Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 | /* * Copyright (c) 2017 Linaro Limited. * Copyright (c) 2018 Nordic Semiconductor ASA. * * SPDX-License-Identifier: Apache-2.0 */ #ifndef ZEPHYR_ARCH_ARM_CORE_AARCH32_MPU_ARM_MPU_V8_INTERNAL_H_ #define ZEPHYR_ARCH_ARM_CORE_AARCH32_MPU_ARM_MPU_V8_INTERNAL_H_ #include <aarch32/cortex_m/cmse.h> #define LOG_LEVEL CONFIG_MPU_LOG_LEVEL #include <zephyr/logging/log.h> #include <zephyr/sys/math_extras.h> /** * @brief internal structure holding information of * memory areas where dynamic MPU programming * is allowed. */ struct dynamic_region_info { int index; struct arm_mpu_region region_conf; }; /** * Global array, holding the MPU region index of * the memory region inside which dynamic memory * regions may be configured. */ static struct dynamic_region_info dyn_reg_info[MPU_DYNAMIC_REGION_AREAS_NUM]; #if defined(CONFIG_CPU_CORTEX_M23) || defined(CONFIG_CPU_CORTEX_M33) || \ defined(CONFIG_CPU_CORTEX_M55) static inline void mpu_set_mair0(uint32_t mair0) { MPU->MAIR0 = mair0; } static inline void mpu_set_rnr(uint32_t rnr) { MPU->RNR = rnr; } static inline void mpu_set_rbar(uint32_t rbar) { MPU->RBAR = rbar; } static inline uint32_t mpu_get_rbar(void) { return MPU->RBAR; } static inline void mpu_set_rlar(uint32_t rlar) { MPU->RLAR = rlar; } static inline uint32_t mpu_get_rlar(void) { return MPU->RLAR; } static inline uint8_t mpu_get_num_regions(void) { uint32_t type = MPU->TYPE; type = (type & MPU_TYPE_DREGION_Msk) >> MPU_TYPE_DREGION_Pos; return (uint8_t)type; } static inline void mpu_clear_region(uint32_t rnr) { ARM_MPU_ClrRegion(rnr); } #elif defined(CONFIG_AARCH32_ARMV8_R) static inline void mpu_set_mair0(uint32_t mair0) { write_mair0(mair0); __DSB(); __ISB(); } static inline void mpu_set_rnr(uint32_t rnr) { write_prselr(rnr); __DSB(); } static inline void mpu_set_rbar(uint32_t rbar) { write_prbar(rbar); __DSB(); __ISB(); } static inline uint32_t mpu_get_rbar(void) { return read_prbar(); } static inline void mpu_set_rlar(uint32_t rlar) { write_prlar(rlar); __DSB(); __ISB(); } static inline uint32_t mpu_get_rlar(void) { return read_prlar(); } static inline uint8_t mpu_get_num_regions(void) { uint32_t type = read_mpuir(); type = (type >> MPU_IR_REGION_Pos) & MPU_IR_REGION_Msk; return (uint8_t)type; } static inline void mpu_clear_region(uint32_t rnr) { mpu_set_rnr(rnr); mpu_set_rbar(0); mpu_set_rlar(0); } #else #error "Unsupported ARM CPU" #endif /* Global MPU configuration at system initialization. */ static void mpu_init(void) { /* Configure the cache-ability attributes for all the * different types of memory regions. */ mpu_set_mair0(MPU_MAIR_ATTRS); } static void mpu_set_region(uint32_t rnr, uint32_t rbar, uint32_t rlar) { mpu_set_rnr(rnr); mpu_set_rbar(rbar); mpu_set_rlar(rlar); } /* This internal function performs MPU region initialization. * * Note: * The caller must provide a valid region index. */ static void region_init(const uint32_t index, const struct arm_mpu_region *region_conf) { mpu_set_region( /* RNR */ index, /* RBAR */ (region_conf->base & MPU_RBAR_BASE_Msk) | (region_conf->attr.rbar & (MPU_RBAR_XN_Msk | MPU_RBAR_AP_Msk | MPU_RBAR_SH_Msk)), /* RLAR */ (region_conf->attr.r_limit & MPU_RLAR_LIMIT_Msk) | ((region_conf->attr.mair_idx << MPU_RLAR_AttrIndx_Pos) & MPU_RLAR_AttrIndx_Msk) | MPU_RLAR_EN_Msk ); LOG_DBG("[%d] 0x%08x 0x%08x 0x%08x 0x%08x", index, region_conf->base, region_conf->attr.rbar, region_conf->attr.mair_idx, region_conf->attr.r_limit); } /* @brief Partition sanity check * * This internal function performs run-time sanity check for * MPU region start address and size. * * @param part Pointer to the data structure holding the partition * information (must be valid). * */ static int mpu_partition_is_valid(const struct z_arm_mpu_partition *part) { /* Partition size must be a multiple of the minimum MPU region * size. Start address of the partition must align with the * minimum MPU region size. */ int partition_is_valid = (part->size >= CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE) && ((part->size & (~(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1))) == part->size) && ((part->start & (CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1)) == 0U); return partition_is_valid; } /** * This internal function returns the MPU region, in which a * buffer, specified by its start address and size, lies. If * a valid MPU region cannot be derived the function returns * -EINVAL. * * Note that, for the function to work properly, the ARM MPU * needs to be enabled. * */ #if defined(CONFIG_AARCH32_ARMV8_R) static inline int get_region_index(uint32_t start, uint32_t size) { uint32_t limit = (start + size - 1) & MPU_RLAR_LIMIT_Msk; for (uint8_t idx = 0; idx < mpu_get_num_regions(); idx++) { mpu_set_rnr(idx); if (start >= (mpu_get_rbar() & MPU_RBAR_BASE_Msk) && limit <= (mpu_get_rlar() & MPU_RLAR_LIMIT_Msk)) { return idx; } } return -EINVAL; } #else static inline int get_region_index(uint32_t start, uint32_t size) { uint32_t region_start_addr = arm_cmse_mpu_region_get(start); uint32_t region_end_addr = arm_cmse_mpu_region_get(start + size - 1); /* MPU regions are contiguous so return the region number, * if both start and end address are in the same region. */ if (region_start_addr == region_end_addr) { return region_start_addr; } return -EINVAL; } #endif static inline uint32_t mpu_region_get_base(const uint32_t index) { mpu_set_rnr(index); return mpu_get_rbar() & MPU_RBAR_BASE_Msk; } static inline void mpu_region_set_base(const uint32_t index, const uint32_t base) { mpu_set_rnr(index); mpu_set_rbar((mpu_get_rbar() & (~MPU_RBAR_BASE_Msk)) | (base & MPU_RBAR_BASE_Msk)); } static inline uint32_t mpu_region_get_last_addr(const uint32_t index) { mpu_set_rnr(index); return (mpu_get_rlar() & MPU_RLAR_LIMIT_Msk) | (~MPU_RLAR_LIMIT_Msk); } static inline void mpu_region_set_limit(const uint32_t index, const uint32_t limit) { mpu_set_rnr(index); mpu_set_rlar((mpu_get_rlar() & (~MPU_RLAR_LIMIT_Msk)) | (limit & MPU_RLAR_LIMIT_Msk)); } static inline void mpu_region_get_access_attr(const uint32_t index, arm_mpu_region_attr_t *attr) { mpu_set_rnr(index); attr->rbar = mpu_get_rbar() & (MPU_RBAR_XN_Msk | MPU_RBAR_AP_Msk | MPU_RBAR_SH_Msk); attr->mair_idx = (mpu_get_rlar() & MPU_RLAR_AttrIndx_Msk) >> MPU_RLAR_AttrIndx_Pos; } static inline void mpu_region_get_conf(const uint32_t index, struct arm_mpu_region *region_conf) { mpu_set_rnr(index); /* Region attribution: * - Cache-ability * - Share-ability * - Access Permissions */ mpu_region_get_access_attr(index, ®ion_conf->attr); /* Region base address */ region_conf->base = mpu_get_rbar() & MPU_RBAR_BASE_Msk; /* Region limit address */ region_conf->attr.r_limit = mpu_get_rlar() & MPU_RLAR_LIMIT_Msk; } /** * This internal function is utilized by the MPU driver to combine a given * region attribute configuration and size and fill-in a driver-specific * structure with the correct MPU region configuration. */ static inline void get_region_attr_from_mpu_partition_info( arm_mpu_region_attr_t *p_attr, const k_mem_partition_attr_t *attr, uint32_t base, uint32_t size) { p_attr->rbar = attr->rbar & (MPU_RBAR_XN_Msk | MPU_RBAR_AP_Msk | MPU_RBAR_SH_Msk); p_attr->mair_idx = attr->mair_idx; p_attr->r_limit = REGION_LIMIT_ADDR(base, size); } #if defined(CONFIG_USERSPACE) /** * This internal function returns the minimum HW MPU region index * that may hold the configuration of a dynamic memory region. * * Browse through the memory areas marked for dynamic MPU programming, * pick the one with the minimum MPU region index. Return that index. * * The function is optimized for the (most common) use-case of a single * marked area for dynamic memory regions. */ static inline int get_dyn_region_min_index(void) { int dyn_reg_min_index = dyn_reg_info[0].index; #if MPU_DYNAMIC_REGION_AREAS_NUM > 1 for (int i = 1; i < MPU_DYNAMIC_REGION_AREAS_NUM; i++) { if ((dyn_reg_info[i].index != -EINVAL) && (dyn_reg_info[i].index < dyn_reg_min_index) ) { dyn_reg_min_index = dyn_reg_info[i].index; } } #endif return dyn_reg_min_index; } static inline uint32_t mpu_region_get_size(uint32_t index) { return mpu_region_get_last_addr(index) + 1 - mpu_region_get_base(index); } /** * This internal function checks if region is enabled or not. * * Note: * The caller must provide a valid region number. */ static inline int is_enabled_region(uint32_t index) { mpu_set_rnr(index); return (mpu_get_rlar() & MPU_RLAR_EN_Msk) ? 1 : 0; } #if defined(CONFIG_AARCH32_ARMV8_R) /** * This internal function checks if the given buffer is in the region. * * Note: * The caller must provide a valid region number. */ static inline int is_in_region(uint32_t rnr, uint32_t start, uint32_t size) { uint32_t r_addr_start; uint32_t r_addr_end; uint32_t end; r_addr_start = mpu_region_get_base(rnr); r_addr_end = mpu_region_get_last_addr(rnr); size = size == 0U ? 0U : size - 1U; if (u32_add_overflow(start, size, &end)) { return 0; } if ((start >= r_addr_start) && (end <= r_addr_end)) { return 1; } return 0; } static inline int is_user_accessible_region(uint32_t rnr, int write) { uint32_t r_ap; mpu_set_rnr(rnr); r_ap = (mpu_get_rbar() & MPU_RBAR_AP_Msk) >> MPU_RBAR_AP_Pos; if (write != 0) { return r_ap == P_RW_U_RW; } return ((r_ap == P_RW_U_RW) || (r_ap == P_RO_U_RO)); } /** * This internal function validates whether a given memory buffer * is user accessible or not. */ static inline int mpu_buffer_validate(void *addr, size_t size, int write) { int32_t rnr; int rc = -EPERM; int key = arch_irq_lock(); /* Iterate all mpu regions in reversed order */ for (rnr = 0; rnr < mpu_get_num_regions(); rnr++) { if (!is_enabled_region(rnr) || !is_in_region(rnr, (uint32_t)addr, size)) { continue; } if (is_user_accessible_region(rnr, write)) { rc = 0; } } arch_irq_unlock(key); return rc; } #else /** * This internal function validates whether a given memory buffer * is user accessible or not. * * Note: [Doc. number: ARM-ECM-0359818] * "Some SAU, IDAU, and MPU configurations block the efficient implementation * of an address range check. The CMSE intrinsic operates under the assumption * that the configuration of the SAU, IDAU, and MPU is constrained as follows: * - An object is allocated in a single MPU/SAU/IDAU region. * - A stack is allocated in a single region. * * These points imply that the memory buffer does not span across multiple MPU, * SAU, or IDAU regions." * * MPU regions are configurable, however, some platforms might have fixed-size * SAU or IDAU regions. So, even if a buffer is allocated inside a single MPU * region, it might span across multiple SAU/IDAU regions, which will make the * TT-based address range check fail. * * Therefore, the function performs a second check, which is based on MPU only, * in case the fast address range check fails. * */ static inline int mpu_buffer_validate(void *addr, size_t size, int write) { uint32_t _addr = (uint32_t)addr; uint32_t _size = (uint32_t)size; if (write) { if (arm_cmse_addr_range_readwrite_ok(_addr, _size, 1)) { return 0; } } else { if (arm_cmse_addr_range_read_ok(_addr, _size, 1)) { return 0; } } #if defined(CONFIG_CPU_HAS_TEE) /* * Validation failure may be due to SAU/IDAU presence. * We re-check user accessibility based on MPU only. */ int32_t r_index_base = arm_cmse_mpu_region_get(_addr); int32_t r_index_last = arm_cmse_mpu_region_get(_addr + _size - 1); if ((r_index_base != -EINVAL) && (r_index_base == r_index_last)) { /* Valid MPU region, check permissions on base address only. */ if (write) { if (arm_cmse_addr_readwrite_ok(_addr, 1)) { return 0; } } else { if (arm_cmse_addr_read_ok(_addr, 1)) { return 0; } } } #endif /* CONFIG_CPU_HAS_TEE */ return -EPERM; } #endif /* CONFIG_AARCH32_ARMV8_R */ #endif /* CONFIG_USERSPACE */ static int region_allocate_and_init(const uint8_t index, const struct arm_mpu_region *region_conf); static int mpu_configure_region(const uint8_t index, const struct z_arm_mpu_partition *new_region); #if !defined(CONFIG_MPU_GAP_FILLING) static int mpu_configure_regions(const struct z_arm_mpu_partition regions[], uint8_t regions_num, uint8_t start_reg_index, bool do_sanity_check); #endif /* This internal function programs a set of given MPU regions * over a background memory area, optionally performing a * sanity check of the memory regions to be programmed. * * The function performs a full partition of the background memory * area, effectively, leaving no space in this area uncovered by MPU. */ static int mpu_configure_regions_and_partition(const struct z_arm_mpu_partition regions[], uint8_t regions_num, uint8_t start_reg_index, bool do_sanity_check) { int i; int reg_index = start_reg_index; for (i = 0; i < regions_num; i++) { if (regions[i].size == 0U) { continue; } /* Non-empty region. */ if (do_sanity_check && (!mpu_partition_is_valid(®ions[i]))) { LOG_ERR("Partition %u: sanity check failed.", i); return -EINVAL; } /* Derive the index of the underlying MPU region, * inside which the new region will be configured. */ int u_reg_index = get_region_index(regions[i].start, regions[i].size); if ((u_reg_index == -EINVAL) || (u_reg_index > (reg_index - 1))) { LOG_ERR("Invalid underlying region index %u", u_reg_index); return -EINVAL; } /* * The new memory region is to be placed inside the underlying * region, possibly splitting the underlying region into two. */ uint32_t u_reg_base = mpu_region_get_base(u_reg_index); uint32_t u_reg_last = mpu_region_get_last_addr(u_reg_index); uint32_t reg_last = regions[i].start + regions[i].size - 1; if ((regions[i].start == u_reg_base) && (reg_last == u_reg_last)) { /* The new region overlaps entirely with the * underlying region. In this case we simply * update the partition attributes of the * underlying region with those of the new * region. */ mpu_configure_region(u_reg_index, ®ions[i]); } else if (regions[i].start == u_reg_base) { /* The new region starts exactly at the start of the * underlying region; the start of the underlying * region needs to be set to the end of the new region. */ mpu_region_set_base(u_reg_index, regions[i].start + regions[i].size); reg_index = mpu_configure_region(reg_index, ®ions[i]); if (reg_index == -EINVAL) { return reg_index; } reg_index++; } else if (reg_last == u_reg_last) { /* The new region ends exactly at the end of the * underlying region; the end of the underlying * region needs to be set to the start of the * new region. */ mpu_region_set_limit(u_reg_index, regions[i].start - 1); reg_index = mpu_configure_region(reg_index, ®ions[i]); if (reg_index == -EINVAL) { return reg_index; } reg_index++; } else { /* The new regions lies strictly inside the * underlying region, which needs to split * into two regions. */ mpu_region_set_limit(u_reg_index, regions[i].start - 1); reg_index = mpu_configure_region(reg_index, ®ions[i]); if (reg_index == -EINVAL) { return reg_index; } reg_index++; /* The additional region shall have the same * access attributes as the initial underlying * region. */ struct arm_mpu_region fill_region; mpu_region_get_access_attr(u_reg_index, &fill_region.attr); fill_region.base = regions[i].start + regions[i].size; fill_region.attr.r_limit = REGION_LIMIT_ADDR((regions[i].start + regions[i].size), (u_reg_last - reg_last)); reg_index = region_allocate_and_init(reg_index, (const struct arm_mpu_region *) &fill_region); if (reg_index == -EINVAL) { return reg_index; } reg_index++; } } return reg_index; } /* This internal function programs the static MPU regions. * * It returns the number of MPU region indices configured. * * Note: * If the static MPU regions configuration has not been successfully * performed, the error signal is propagated to the caller of the function. */ static int mpu_configure_static_mpu_regions(const struct z_arm_mpu_partition static_regions[], const uint8_t regions_num, const uint32_t background_area_base, const uint32_t background_area_end) { int mpu_reg_index = static_regions_num; /* In ARMv8-M architecture the static regions are programmed on SRAM, * forming a full partition of the background area, specified by the * given boundaries. */ ARG_UNUSED(background_area_base); ARG_UNUSED(background_area_end); mpu_reg_index = mpu_configure_regions_and_partition(static_regions, regions_num, mpu_reg_index, true); static_regions_num = mpu_reg_index; return mpu_reg_index; } /* This internal function marks and stores the configuration of memory areas * where dynamic region programming is allowed. Return zero on success, or * -EINVAL on error. */ static int mpu_mark_areas_for_dynamic_regions( const struct z_arm_mpu_partition dyn_region_areas[], const uint8_t dyn_region_areas_num) { /* In ARMv8-M architecture we need to store the index values * and the default configuration of the MPU regions, inside * which dynamic memory regions may be programmed at run-time. */ for (int i = 0; i < dyn_region_areas_num; i++) { if (dyn_region_areas[i].size == 0U) { continue; } /* Non-empty area */ /* Retrieve HW MPU region index */ dyn_reg_info[i].index = get_region_index(dyn_region_areas[i].start, dyn_region_areas[i].size); if (dyn_reg_info[i].index == -EINVAL) { return -EINVAL; } if (dyn_reg_info[i].index >= static_regions_num) { return -EINVAL; } /* Store default configuration */ mpu_region_get_conf(dyn_reg_info[i].index, &dyn_reg_info[i].region_conf); } return 0; } /** * Get the number of supported MPU regions. */ static inline uint8_t get_num_regions(void) { #if defined(NUM_MPU_REGIONS) /* Retrieve the number of regions from DTS configuration. */ return NUM_MPU_REGIONS; #else return mpu_get_num_regions(); #endif /* NUM_MPU_REGIONS */ } /* This internal function programs the dynamic MPU regions. * * It returns the number of MPU region indices configured. * * Note: * If the dynamic MPU regions configuration has not been successfully * performed, the error signal is propagated to the caller of the function. */ static int mpu_configure_dynamic_mpu_regions(const struct z_arm_mpu_partition dynamic_regions[], uint8_t regions_num) { int mpu_reg_index = static_regions_num; /* Disable all MPU regions except for the static ones. */ for (int i = mpu_reg_index; i < get_num_regions(); i++) { mpu_clear_region(i); } #if defined(CONFIG_MPU_GAP_FILLING) /* Reset MPU regions inside which dynamic memory regions may * be programmed. */ for (int i = 0; i < MPU_DYNAMIC_REGION_AREAS_NUM; i++) { region_init(dyn_reg_info[i].index, &dyn_reg_info[i].region_conf); } /* In ARMv8-M architecture the dynamic regions are programmed on SRAM, * forming a full partition of the background area, specified by the * given boundaries. */ mpu_reg_index = mpu_configure_regions_and_partition(dynamic_regions, regions_num, mpu_reg_index, true); #else /* We are going to skip the full partition of the background areas. * So we can disable MPU regions inside which dynamic memory regions * may be programmed. */ for (int i = 0; i < MPU_DYNAMIC_REGION_AREAS_NUM; i++) { mpu_clear_region(dyn_reg_info[i].index); } /* The dynamic regions are now programmed on top of * existing SRAM region configuration. */ mpu_reg_index = mpu_configure_regions(dynamic_regions, regions_num, mpu_reg_index, true); #endif /* CONFIG_MPU_GAP_FILLING */ return mpu_reg_index; } #endif /* ZEPHYR_ARCH_ARM_CORE_AARCH32_MPU_ARM_MPU_V8_INTERNAL_H_ */ |