_RCC_CSI_Enable();
		while (LL_RCC_CSI_IsReady() != 1) {
		}
	}

	if (IS_ENABLED(STM32_LSI_ENABLED)) {
		/* Enable LSI oscillator */
		LL_RCC_LSI_Enable();
		while (LL_RCC_LSI_IsReady() != 1) {
		}
	}

	if (IS_ENABLED(STM32_LSE_ENABLED)) {
		/* Enable backup domain */
		LL_PWR_EnableBkUpAccess();

		/* Configure driving capability */
		LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);

		if (IS_ENABLED(STM32_LSE_BYPASS)) {
			/* Configure LSE bypass */
			LL_RCC_LSE_EnableBypass();
		}

		/* Enable LSE oscillator */
		LL_RCC_LSE_Enable();
		while (LL_RCC_LSE_IsReady() != 1) {
		}
	}

	if (IS_ENABLED(STM32_HSI48_ENABLED)) {
		LL_RCC_HSI48_Enable();
		while (LL_RCC_HSI48_IsReady() != 1) {
		}
	}
}

__unused
static int set_up_plls(void)
{
#if defined(STM32_PLL_ENABLED) || defined(STM32_PLL2_ENABLED) || defined(STM32_PLL3_ENABLED)
	int r;
	uint32_t vco_input_range;
	uint32_t vco_output_range;

	/* Configure PLL source */

	/* Can be HSE , HSI 64Mhz/HSIDIV, CSI 4MHz*/
	if (IS_ENABLED(STM32_PLL_SRC_HSE)) {
		/* Main PLL configuration and activation */
		LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSE);
	} else if (IS_ENABLED(STM32_PLL_SRC_CSI)) {
		/* Main PLL configuration and activation */
		LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_CSI);
	} else if (IS_ENABLED(STM32_PLL_SRC_HSI)) {
		/* Main PLL configuration and activation */
		LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSI);
	} else {
		return -ENOTSUP;
	}

#if defined(STM32_PLL_ENABLED)
	r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range);
	if (r < 0) {
		return r;
	}

	vco_output_range = get_vco_output_range(vco_input_range);

	LL_RCC_PLL1_SetM(STM32_PLL_M_DIVISOR);

	LL_RCC_PLL1_SetVCOInputRange(vco_input_range);
	LL_RCC_PLL1_SetVCOOutputRange(vco_output_range);

	LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER);

	/* FRACN disable DIVP,DIVQ,DIVR enable*/
	LL_RCC_PLL1FRACN_Disable();

	if (IS_ENABLED(STM32_PLL_P_ENABLED)) {
		LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR);
		LL_RCC_PLL1P_Enable();
	}

	if (IS_ENABLED(STM32_PLL_Q_ENABLED)) {
		LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR);
		LL_RCC_PLL1Q_Enable();
	}

	if (IS_ENABLED(STM32_PLL_R_ENABLED)) {
		LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR);
		LL_RCC_PLL1R_Enable();
	}

	LL_RCC_PLL1_Enable();
	while (LL_RCC_PLL1_IsReady() != 1U) {
	}

#endif /* STM32_PLL_ENABLED */

#if defined(STM32_PLL2_ENABLED)
	r = get_vco_input_range(STM32_PLL2_M_DIVISOR, &vco_input_range);
	if (r < 0) {
		return r;
	}

	vco_output_range = get_vco_output_range(vco_input_range);

	LL_RCC_PLL2_SetM(STM32_PLL2_M_DIVISOR);

	LL_RCC_PLL2_SetVCOInputRange(vco_input_range);
	LL_RCC_PLL2_SetVCOOutputRange(vco_output_range);

	LL_RCC_PLL2_SetN(STM32_PLL2_N_MULTIPLIER);

	LL_RCC_PLL2FRACN_Disable();

	if (IS_ENABLED(STM32_PLL2_P_ENABLED)) {
		LL_RCC_PLL2_SetP(STM32_PLL2_P_DIVISOR);
		LL_RCC_PLL2P_Enable();
	}

	if (IS_ENABLED(STM32_PLL2_Q_ENABLED)) {
		LL_RCC_PLL2_SetQ(STM32_PLL2_Q_DIVISOR);
		LL_RCC_PLL2Q_Enable();
	}

	if (IS_ENABLED(STM32_PLL2_R_ENABLED)) {
		LL_RCC_PLL2_SetR(STM32_PLL2_R_DIVISOR);
		LL_RCC_PLL2R_Enable();
	}

	LL_RCC_PLL2_Enable();
	while (LL_RCC_PLL2_IsReady() != 1U) {
	}

#endif /* STM32_PLL2_ENABLED */

#if defined(STM32_PLL3_ENABLED)
	r = get_vco_input_range(STM32_PLL3_M_DIVISOR, &vco_input_range);
	if (r < 0) {
		return r;
	}

	vco_output_range = get_vco_output_range(vco_input_range);

	LL_RCC_PLL3_SetM(STM32_PLL3_M_DIVISOR);

	LL_RCC_PLL3_SetVCOInputRange(vco_input_range);
	LL_RCC_PLL3_SetVCOOutputRange(vco_output_range);

	LL_RCC_PLL3_SetN(STM32_PLL3_N_MULTIPLIER);

	LL_RCC_PLL3FRACN_Disable();

	if (IS_ENABLED(STM32_PLL3_P_ENABLED)) {
		LL_RCC_PLL3_SetP(STM32_PLL3_P_DIVISOR);
		LL_RCC_PLL3P_Enable();
	}

	if (IS_ENABLED(STM32_PLL3_Q_ENABLED)) {
		LL_RCC_PLL3_SetQ(STM32_PLL3_Q_DIVISOR);
		LL_RCC_PLL3Q_Enable();
	}

	if (IS_ENABLED(STM32_PLL3_R_ENABLED)) {
		LL_RCC_PLL3_SetR(STM32_PLL3_R_DIVISOR);
		LL_RCC_PLL3R_Enable();
	}

	LL_RCC_PLL3_Enable();
	while (LL_RCC_PLL3_IsReady() != 1U) {
	}

#endif /* STM32_PLL3_ENABLED */

#else
	/* Init PLL source to None */
	LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_NONE);

#endif /* STM32_PLL_ENABLED || STM32_PLL2_ENABLED || STM32_PLL3_ENABLED */

	return 0;
}

#if defined(CONFIG_CPU_CORTEX_M7)
static int stm32_clock_control_init(const struct device *dev)
{
	uint32_t old_hclk_freq = 0;
	uint32_t new_hclk_freq = 0;
	int r;

	ARG_UNUSED(dev);

	/* HW semaphore Clock enable */
#if defined(CONFIG_SOC_STM32H7A3XX) || defined(CONFIG_SOC_STM32H7A3XXQ) || \
	defined(CONFIG_SOC_STM32H7B3XX) || defined(CONFIG_SOC_STM32H7B3XXQ)
	LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_HSEM);
#else
	LL_AHB4_GRP1_EnableClock(LL_AHB4_GRP1_PERIPH_HSEM);
#endif

	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);

	/* Set up indiviual enabled clocks */
	set_up_fixed_clock_sources();

	/* Set up PLLs */
	r = set_up_plls();
	if (r < 0) {
		return r;
	}

	/* Configure Voltage scale to comply with the desired system frequency */
	prepare_regulator_voltage_scale();

	/* Current hclk value */
	old_hclk_freq = get_hclk_frequency();
	/* AHB is HCLK clock to configure */
	new_hclk_freq = get_bus_clock(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
				      STM32_HPRE);

	/* Set flash latency */
	/* AHB/AXI/HCLK clock is SYSCLK / HPRE */
	/* If freq increases, set flash latency before any clock setting */
	if (new_hclk_freq > old_hclk_freq) {
		LL_SetFlashLatency(new_hclk_freq);
	}

	/* Preset the prescalers prior to chosing SYSCLK */
	/* Prevents APB clock to go over limits */
	/* Set buses (Sys,AHB, APB1, APB2 & APB4) prescalers */
	LL_RCC_SetSysPrescaler(sysclk_prescaler(STM32_D1CPRE));
	LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_HPRE));
	LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_D2PPRE1));
	LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_D2PPRE2));
	LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_D1PPRE));
	LL_RCC_SetAPB4Prescaler(apb4_prescaler(STM32_D3PPRE));

	/* Set up sys clock */
	if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
		/* Set PLL1 as System Clock Source */
		LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
		while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
		}
	} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) {
		/* Set sysclk source to HSE */
		LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
		while (LL_RCC_GetSysClkSource() !=
					LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
		}
	} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) {
		/* Set sysclk source to HSI */
		LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
		while (LL_RCC_GetSysClkSource() !=
					LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
		}
	} else if (IS_ENABLED(STM32_SYSCLK_SRC_CSI)) {
		/* Set sysclk source to CSI */
		LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_CSI);
		while (LL_RCC_GetSysClkSource() !=
					LL_RCC_SYS_CLKSOURCE_STATUS_CSI) {
		}
	} else {
		return -ENOTSUP;
	}

	/* Set FLASH latency */
	/* AHB/AXI/HCLK clock is SYSCLK / HPRE */
	/* If freq not increased, set flash latency after all clock setting */
	if (new_hclk_freq <= old_hclk_freq) {
		LL_SetFlashLatency(new_hclk_freq);
	}

	optimize_regulator_voltage_scale(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

	/* Update CMSIS variable */
	SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;

	return r;
}
#else
static int stm32_clock_control_init(const struct device *dev)
{
	ARG_UNUSED(dev);

	/* Update CMSIS variable */
	SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;

	return 0;
}
#endif /* CONFIG_CPU_CORTEX_M7 */

/**
 * @brief RCC device, note that priority is intentionally set to 1 so
 * that the device init runs just after SOC init
 */
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
		    &stm32_clock_control_init,
		    NULL,
		    NULL, NULL,
		    PRE_KERNEL_1,
		    CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
		    &stm32_clock_control_api);