Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 | /* * Copyright (c) 2021 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #include <zephyr/ztress.h> #include <zephyr/ztest_test.h> #include <zephyr/sys/printk.h> #include <zephyr/random/rand32.h> #include <string.h> /* Flag set at startup which determines if stress test can run on this platform. * Stress test should not run on the platform which system clock is too high * compared to cpu clock. System clock is sometimes set globally for the test * and for some platforms it may be unacceptable. */ static bool cpu_sys_clock_ok; /* Timer used for adjusting contexts backoff time to get optimal CPU load. */ static void ctrl_timeout(struct k_timer *timer); K_TIMER_DEFINE(ctrl_timer, ctrl_timeout, NULL); /* Timer used for reporting test progress. */ static void progress_timeout(struct k_timer *timer); K_TIMER_DEFINE(progress_timer, progress_timeout, NULL); /* Timer used for higher priority context. */ static void ztress_timeout(struct k_timer *timer); K_TIMER_DEFINE(ztress_timer, ztress_timeout, NULL); /* Timer handling test timeout which ends test prematurely. */ static k_timeout_t timeout; static void test_timeout(struct k_timer *timer); K_TIMER_DEFINE(test_timer, test_timeout, NULL); static atomic_t active_cnt; static struct k_thread threads[CONFIG_ZTRESS_MAX_THREADS]; static k_tid_t tids[CONFIG_ZTRESS_MAX_THREADS]; static uint32_t context_cnt; struct ztress_context_data *tmr_data; static atomic_t active_mask; static uint32_t preempt_cnt[CONFIG_ZTRESS_MAX_THREADS]; static uint32_t exec_cnt[CONFIG_ZTRESS_MAX_THREADS]; static k_timeout_t backoff[CONFIG_ZTRESS_MAX_THREADS]; static k_timeout_t init_backoff[CONFIG_ZTRESS_MAX_THREADS]; K_THREAD_STACK_ARRAY_DEFINE(stacks, CONFIG_ZTRESS_MAX_THREADS, CONFIG_ZTRESS_STACK_SIZE); static k_tid_t idle_tid[CONFIG_MP_NUM_CPUS]; #define THREAD_NAME(i, _) STRINGIFY(ztress_##i) static const char * const thread_names[] = { LISTIFY(CONFIG_ZTRESS_MAX_THREADS, THREAD_NAME, (,)) }; struct ztress_runtime { uint32_t cpu_load; uint32_t cpu_load_measurements; }; static struct ztress_runtime rt; static void test_timeout(struct k_timer *timer) { ztress_abort(); } /* Ratio is 1/16, e.g using ratio 14 reduces all timeouts by multiplying it by 14/16. * 16 fraction is used to avoid dividing which may take more time on certain platforms. */ static void adjust_load(uint8_t ratio) { for (uint32_t i = 0; i < context_cnt; i++) { uint32_t new_ticks = ratio * (uint32_t)backoff[i].ticks / 16; backoff[i].ticks = MAX(4, new_ticks); } } static void progress_timeout(struct k_timer *timer) { struct ztress_context_data *thread_data = k_timer_user_data_get(timer); uint32_t progress = 100; uint32_t cnt = context_cnt; uint32_t thread_data_start_index = 0; if (tmr_data != NULL) { thread_data_start_index = 1; if (tmr_data->exec_cnt != 0 && exec_cnt[0] != 0) { progress = (100 * exec_cnt[0]) / tmr_data->exec_cnt; } } for (uint32_t i = thread_data_start_index; i < cnt; i++) { if (thread_data[i].exec_cnt == 0 && thread_data[i].preempt_cnt == 0) { continue; } uint32_t exec_progress = (thread_data[i].exec_cnt) ? (100 * exec_cnt[i]) / thread_data[i].exec_cnt : 100; uint32_t preempt_progress = (thread_data[i].preempt_cnt) ? (100 * preempt_cnt[i]) / thread_data[i].preempt_cnt : 100; uint32_t thread_progress = MIN(exec_progress, preempt_progress); progress = MIN(progress, thread_progress); } uint64_t rem = 1000 * (k_timer_expires_ticks(&test_timer) - sys_clock_tick_get()) / CONFIG_SYS_CLOCK_TICKS_PER_SEC; printk("\r%u%% remaining:%u ms", progress, (uint32_t)rem); } static void control_load(void) { static uint64_t prev_idle_cycles; static uint64_t total_cycles; uint64_t idle_cycles = 0; k_thread_runtime_stats_t rt_stats_all; int err = 0; for (int i = 0; i < CONFIG_MP_NUM_CPUS; i++) { k_thread_runtime_stats_t thread_stats; err = k_thread_runtime_stats_get(idle_tid[i], &thread_stats); if (err < 0) { return; } idle_cycles += thread_stats.execution_cycles; } err = k_thread_runtime_stats_all_get(&rt_stats_all); if (err < 0) { return; } int load = 1000 - (1000 * (idle_cycles - prev_idle_cycles) / (rt_stats_all.execution_cycles - total_cycles)); prev_idle_cycles = idle_cycles; total_cycles = rt_stats_all.execution_cycles; int avg_load = (rt.cpu_load * rt.cpu_load_measurements + load) / (rt.cpu_load_measurements + 1); rt.cpu_load = avg_load; rt.cpu_load_measurements++; if (load > 800 && load < 850) { /* Expected load */ } else if (load > 850) { /* Slightly reduce load. */ adjust_load(18); } else if (load < 300) { adjust_load(8); } else if (load < 500) { adjust_load(12); } else { adjust_load(14); } } static void ctrl_timeout(struct k_timer *timer) { control_load(); } void preempt_update(void) { uint32_t mask = active_mask; while (mask) { int idx = 31 - __builtin_clz(mask); /* Clear mask to ensure that other context does not count same thread. */ if ((atomic_and(&active_mask, ~BIT(idx)) & BIT(idx)) != 0) { preempt_cnt[idx]++; } mask &= ~BIT(idx); } } static bool cont_check(struct ztress_context_data *context_data, uint32_t priority) { if (context_data->preempt_cnt != 0 && preempt_cnt[priority] >= context_data->preempt_cnt) { atomic_dec(&active_cnt); return false; } if (context_data->exec_cnt != 0 && exec_cnt[priority] >= context_data->exec_cnt) { atomic_dec(&active_cnt); return false; } return active_cnt > 0; } static k_timeout_t randomize_t(k_timeout_t t) { if (t.ticks <= 4) { return t; } uint32_t mask = BIT_MASK(31 - __builtin_clz((uint32_t)t.ticks)); t.ticks += (sys_rand32_get() & mask); return t; } static void microdelay(void) { static volatile int microdelay_cnt; uint32_t repeat = sys_rand32_get() & 0xff; for (int i = 0; i < repeat; i++) { microdelay_cnt++; } } static void ztress_timeout(struct k_timer *timer) { struct ztress_context_data *context_data = k_timer_user_data_get(timer); uint32_t priority = 0; bool cont_test, cont; preempt_update(); cont_test = cont_check(context_data, priority); cont = context_data->handler(context_data->user_data, exec_cnt[priority], !cont_test, priority); exec_cnt[priority]++; if (cont == true && cont_test == true) { k_timer_start(timer, randomize_t(backoff[priority]), K_NO_WAIT); } } static void sleep(k_timeout_t t) { if (K_TIMEOUT_EQ(t, K_NO_WAIT) == false) { t = randomize_t(t); k_sleep(t); } } static void ztress_thread(void *data, void *prio, void *unused) { struct ztress_context_data *context_data = data; uint32_t priority = (uint32_t)(uintptr_t)prio; bool cont_test, cont; do { uint32_t cnt = exec_cnt[priority]; preempt_update(); exec_cnt[priority] = cnt + 1; cont_test = cont_check(context_data, priority); microdelay(); atomic_or(&active_mask, BIT(priority)); cont = context_data->handler(context_data->user_data, cnt, !cont_test, priority); atomic_and(&active_mask, ~BIT(priority)); sleep(backoff[priority]); } while (cont == true && cont_test == true); } static void thread_cb(const struct k_thread *cthread, void *user_data) { #define GET_IDLE_TID(i, tid) do {\ if (strcmp(tname, (CONFIG_MP_NUM_CPUS == 1) ? "idle" : "idle 0" STRINGIFY(i)) == 0) { \ idle_tid[i] = tid; \ } \ } while (0) const char *tname = k_thread_name_get((struct k_thread *)cthread); LISTIFY(CONFIG_MP_NUM_CPUS, GET_IDLE_TID, (;), (k_tid_t)cthread); } static void ztress_init(struct ztress_context_data *thread_data) { memset(exec_cnt, 0, sizeof(exec_cnt)); memset(preempt_cnt, 0, sizeof(preempt_cnt)); memset(&rt, 0, sizeof(rt)); k_thread_foreach(thread_cb, NULL); k_msleep(10); k_timer_start(&ctrl_timer, K_MSEC(100), K_MSEC(100)); k_timer_user_data_set(&progress_timer, thread_data); k_timer_start(&progress_timer, K_MSEC(CONFIG_ZTRESS_REPORT_PROGRESS_MS), K_MSEC(CONFIG_ZTRESS_REPORT_PROGRESS_MS)); if (K_TIMEOUT_EQ(timeout, K_NO_WAIT) == false) { k_timer_start(&test_timer, timeout, K_NO_WAIT); } } static void ztress_end(int old_prio) { k_timer_stop(&ctrl_timer); k_timer_stop(&progress_timer); k_timer_stop(&test_timer); k_thread_priority_set(k_current_get(), old_prio); } static void active_cnt_init(struct ztress_context_data *data) { if (data->preempt_cnt != 0 || data->exec_cnt != 0) { active_cnt++; } } int ztress_execute(struct ztress_context_data *timer_data, struct ztress_context_data *thread_data, size_t cnt) { /* Start control timer. */ int old_prio = k_thread_priority_get(k_current_get()); int priority, ztress_prio = 0; if (cnt > CONFIG_ZTRESS_MAX_THREADS) { return -EINVAL; } if (cnt + 2 > CONFIG_NUM_PREEMPT_PRIORITIES) { return -EINVAL; } /* Skip test if system clock is set too high compared to CPU frequency. * It can happen when system clock is set globally for the test which is * run on various platforms. */ if (!cpu_sys_clock_ok) { ztest_test_skip(); } ztress_init(thread_data); context_cnt = cnt + (timer_data ? 1 : 0); priority = K_LOWEST_APPLICATION_THREAD_PRIO - cnt - 1; k_thread_priority_set(k_current_get(), priority); priority++; tmr_data = timer_data; if (timer_data != NULL) { active_cnt_init(timer_data); backoff[ztress_prio] = timer_data->t; init_backoff[ztress_prio] = timer_data->t; k_timer_user_data_set(&ztress_timer, timer_data); ztress_prio++; } for (int i = 0; i < cnt; i++) { active_cnt_init(&thread_data[i]); backoff[ztress_prio] = thread_data[i].t; init_backoff[ztress_prio] = thread_data[i].t; tids[i] = k_thread_create(&threads[i], stacks[i], CONFIG_ZTRESS_STACK_SIZE, ztress_thread, &thread_data[i], (void *)(uintptr_t)ztress_prio, NULL, priority, 0, K_MSEC(10)); (void)k_thread_name_set(tids[i], thread_names[i]); priority++; ztress_prio++; } if (timer_data != NULL) { k_timer_start(&ztress_timer, K_MSEC(10), K_NO_WAIT); } /* Wait until all threads complete. */ for (int i = 0; i < cnt; i++) { k_thread_join(tids[i], K_FOREVER); } /* Abort to stop timer. */ if (timer_data != NULL) { ztress_abort(); (void)k_timer_status_sync(&ztress_timer); } /* print report */ ztress_report(); ztress_end(old_prio); return 0; } void ztress_abort(void) { atomic_set(&active_cnt, 0); } void ztress_set_timeout(k_timeout_t t) { timeout = t; } void ztress_report(void) { printk("\nZtress execution report:\n"); for (uint32_t i = 0; i < context_cnt; i++) { printk("\t context %u:\n\t\t - executed:%u, preempted:%u\n", i, exec_cnt[i], preempt_cnt[i]); printk("\t\t - ticks initial:%u, optimized:%u\n", (uint32_t)init_backoff[i].ticks, (uint32_t)backoff[i].ticks); } printk("\tAverage CPU load:%u%%, measurements:%u\n", rt.cpu_load / 10, rt.cpu_load_measurements); } int ztress_exec_count(uint32_t id) { if (id >= context_cnt) { return -EINVAL; } return exec_cnt[id]; } int ztress_preempt_count(uint32_t id) { if (id >= context_cnt) { return -EINVAL; } return preempt_cnt[id]; } uint32_t ztress_optimized_ticks(uint32_t id) { if (id >= context_cnt) { return -EINVAL; } return backoff[id].ticks; } /* Doing it here and not before each test because test may have some additional * cpu load (e.g. busy simulator) running that would influence the result. * */ static int ztress_cpu_clock_to_sys_clock_check(const struct device *unused) { static volatile int cnt = 2000; uint32_t t = sys_clock_tick_get_32(); while (cnt-- > 0) { /* empty */ } t = sys_clock_tick_get_32() - t; /* Threshold is arbitrary. Derived from nRF platorm where CPU runs at 64MHz and * system clock at 32kHz (sys clock interrupt every 1950 cycles). That ratio is * ok even for no optimization case. * If some valid platforms are cut because of that, it can be changed. */ cpu_sys_clock_ok = t <= 12; /* Read first random number. There are some generators which do not support * reading first random number from an interrupt context (initialization * is performed at the first read). */ (void)sys_rand32_get(); return 0; } SYS_INIT(ztress_cpu_clock_to_sys_clock_check, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE); |