Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 | /*
*
* Copyright (c) 2019 Linaro Limited.
* Copyright (c) 2020 Jeremy LOCHE
* Copyright (c) 2021 Electrolance Solutions
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_utils.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include "stm32_hsem.h"
/* Macros to fill up prescaler values */
#define z_hsi_divider(v) LL_RCC_HSI_DIV ## v
#define hsi_divider(v) z_hsi_divider(v)
#define z_sysclk_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define sysclk_prescaler(v) z_sysclk_prescaler(v)
#define z_ahb_prescaler(v) LL_RCC_AHB_DIV_ ## v
#define ahb_prescaler(v) z_ahb_prescaler(v)
#define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) z_apb1_prescaler(v)
#define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) z_apb2_prescaler(v)
#define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v
#define apb3_prescaler(v) z_apb3_prescaler(v)
#define z_apb4_prescaler(v) LL_RCC_APB4_DIV_ ## v
#define apb4_prescaler(v) z_apb4_prescaler(v)
/* Macro to check for clock feasibility */
/* It is Cortex M7's responsibility to setup clock tree */
/* This check should only be performed for the M7 core code */
#ifdef CONFIG_CPU_CORTEX_M7
/* Choose PLL SRC */
#if defined(STM32_PLL_SRC_HSI)
#define PLLSRC_FREQ ((STM32_HSI_FREQ)/(STM32_HSI_DIVISOR))
#elif defined(STM32_PLL_SRC_CSI)
#define PLLSRC_FREQ STM32_CSI_FREQ
#elif defined(STM32_PLL_SRC_HSE)
#define PLLSRC_FREQ STM32_HSE_FREQ
#else
#define PLLSRC_FREQ 0
#endif
/* Given source clock and dividers, computed the output frequency of PLLP */
#define PLLP_FREQ(pllsrc_freq, divm, divn, divp) (((pllsrc_freq)*\
(divn))/((divm)*(divp)))
/* PLL P output frequency value */
#define PLLP_VALUE PLLP_FREQ(\
PLLSRC_FREQ,\
STM32_PLL_M_DIVISOR,\
STM32_PLL_N_MULTIPLIER,\
STM32_PLL_P_DIVISOR)
/* SYSCLKSRC before the D1CPRE prescaler */
#if defined(STM32_SYSCLK_SRC_PLL)
#define SYSCLKSRC_FREQ PLLP_VALUE
#elif defined(STM32_SYSCLK_SRC_HSI)
#define SYSCLKSRC_FREQ ((STM32_HSI_FREQ)/(STM32_HSI_DIVISOR))
#elif defined(STM32_SYSCLK_SRC_CSI)
#define SYSCLKSRC_FREQ STM32_CSI_FREQ
#elif defined(STM32_SYSCLK_SRC_HSE)
#define SYSCLKSRC_FREQ STM32_HSE_FREQ
#endif
/* ARM Sys CPU Clock before HPRE prescaler */
#define SYSCLK_FREQ ((SYSCLKSRC_FREQ)/(STM32_D1CPRE))
#define AHB_FREQ ((SYSCLK_FREQ)/(STM32_HPRE))
#define APB1_FREQ ((AHB_FREQ)/(STM32_D2PPRE1))
#define APB2_FREQ ((AHB_FREQ)/(STM32_D2PPRE2))
#define APB3_FREQ ((AHB_FREQ)/(STM32_D1PPRE))
#define APB4_FREQ ((AHB_FREQ)/(STM32_D3PPRE))
/* Datasheet maximum frequency definitions */
#if defined(CONFIG_SOC_STM32H743XX) ||\
defined(CONFIG_SOC_STM32H745XX) ||\
defined(CONFIG_SOC_STM32H747XX) ||\
defined(CONFIG_SOC_STM32H750XX) ||\
defined(CONFIG_SOC_STM32H753XX)
/* All h7 SoC with maximum 480MHz SYSCLK */
#define SYSCLK_FREQ_MAX 480000000UL
#define AHB_FREQ_MAX 240000000UL
#define APBx_FREQ_MAX 120000000UL
#elif defined(CONFIG_SOC_STM32H723XX) ||\
defined(CONFIG_SOC_STM32H725XX) ||\
defined(CONFIG_SOC_STM32H730XX) ||\
defined(CONFIG_SOC_STM32H735XX)
/* All h7 SoC with maximum 550MHz SYSCLK */
#define SYSCLK_FREQ_MAX 550000000UL
#define AHB_FREQ_MAX 275000000UL
#define APBx_FREQ_MAX 137500000UL
#elif defined(CONFIG_SOC_STM32H7A3XX) || defined(CONFIG_SOC_STM32H7A3XXQ) ||\
defined(CONFIG_SOC_STM32H7B3XX) || defined(CONFIG_SOC_STM32H7B3XXQ)
#define SYSCLK_FREQ_MAX 280000000UL
#define AHB_FREQ_MAX 280000000UL
#define APBx_FREQ_MAX 140000000UL
#else
/* Default: All h7 SoC with maximum 280MHz SYSCLK */
#define SYSCLK_FREQ_MAX 280000000UL
#define AHB_FREQ_MAX 140000000UL
#define APBx_FREQ_MAX 70000000UL
#endif
#if SYSCLK_FREQ > SYSCLK_FREQ_MAX
#error "SYSCLK frequency is too high!"
#endif
#if AHB_FREQ > AHB_FREQ_MAX
#error "AHB frequency is too high!"
#endif
#if APB1_FREQ > APBx_FREQ_MAX
#error "APB1 frequency is too high!"
#endif
#if APB2_FREQ > APBx_FREQ_MAX
#error "APB2 frequency is too high!"
#endif
#if APB3_FREQ > APBx_FREQ_MAX
#error "APB3 frequency is too high!"
#endif
#if APB4_FREQ > APBx_FREQ_MAX
#error "APB4 frequency is too high!"
#endif
#if SYSCLK_FREQ != CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
#error "SYS clock frequency for M7 core doesn't match CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC"
#endif
/* end of clock feasability check */
#endif /* CONFIG_CPU_CORTEX_M7 */
#if defined(CONFIG_CPU_CORTEX_M7)
#if STM32_D1CPRE > 1
/*
* D1CPRE prescaler allows to set a HCLK frequency lower than SYSCLK frequency.
* Though, zephyr doesn't make a difference today between these two clocks.
* So, changing this prescaler is not allowed until it is made possible to
* use them independently in zephyr clock subsystem.
*/
#error "D1CPRE presacler can't be higher than 1"
#endif
#endif /* CONFIG_CPU_CORTEX_M7 */
#if defined(CONFIG_CPU_CORTEX_M7)
/* Offset to access bus clock registers from M7 (or only) core */
#define STM32H7_BUS_CLK_REG DT_REG_ADDR(DT_NODELABEL(rcc))
#elif defined(CONFIG_CPU_CORTEX_M4)
/* Offset to access bus clock registers from M4 core */
#define STM32H7_BUS_CLK_REG DT_REG_ADDR(DT_NODELABEL(rcc)) + 0x60
#endif
static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
return clock / prescaler;
}
__unused
static uint32_t get_pllout_frequency(uint32_t pllsrc_freq,
int pllm_div,
int plln_mul,
int pllout_div)
{
__ASSERT_NO_MSG(pllm_div && pllout_div);
return (pllsrc_freq / pllm_div) * plln_mul / pllout_div;
}
__unused
static uint32_t get_pllsrc_frequency(void)
{
switch (LL_RCC_PLL_GetSource()) {
case LL_RCC_PLLSOURCE_HSI:
return STM32_HSI_FREQ;
case LL_RCC_PLLSOURCE_CSI:
return STM32_CSI_FREQ;
case LL_RCC_PLLSOURCE_HSE:
return STM32_HSE_FREQ;
case LL_RCC_PLLSOURCE_NONE:
default:
return 0;
}
}
__unused
static uint32_t get_hclk_frequency(void)
{
uint32_t sysclk = 0;
/* Get the current system clock source */
switch (LL_RCC_GetSysClkSource()) {
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI:
sysclk = STM32_HSI_FREQ/STM32_HSI_DIVISOR;
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_CSI:
sysclk = STM32_CSI_FREQ;
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE:
sysclk = STM32_HSE_FREQ;
break;
#if defined(STM32_PLL_ENABLED)
case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1:
sysclk = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_P_DIVISOR);
break;
#endif /* STM32_PLL_ENABLED */
}
return get_bus_clock(sysclk, STM32_HPRE);
}
#if !defined(CONFIG_CPU_CORTEX_M4)
static int32_t prepare_regulator_voltage_scale(void)
{
/* Apply system power supply configuration */
#if defined(SMPS) && defined(CONFIG_POWER_SUPPLY_DIRECT_SMPS)
LL_PWR_ConfigSupply(LL_PWR_DIRECT_SMPS_SUPPLY);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_LDO)
LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_LDO)
LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT_AND_LDO)
LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT_AND_LDO)
LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT)
LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT)
LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT);
#elif defined(CONFIG_POWER_SUPPLY_EXTERNAL_SOURCE)
LL_PWR_ConfigSupply(LL_PWR_EXTERNAL_SOURCE_SUPPLY);
#else
LL_PWR_ConfigSupply(LL_PWR_LDO_SUPPLY);
#endif
/* Make sure to put the CPU in highest Voltage scale during clock configuration */
/* Highest voltage is SCALE0 */
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
while (LL_PWR_IsActiveFlag_VOS() == 0) {
}
return 0;
}
static int32_t optimize_regulator_voltage_scale(uint32_t sysclk_freq)
{
/* After sysclock is configured, tweak the voltage scale down */
/* to reduce power consumption */
/* Needs some smart work to configure properly */
/* LL_PWR_REGULATOR_SCALE3 is lowest power consumption */
/* Must be done in accordance to the Maximum allowed frequency vs VOS*/
/* See RM0433 page 352 for more details */
#if defined(SMPS) && defined(CONFIG_POWER_SUPPLY_DIRECT_SMPS)
LL_PWR_ConfigSupply(LL_PWR_DIRECT_SMPS_SUPPLY);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_LDO)
LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_LDO)
LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT_AND_LDO)
LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT_AND_LDO)
LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_1V8_SUPPLIES_EXT)
LL_PWR_ConfigSupply(LL_PWR_SMPS_1V8_SUPPLIES_EXT);
#elif defined(SMPS) && defined(CONFIG_POWER_SUPPLY_SMPS_2V5_SUPPLIES_EXT)
LL_PWR_ConfigSupply(LL_PWR_SMPS_2V5_SUPPLIES_EXT);
#elif defined(CONFIG_POWER_SUPPLY_EXTERNAL_SOURCE)
LL_PWR_ConfigSupply(LL_PWR_EXTERNAL_SOURCE_SUPPLY);
#else
LL_PWR_ConfigSupply(LL_PWR_LDO_SUPPLY);
#endif
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
while (LL_PWR_IsActiveFlag_VOS() == 0) {
}
return 0;
}
__unused
static int get_vco_input_range(uint32_t m_div, uint32_t *range)
{
uint32_t vco_freq;
vco_freq = PLLSRC_FREQ / m_div;
if (MHZ(1) <= vco_freq && vco_freq <= MHZ(2)) {
*range = LL_RCC_PLLINPUTRANGE_1_2;
} else if (MHZ(2) < vco_freq && vco_freq <= MHZ(4)) {
*range = LL_RCC_PLLINPUTRANGE_2_4;
} else if (MHZ(4) < vco_freq && vco_freq <= MHZ(8)) {
*range = LL_RCC_PLLINPUTRANGE_4_8;
} else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) {
*range = LL_RCC_PLLINPUTRANGE_8_16;
} else {
return -ERANGE;
}
return 0;
}
__unused
static uint32_t get_vco_output_range(uint32_t vco_input_range)
{
if (vco_input_range == LL_RCC_PLLINPUTRANGE_1_2) {
return LL_RCC_PLLVCORANGE_MEDIUM;
}
return LL_RCC_PLLVCORANGE_WIDE;
}
#endif /* ! CONFIG_CPU_CORTEX_M4 */
/** @brief Verifies clock is part of actve clock configuration */
static int enabled_clock(uint32_t src_clk)
{
if ((src_clk == STM32_SRC_SYSCLK) ||
((src_clk == STM32_SRC_CKPER) && IS_ENABLED(STM32_CKPER_ENABLED)) ||
((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) ||
((src_clk == STM32_SRC_HSI_KER) && IS_ENABLED(STM32_HSI_ENABLED)) ||
((src_clk == STM32_SRC_CSI_KER) && IS_ENABLED(STM32_CSI_ENABLED)) ||
((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) ||
((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) ||
((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_P) && IS_ENABLED(STM32_PLL2_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_Q) && IS_ENABLED(STM32_PLL2_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_R) && IS_ENABLED(STM32_PLL2_R_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_P) && IS_ENABLED(STM32_PLL3_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_Q) && IS_ENABLED(STM32_PLL3_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_R) && IS_ENABLED(STM32_PLL3_R_ENABLED))) {
return 0;
}
return -ENOTSUP;
}
static inline int stm32_clock_control_on(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attemp to toggle a wrong periph clock bit */
return -ENOTSUP;
}
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
sys_set_bits(STM32H7_BUS_CLK_REG + pclken->bus, pclken->enr);
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
return 0;
}
static inline int stm32_clock_control_off(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attemp to toggle a wrong periph clock bit */
return -ENOTSUP;
}
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
sys_clear_bits(STM32H7_BUS_CLK_REG + pclken->bus, pclken->enr);
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
return 0;
}
static inline int stm32_clock_control_configure(const struct device *dev,
clock_control_subsys_t sub_system,
void *data)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
int err;
ARG_UNUSED(dev);
ARG_UNUSED(data);
err = enabled_clock(pclken->bus);
if (err < 0) {
/* Attemp to configure a src clock not available or not valid */
return err;
}
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
return 0;
}
static int stm32_clock_control_get_subsys_rate(const struct device *clock,
clock_control_subsys_t sub_system,
uint32_t *rate)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
/*
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
* since it will be updated after clock configuration and hence
* more likely to contain actual clock speed
*/
#if defined(CONFIG_CPU_CORTEX_M4)
uint32_t ahb_clock = SystemCoreClock;
#else
uint32_t ahb_clock = get_bus_clock(SystemCoreClock, STM32_HPRE);
#endif
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_D2PPRE1);
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_D2PPRE2);
uint32_t apb3_clock = get_bus_clock(ahb_clock, STM32_D1PPRE);
uint32_t apb4_clock = get_bus_clock(ahb_clock, STM32_D3PPRE);
ARG_UNUSED(clock);
switch (pclken->bus) {
case STM32_CLOCK_BUS_AHB1:
case STM32_CLOCK_BUS_AHB2:
case STM32_CLOCK_BUS_AHB3:
case STM32_CLOCK_BUS_AHB4:
*rate = ahb_clock;
break;
case STM32_CLOCK_BUS_APB1:
case STM32_CLOCK_BUS_APB1_2:
*rate = apb1_clock;
break;
case STM32_CLOCK_BUS_APB2:
*rate = apb2_clock;
break;
case STM32_CLOCK_BUS_APB3:
*rate = apb3_clock;
break;
case STM32_CLOCK_BUS_APB4:
*rate = apb4_clock;
break;
case STM32_SRC_SYSCLK:
*rate = get_hclk_frequency();
break;
#if defined(STM32_CKPER_ENABLED)
case STM32_SRC_CKPER:
*rate = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
break;
#endif /* STM32_CKPER_ENABLED */
#if defined(STM32_HSE_ENABLED)
case STM32_SRC_HSE:
*rate = STM32_HSE_FREQ;
break;
#endif /* STM32_HSE_ENABLED */
#if defined(STM32_LSE_ENABLED)
case STM32_SRC_LSE:
*rate = STM32_LSE_FREQ;
break;
#endif /* STM32_LSE_ENABLED */
#if defined(STM32_LSI_ENABLED)
case STM32_SRC_LSI:
*rate = STM32_LSI_FREQ;
break;
#endif /* STM32_LSI_ENABLED */
#if defined(STM32_HSI48_ENABLED)
case STM32_SRC_HSI48:
*rate = STM32_HSI48_FREQ;
break;
#endif /* STM32_HSI48_ENABLED */
#if defined(STM32_PLL_ENABLED)
case STM32_SRC_PLL1_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_P_DIVISOR);
break;
case STM32_SRC_PLL1_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_Q_DIVISOR);
break;
case STM32_SRC_PLL1_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_R_DIVISOR);
break;
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLL2_ENABLED)
case STM32_SRC_PLL2_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_P_DIVISOR);
break;
case STM32_SRC_PLL2_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_Q_DIVISOR);
break;
case STM32_SRC_PLL2_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_R_DIVISOR);
break;
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL3_ENABLED)
case STM32_SRC_PLL3_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_P_DIVISOR);
break;
case STM32_SRC_PLL3_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_Q_DIVISOR);
break;
case STM32_SRC_PLL3_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_R_DIVISOR);
break;
#endif /* STM32_PLL3_ENABLED */
default:
return -ENOTSUP;
}
return 0;
}
static struct clock_control_driver_api stm32_clock_control_api = {
.on = stm32_clock_control_on,
.off = stm32_clock_control_off,
.get_rate = stm32_clock_control_get_subsys_rate,
.configure = stm32_clock_control_configure,
};
__unused
static void set_up_fixed_clock_sources(void)
{
if (IS_ENABLED(STM32_HSE_ENABLED)) {
/* Enable HSE oscillator */
if (IS_ENABLED(STM32_HSE_BYPASS)) {
LL_RCC_HSE_EnableBypass();
} else {
LL_RCC_HSE_DisableBypass();
}
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1) {
}
}
if (IS_ENABLED(STM32_HSI_ENABLED)) {
/* Enable HSI oscillator */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
}
/* HSI divider configuration */
LL_RCC_HSI_SetDivider(hsi_divider(STM32_HSI_DIVISOR));
}
if (IS_ENABLED(STM32_CSI_ENABLED)) {
/* Enable CSI oscillator */
LL_RCC_CSI_Enable();
while (LL_RCC_CSI_IsReady() != 1) {
}
}
if (IS_ENABLED(STM32_LSI_ENABLED)) {
/* Enable LSI oscillator */
LL_RCC_LSI_Enable();
while (LL_RCC_LSI_IsReady() != 1) {
}
}
if (IS_ENABLED(STM32_LSE_ENABLED)) {
/* Enable backup domain */
LL_PWR_EnableBkUpAccess();
/* Configure driving capability */
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);
if (IS_ENABLED(STM32_LSE_BYPASS)) {
/* Configure LSE bypass */
LL_RCC_LSE_EnableBypass();
}
/* Enable LSE oscillator */
LL_RCC_LSE_Enable();
while (LL_RCC_LSE_IsReady() != 1) {
}
}
if (IS_ENABLED(STM32_HSI48_ENABLED)) {
LL_RCC_HSI48_Enable();
while (LL_RCC_HSI48_IsReady() != 1) {
}
}
}
__unused
static int set_up_plls(void)
{
#if defined(STM32_PLL_ENABLED) || defined(STM32_PLL2_ENABLED) || defined(STM32_PLL3_ENABLED)
int r;
uint32_t vco_input_range;
uint32_t vco_output_range;
/* Configure PLL source */
/* Can be HSE , HSI 64Mhz/HSIDIV, CSI 4MHz*/
if (IS_ENABLED(STM32_PLL_SRC_HSE)) {
/* Main PLL configuration and activation */
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSE);
} else if (IS_ENABLED(STM32_PLL_SRC_CSI)) {
/* Main PLL configuration and activation */
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_CSI);
} else if (IS_ENABLED(STM32_PLL_SRC_HSI)) {
/* Main PLL configuration and activation */
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSI);
} else {
return -ENOTSUP;
}
#if defined(STM32_PLL_ENABLED)
r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range);
if (r < 0) {
return r;
}
vco_output_range = get_vco_output_range(vco_input_range);
LL_RCC_PLL1_SetM(STM32_PLL_M_DIVISOR);
LL_RCC_PLL1_SetVCOInputRange(vco_input_range);
LL_RCC_PLL1_SetVCOOutputRange(vco_output_range);
LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER);
/* FRACN disable DIVP,DIVQ,DIVR enable*/
LL_RCC_PLL1FRACN_Disable();
if (IS_ENABLED(STM32_PLL_P_ENABLED)) {
LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR);
LL_RCC_PLL1P_Enable();
}
if (IS_ENABLED(STM32_PLL_Q_ENABLED)) {
LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR);
LL_RCC_PLL1Q_Enable();
}
if (IS_ENABLED(STM32_PLL_R_ENABLED)) {
LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR);
LL_RCC_PLL1R_Enable();
}
LL_RCC_PLL1_Enable();
while (LL_RCC_PLL1_IsReady() != 1U) {
}
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLL2_ENABLED)
r = get_vco_input_range(STM32_PLL2_M_DIVISOR, &vco_input_range);
if (r < 0) {
return r;
}
vco_output_range = get_vco_output_range(vco_input_range);
LL_RCC_PLL2_SetM(STM32_PLL2_M_DIVISOR);
LL_RCC_PLL2_SetVCOInputRange(vco_input_range);
LL_RCC_PLL2_SetVCOOutputRange(vco_output_range);
LL_RCC_PLL2_SetN(STM32_PLL2_N_MULTIPLIER);
LL_RCC_PLL2FRACN_Disable();
if (IS_ENABLED(STM32_PLL2_P_ENABLED)) {
LL_RCC_PLL2_SetP(STM32_PLL2_P_DIVISOR);
LL_RCC_PLL2P_Enable();
}
if (IS_ENABLED(STM32_PLL2_Q_ENABLED)) {
LL_RCC_PLL2_SetQ(STM32_PLL2_Q_DIVISOR);
LL_RCC_PLL2Q_Enable();
}
if (IS_ENABLED(STM32_PLL2_R_ENABLED)) {
LL_RCC_PLL2_SetR(STM32_PLL2_R_DIVISOR);
LL_RCC_PLL2R_Enable();
}
LL_RCC_PLL2_Enable();
while (LL_RCC_PLL2_IsReady() != 1U) {
}
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL3_ENABLED)
r = get_vco_input_range(STM32_PLL3_M_DIVISOR, &vco_input_range);
if (r < 0) {
return r;
}
vco_output_range = get_vco_output_range(vco_input_range);
LL_RCC_PLL3_SetM(STM32_PLL3_M_DIVISOR);
LL_RCC_PLL3_SetVCOInputRange(vco_input_range);
LL_RCC_PLL3_SetVCOOutputRange(vco_output_range);
LL_RCC_PLL3_SetN(STM32_PLL3_N_MULTIPLIER);
LL_RCC_PLL3FRACN_Disable();
if (IS_ENABLED(STM32_PLL3_P_ENABLED)) {
LL_RCC_PLL3_SetP(STM32_PLL3_P_DIVISOR);
LL_RCC_PLL3P_Enable();
}
if (IS_ENABLED(STM32_PLL3_Q_ENABLED)) {
LL_RCC_PLL3_SetQ(STM32_PLL3_Q_DIVISOR);
LL_RCC_PLL3Q_Enable();
}
if (IS_ENABLED(STM32_PLL3_R_ENABLED)) {
LL_RCC_PLL3_SetR(STM32_PLL3_R_DIVISOR);
LL_RCC_PLL3R_Enable();
}
LL_RCC_PLL3_Enable();
while (LL_RCC_PLL3_IsReady() != 1U) {
}
#endif /* STM32_PLL3_ENABLED */
#else
/* Init PLL source to None */
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_NONE);
#endif /* STM32_PLL_ENABLED || STM32_PLL2_ENABLED || STM32_PLL3_ENABLED */
return 0;
}
#if defined(CONFIG_CPU_CORTEX_M7)
static int stm32_clock_control_init(const struct device *dev)
{
uint32_t old_hclk_freq = 0;
uint32_t new_hclk_freq = 0;
int r;
ARG_UNUSED(dev);
/* HW semaphore Clock enable */
#if defined(CONFIG_SOC_STM32H7A3XX) || defined(CONFIG_SOC_STM32H7A3XXQ) || \
defined(CONFIG_SOC_STM32H7B3XX) || defined(CONFIG_SOC_STM32H7B3XXQ)
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_HSEM);
#else
LL_AHB4_GRP1_EnableClock(LL_AHB4_GRP1_PERIPH_HSEM);
#endif
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
/* Set up indiviual enabled clocks */
set_up_fixed_clock_sources();
/* Set up PLLs */
r = set_up_plls();
if (r < 0) {
return r;
}
/* Configure Voltage scale to comply with the desired system frequency */
prepare_regulator_voltage_scale();
/* Current hclk value */
old_hclk_freq = get_hclk_frequency();
/* AHB is HCLK clock to configure */
new_hclk_freq = get_bus_clock(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
STM32_HPRE);
/* Set flash latency */
/* AHB/AXI/HCLK clock is SYSCLK / HPRE */
/* If freq increases, set flash latency before any clock setting */
if (new_hclk_freq > old_hclk_freq) {
LL_SetFlashLatency(new_hclk_freq);
}
/* Preset the prescalers prior to chosing SYSCLK */
/* Prevents APB clock to go over limits */
/* Set buses (Sys,AHB, APB1, APB2 & APB4) prescalers */
LL_RCC_SetSysPrescaler(sysclk_prescaler(STM32_D1CPRE));
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_HPRE));
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_D2PPRE1));
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_D2PPRE2));
LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_D1PPRE));
LL_RCC_SetAPB4Prescaler(apb4_prescaler(STM32_D3PPRE));
/* Set up sys clock */
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
/* Set PLL1 as System Clock Source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) {
/* Set sysclk source to HSE */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
while (LL_RCC_GetSysClkSource() !=
LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) {
/* Set sysclk source to HSI */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
while (LL_RCC_GetSysClkSource() !=
LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_CSI)) {
/* Set sysclk source to CSI */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_CSI);
while (LL_RCC_GetSysClkSource() !=
LL_RCC_SYS_CLKSOURCE_STATUS_CSI) {
}
} else {
return -ENOTSUP;
}
/* Set FLASH latency */
/* AHB/AXI/HCLK clock is SYSCLK / HPRE */
/* If freq not increased, set flash latency after all clock setting */
if (new_hclk_freq <= old_hclk_freq) {
LL_SetFlashLatency(new_hclk_freq);
}
optimize_regulator_voltage_scale(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
/* Update CMSIS variable */
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
return r;
}
#else
static int stm32_clock_control_init(const struct device *dev)
{
ARG_UNUSED(dev);
/* Update CMSIS variable */
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
return 0;
}
#endif /* CONFIG_CPU_CORTEX_M7 */
/**
* @brief RCC device, note that priority is intentionally set to 1 so
* that the device init runs just after SOC init
*/
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
&stm32_clock_control_init,
NULL,
NULL, NULL,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&stm32_clock_control_api);
|