Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | /* * Copyright (c) 2018 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include <zephyr/device.h> #include <zephyr/kernel.h> #include <zephyr/timeout_q.h> #include <zephyr/init.h> #include <string.h> #include <zephyr/pm/device.h> #include <zephyr/pm/device_runtime.h> #include <zephyr/pm/pm.h> #include <zephyr/pm/state.h> #include <zephyr/pm/policy.h> #include <zephyr/tracing/tracing.h> #include "pm_stats.h" #include <zephyr/logging/log.h> LOG_MODULE_REGISTER(pm, CONFIG_PM_LOG_LEVEL); #define CURRENT_CPU \ (COND_CODE_1(CONFIG_SMP, (arch_curr_cpu()->id), (_current_cpu->id))) static ATOMIC_DEFINE(z_post_ops_required, CONFIG_MP_NUM_CPUS); static sys_slist_t pm_notifiers = SYS_SLIST_STATIC_INIT(&pm_notifiers); /* * Properly initialize cpu power states. Do not make assumptions that * ACTIVE_STATE is 0 */ #define CPU_PM_STATE_INIT(_, __) \ { .state = PM_STATE_ACTIVE } static struct pm_state_info z_cpus_pm_state[] = { LISTIFY(CONFIG_MP_NUM_CPUS, CPU_PM_STATE_INIT, (,)) }; static struct pm_state_info z_cpus_pm_forced_state[] = { LISTIFY(CONFIG_MP_NUM_CPUS, CPU_PM_STATE_INIT, (,)) }; static struct k_spinlock pm_forced_state_lock; #if defined(CONFIG_PM_DEVICE) && !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE) static atomic_t z_cpus_active = ATOMIC_INIT(CONFIG_MP_NUM_CPUS); #endif static struct k_spinlock pm_notifier_lock; #ifdef CONFIG_PM_DEVICE extern const struct device *__pm_device_slots_start[]; #if !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE) /* Number of devices successfully suspended. */ static size_t num_susp; static int pm_suspend_devices(void) { const struct device *devs; size_t devc; devc = z_device_get_all_static(&devs); num_susp = 0; for (const struct device *dev = devs + devc - 1; dev >= devs; dev--) { int ret; /* * ignore busy devices, wake up source and devices with * runtime PM enabled. */ if (pm_device_is_busy(dev) || pm_device_state_is_locked(dev) || pm_device_wakeup_is_enabled(dev) || ((dev->pm != NULL) && pm_device_runtime_is_enabled(dev))) { continue; } ret = pm_device_action_run(dev, PM_DEVICE_ACTION_SUSPEND); /* ignore devices not supporting or already at the given state */ if ((ret == -ENOSYS) || (ret == -ENOTSUP) || (ret == -EALREADY)) { continue; } else if (ret < 0) { LOG_ERR("Device %s did not enter %s state (%d)", dev->name, pm_device_state_str(PM_DEVICE_STATE_SUSPENDED), ret); return ret; } __pm_device_slots_start[num_susp] = dev; num_susp++; } return 0; } static void pm_resume_devices(void) { for (int i = (num_susp - 1); i >= 0; i--) { pm_device_action_run(__pm_device_slots_start[i], PM_DEVICE_ACTION_RESUME); } num_susp = 0; } #endif /* !CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE */ #endif /* CONFIG_PM_DEVICE */ static inline void pm_exit_pos_ops(struct pm_state_info *info) { extern __weak void pm_state_exit_post_ops(enum pm_state state, uint8_t substate_id); if (pm_state_exit_post_ops != NULL) { pm_state_exit_post_ops(info->state, info->substate_id); } else { /* * This function is supposed to be overridden to do SoC or * architecture specific post ops after sleep state exits. * * The kernel expects that irqs are unlocked after this. */ irq_unlock(0); } } static inline void state_set(struct pm_state_info *info) { extern __weak void pm_state_set(enum pm_state state, uint8_t substate_id); if (pm_state_set != NULL) { pm_state_set(info->state, info->substate_id); } } /* * Function called to notify when the system is entering / exiting a * power state */ static inline void pm_state_notify(bool entering_state) { struct pm_notifier *notifier; k_spinlock_key_t pm_notifier_key; void (*callback)(enum pm_state state); pm_notifier_key = k_spin_lock(&pm_notifier_lock); SYS_SLIST_FOR_EACH_CONTAINER(&pm_notifiers, notifier, _node) { if (entering_state) { callback = notifier->state_entry; } else { callback = notifier->state_exit; } if (callback) { callback(z_cpus_pm_state[_current_cpu->id].state); } } k_spin_unlock(&pm_notifier_lock, pm_notifier_key); } void pm_system_resume(void) { uint8_t id = CURRENT_CPU; /* * This notification is called from the ISR of the event * that caused exit from kernel idling after PM operations. * * Some CPU low power states require enabling of interrupts * atomically when entering those states. The wake up from * such a state first executes code in the ISR of the interrupt * that caused the wake. This hook will be called from the ISR. * For such CPU LPS states, do post operations and restores here. * The kernel scheduler will get control after the ISR finishes * and it may schedule another thread. */ if (atomic_test_and_clear_bit(z_post_ops_required, id)) { pm_exit_pos_ops(&z_cpus_pm_state[id]); pm_state_notify(false); z_cpus_pm_state[id] = (struct pm_state_info){PM_STATE_ACTIVE, 0, 0}; } } bool pm_state_force(uint8_t cpu, const struct pm_state_info *info) { k_spinlock_key_t key; __ASSERT(info->state < PM_STATE_COUNT, "Invalid power state %d!", info->state); key = k_spin_lock(&pm_forced_state_lock); z_cpus_pm_forced_state[cpu] = *info; k_spin_unlock(&pm_forced_state_lock, key); return true; } bool pm_system_suspend(int32_t ticks) { uint8_t id = CURRENT_CPU; k_spinlock_key_t key; SYS_PORT_TRACING_FUNC_ENTER(pm, system_suspend, ticks); key = k_spin_lock(&pm_forced_state_lock); if (z_cpus_pm_forced_state[id].state != PM_STATE_ACTIVE) { z_cpus_pm_state[id] = z_cpus_pm_forced_state[id]; z_cpus_pm_forced_state[id].state = PM_STATE_ACTIVE; } else { const struct pm_state_info *info; info = pm_policy_next_state(id, ticks); if (info != NULL) { z_cpus_pm_state[id] = *info; } } k_spin_unlock(&pm_forced_state_lock, key); if (z_cpus_pm_state[id].state == PM_STATE_ACTIVE) { LOG_DBG("No PM operations done."); SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks, z_cpus_pm_state[id].state); return false; } if (ticks != K_TICKS_FOREVER) { /* * We need to set the timer to interrupt a little bit early to * accommodate the time required by the CPU to fully wake up. */ z_set_timeout_expiry(ticks - k_us_to_ticks_ceil32( z_cpus_pm_state[id].exit_latency_us), true); } #if defined(CONFIG_PM_DEVICE) && !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE) if ((z_cpus_pm_state[id].state != PM_STATE_RUNTIME_IDLE) && (atomic_sub(&z_cpus_active, 1) == 1)) { if (pm_suspend_devices()) { pm_resume_devices(); z_cpus_pm_state[id].state = PM_STATE_ACTIVE; (void)atomic_add(&z_cpus_active, 1); SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks, z_cpus_pm_state[id].state); return false; } } #endif /* * This function runs with interruptions locked but it is * expected the SoC to unlock them in * pm_state_exit_post_ops() when returning to active * state. We don't want to be scheduled out yet, first we need * to send a notification about leaving the idle state. So, * we lock the scheduler here and unlock just after we have * sent the notification in pm_system_resume(). */ k_sched_lock(); pm_stats_start(); /* Enter power state */ pm_state_notify(true); atomic_set_bit(z_post_ops_required, id); state_set(&z_cpus_pm_state[id]); pm_stats_stop(); /* Wake up sequence starts here */ #if defined(CONFIG_PM_DEVICE) && !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE) if (atomic_add(&z_cpus_active, 1) == 0) { pm_resume_devices(); } #endif pm_stats_update(z_cpus_pm_state[id].state); pm_system_resume(); k_sched_unlock(); SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks, z_cpus_pm_state[id].state); return true; } void pm_notifier_register(struct pm_notifier *notifier) { k_spinlock_key_t pm_notifier_key = k_spin_lock(&pm_notifier_lock); sys_slist_append(&pm_notifiers, ¬ifier->_node); k_spin_unlock(&pm_notifier_lock, pm_notifier_key); } int pm_notifier_unregister(struct pm_notifier *notifier) { int ret = -EINVAL; k_spinlock_key_t pm_notifier_key; pm_notifier_key = k_spin_lock(&pm_notifier_lock); if (sys_slist_find_and_remove(&pm_notifiers, &(notifier->_node))) { ret = 0; } k_spin_unlock(&pm_notifier_lock, pm_notifier_key); return ret; } const struct pm_state_info *pm_state_next_get(uint8_t cpu) { return &z_cpus_pm_state[cpu]; } |