/*
* Copyright (c) 2020 PHYTEC Messtechnik GmbH
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "test_modbus.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(mbs_test, LOG_LEVEL_INF);
const static uint16_t fp_offset = MB_TEST_FP_OFFSET;
static uint16_t coils;
static uint16_t holding_reg[8];
static float holding_fp[4];
uint8_t server_iface;
uint8_t test_get_server_iface(void)
{
return server_iface;
}
static int coil_rd(uint16_t addr, bool *state)
{
if (addr >= (sizeof(coils) * 8)) {
return -ENOTSUP;
}
if (coils & BIT(addr)) {
*state = true;
} else {
*state = false;
}
LOG_DBG("Coil read, addr %u, %d", addr, (int)*state);
return 0;
}
static int coil_wr(uint16_t addr, bool state)
{
if (addr >= (sizeof(coils) * 8)) {
return -ENOTSUP;
}
if (state == true) {
coils |= BIT(addr);
} else {
coils &= ~BIT(addr);
}
LOG_DBG("Coil write, addr %u, %d", addr, (int)state);
return 0;
}
static int discrete_input_rd(uint16_t addr, bool *state)
{
if (addr >= (sizeof(coils) * 8)) {
return -ENOTSUP;
}
if (coils & BIT(addr)) {
*state = true;
} else {
*state = false;
}
LOG_DBG("Discrete input read, addr %u, %d", addr, (int)*state);
return 0;
}
static int input_reg_rd(uint16_t addr, uint16_t *reg)
{
if (addr >= ARRAY_SIZE(holding_reg)) {
return -ENOTSUP;
}
*reg = holding_reg[addr];
LOG_DBG("Input register read, addr %u, 0x%04x", addr, *reg);
return 0;
}
static int input_reg_rd_fp(uint16_t addr, float *reg)
{
if ((addr < fp_offset) ||
(addr >= (ARRAY_SIZE(holding_fp) + fp_offset))) {
return -ENOTSUP;
}
*reg = holding_fp[addr - fp_offset];
LOG_DBG("FP input register read, addr %u", addr);
return 0;
}
static int holding_reg_rd(uint16_t addr, uint16_t *reg)
{
if (addr >= ARRAY_SIZE(holding_reg)) {
return -ENOTSUP;
}
*reg = holding_reg[addr];
LOG_DBG("Holding register read, addr %u", addr);
return 0;
}
static int holding_reg_wr(uint16_t addr, uint16_t reg)
{
if (addr >= ARRAY_SIZE(holding_reg)) {
return -ENOTSUP;
}
holding_reg[addr] = reg;
LOG_DBG("Holding register write, addr %u", addr);
return 0;
}
static int holding_reg_rd_fp(uint16_t addr, float *reg)
{
if ((addr < fp_offset) ||
(addr >= (ARRAY_SIZE(holding_fp) + fp_offset))) {
return -ENOTSUP;
}
*reg = holding_fp[addr - fp_offset];
LOG_DBG("FP holding register read, addr %u", addr);
return 0;
}
static int holding_reg_wr_fp(uint16_t addr, float reg)
{
if ((addr < fp_offset) ||
(addr >= (ARRAY_SIZE(holding_fp) + fp_offset))) {
return -ENOTSUP;
}
holding_fp[addr - fp_offset] = reg;
LOG_DBG("FP holding register write, addr %u", addr);
return 0;
}
static struct modbus_user_callbacks mbs_cbs = {
/** Coil read/write callback */
.coil_rd = coil_rd,
.coil_wr = coil_wr,
/* Discrete Input read callback */
.discrete_input_rd = discrete_input_rd,
/* Input Register read callback */
.input_reg_rd = input_reg_rd,
/* Floating Point Input Register read callback */
.input_reg_rd_fp = input_reg_rd_fp,
/* Holding Register read/write callback */
.holding_reg_rd = holding_reg_rd,
.holding_reg_wr = holding_reg_wr,
/* Floating Point Holding Register read/write callback */
.holding_reg_rd_fp = holding_reg_rd_fp,
.holding_reg_wr_fp = holding_reg_wr_fp,
};
static struct modbus_iface_param server_param = {
.mode = MODBUS_MODE_RTU,
.server = {
.user_cb = &mbs_cbs,
.unit_id = MB_TEST_NODE_ADDR,
},
.serial = {
.baud = MB_TEST_BAUDRATE_LOW,
.parity = UART_CFG_PARITY_ODD,
},
};
/*
* This test performed on hardware requires two UART controllers
* on the board (with RX/TX lines connected crosswise).
* The exact mapping is not required, we assume that both controllers
* have similar capabilities and use the instance with index 1
* as interface for the server.
*/
#if DT_NODE_EXISTS(DT_INST(1, zephyr_modbus_serial))
static const char rtu_iface_name[] = {DEVICE_DT_NAME(DT_INST(1, zephyr_modbus_serial))};
#else
static const char rtu_iface_name[] = "";
#endif
void test_server_setup_low_odd(void)
{
int err;
server_iface = modbus_iface_get_by_name(rtu_iface_name);
server_param.mode = MODBUS_MODE_RTU;
server_param.serial.baud = MB_TEST_BAUDRATE_LOW;
server_param.serial.parity = UART_CFG_PARITY_ODD;
if (IS_ENABLED(CONFIG_MODBUS_SERVER)) {
err = modbus_init_server(server_iface, server_param);
zassert_equal(err, 0, "Failed to configure RTU server");
} else {
ztest_test_skip();
}
}
void test_server_setup_low_none(void)
{
int err;
server_iface = modbus_iface_get_by_name(rtu_iface_name);
server_param.mode = MODBUS_MODE_RTU;
server_param.serial.baud = MB_TEST_BAUDRATE_LOW;
server_param.serial.parity = UART_CFG_PARITY_NONE;
if (IS_ENABLED(CONFIG_MODBUS_SERVER)) {
err = modbus_init_server(server_iface, server_param);
zassert_equal(err, 0, "Failed to configure RTU server");
} else {
ztest_test_skip();
}
}
void test_server_setup_high_even(void)
{
int err;
server_iface = modbus_iface_get_by_name(rtu_iface_name);
server_param.mode = MODBUS_MODE_RTU;
server_param.serial.baud = MB_TEST_BAUDRATE_HIGH;
server_param.serial.parity = UART_CFG_PARITY_EVEN;
if (IS_ENABLED(CONFIG_MODBUS_SERVER)) {
err = modbus_init_server(server_iface, server_param);
zassert_equal(err, 0, "Failed to configure RTU server");
} else {
ztest_test_skip();
}
}
void test_server_setup_ascii(void)
{
int err;
server_iface = modbus_iface_get_by_name(rtu_iface_name);
server_param.mode = MODBUS_MODE_ASCII;
server_param.serial.baud = MB_TEST_BAUDRATE_HIGH;
server_param.serial.parity = UART_CFG_PARITY_EVEN;
if (IS_ENABLED(CONFIG_MODBUS_SERVER)) {
err = modbus_init_server(server_iface, server_param);
zassert_equal(err, 0, "Failed to configure RTU server");
} else {
ztest_test_skip();
}
}
void test_server_setup_raw(void)
{
char iface_name[] = "RAW_1";
int err;
server_iface = modbus_iface_get_by_name(iface_name);
server_param.mode = MODBUS_MODE_RAW;
server_param.rawcb.raw_tx_cb = server_raw_cb;
if (IS_ENABLED(CONFIG_MODBUS_SERVER)) {
err = modbus_init_server(server_iface, server_param);
zassert_equal(err, 0, "Failed to configure RAW server");
} else {
ztest_test_skip();
}
}
void test_server_disable(void)
{
int err;
if (IS_ENABLED(CONFIG_MODBUS_SERVER)) {
err = modbus_disable(server_iface);
zassert_equal(err, 0, "Failed to disable RTU server");
} else {
ztest_test_skip();
}
}