Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/*
 * Copyright (c) 2022 Renesas Electronics Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT renesas_smartbond_uart

#include <errno.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/spinlock.h>
#include <zephyr/sys/byteorder.h>
#include <DA1469xAB.h>

#define IIR_NO_INTR		1
#define IIR_THR_EMPTY		2
#define IIR_RX_DATA		4
#define IIR_LINE_STATUS		5
#define IIR_BUSY		7
#define IIR_TIMEOUT		12

#define STOP_BITS_1	0
#define STOP_BITS_2	1

#define DATA_BITS_5	0
#define DATA_BITS_6	1
#define DATA_BITS_7	2
#define DATA_BITS_8	3

#define RX_FIFO_TRIG_1_CHAR		0
#define RX_FIFO_TRIG_1_4_FULL		1
#define RX_FIFO_TRIG_1_2_FULL		2
#define RX_FIFO_TRIG_MINUS_2_CHARS	3

#define TX_FIFO_TRIG_EMPTY		0
#define TX_FIFO_TRIG_2_CHARS		1
#define TX_FIFO_TRIG_1_4_FULL		2
#define TX_FIFO_TRIG_1_2_FULL		3

#define BAUDRATE_CFG_DLH(cfg)		(((cfg) >> 16) & 0xff)
#define BAUDRATE_CFG_DLL(cfg)		(((cfg) >> 8) & 0xff)
#define BAUDRATE_CFG_DLF(cfg)		((cfg) & 0xff)

struct uart_smartbond_baudrate_cfg {
	uint32_t baudrate;
	/* DLH=cfg[23:16] DLL=cfg[15:8] DLF=cfg[7:0] */
	uint32_t cfg;
};

static const struct uart_smartbond_baudrate_cfg uart_smartbond_baudrate_table[] = {
	{ 2000000, 0x00000100 },
	{ 1000000, 0x00000200 },
	{  921600, 0x00000203 },
	{  500000, 0x00000400 },
	{  230400, 0x0000080b },
	{  115200, 0x00001106 },
	{   57600, 0x0000220c },
	{   38400, 0x00003401 },
	{   28800, 0x00004507 },
	{   19200, 0x00006803 },
	{   14400, 0x00008a0e },
	{    9600, 0x0000d005 },
	{    4800, 0x0001a00b },
};

struct uart_smartbond_cfg {
	UART2_Type *regs;
	int periph_clock_config;
	const struct pinctrl_dev_config *pcfg;
	bool hw_flow_control_supported;

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	void (*irq_config_func)(const struct device *dev);
#endif
};

struct uart_smartbond_data {
	struct uart_config current_config;
	struct k_spinlock lock;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	uart_irq_callback_user_data_t callback;
	void *cb_data;
	uint32_t flags;
	uint8_t rx_enabled;
	uint8_t tx_enabled;
#endif
};

static int uart_smartbond_poll_in(const struct device *dev, unsigned char *p_char)
{
	const struct uart_smartbond_cfg *config = dev->config;
	struct uart_smartbond_data *data = dev->data;
	k_spinlock_key_t key = k_spin_lock(&data->lock);

	if ((config->regs->UART2_USR_REG & UART2_UART2_USR_REG_UART_RFNE_Msk) == 0) {
		k_spin_unlock(&data->lock, key);
		return -1;
	}

	*p_char = config->regs->UART2_RBR_THR_DLL_REG;

	k_spin_unlock(&data->lock, key);

	return 0;
}

static void uart_smartbond_poll_out(const struct device *dev, unsigned char out_char)
{
	const struct uart_smartbond_cfg *config = dev->config;
	struct uart_smartbond_data *data = dev->data;
	k_spinlock_key_t key = k_spin_lock(&data->lock);

	while (!(config->regs->UART2_USR_REG & UART2_UART2_USR_REG_UART_TFNF_Msk)) {
		/* Wait until FIFO has free space */
	}

	config->regs->UART2_RBR_THR_DLL_REG = out_char;

	k_spin_unlock(&data->lock, key);
}

static int uart_smartbond_configure(const struct device *dev,
				  const struct uart_config *cfg)
{
	const struct uart_smartbond_cfg *config = dev->config;
	struct uart_smartbond_data *data = dev->data;
	uint32_t baudrate_cfg = 0;
	k_spinlock_key_t key;
	uint32_t reg_val;
	int err;
	int i;

	if ((cfg->parity != UART_CFG_PARITY_NONE && cfg->parity != UART_CFG_PARITY_ODD &&
	     cfg->parity != UART_CFG_PARITY_EVEN) ||
	    (cfg->stop_bits != UART_CFG_STOP_BITS_1 && cfg->stop_bits != UART_CFG_STOP_BITS_2) ||
	    (cfg->data_bits != UART_CFG_DATA_BITS_5 && cfg->data_bits != UART_CFG_DATA_BITS_6 &&
	     cfg->data_bits != UART_CFG_DATA_BITS_7 && cfg->data_bits != UART_CFG_DATA_BITS_8) ||
	    (cfg->flow_ctrl != UART_CFG_FLOW_CTRL_NONE &&
	     cfg->flow_ctrl != UART_CFG_FLOW_CTRL_RTS_CTS)) {
		return -ENOTSUP;
	}

	/* Flow control is not supported on UART */
	if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS &&
	    !config->hw_flow_control_supported) {
		return -ENOTSUP;
	}

	/* Lookup configuration for baudrate */
	for (i = 0; i < ARRAY_SIZE(uart_smartbond_baudrate_table); i++) {
		if (uart_smartbond_baudrate_table[i].baudrate == cfg->baudrate) {
			baudrate_cfg = uart_smartbond_baudrate_table[i].cfg;
			break;
		}
	}

	if (baudrate_cfg == 0) {
		return -ENOTSUP;
	}

	key = k_spin_lock(&data->lock);

	CRG_COM->SET_CLK_COM_REG = config->periph_clock_config;

	config->regs->UART2_SRR_REG = UART2_UART2_SRR_REG_UART_UR_Msk |
				      UART2_UART2_SRR_REG_UART_RFR_Msk |
				      UART2_UART2_SRR_REG_UART_XFR_Msk;

	config->regs->UART2_LCR_REG |= UART2_UART2_LCR_REG_UART_DLAB_Msk;
	config->regs->UART2_IER_DLH_REG = BAUDRATE_CFG_DLH(baudrate_cfg);
	config->regs->UART2_RBR_THR_DLL_REG = BAUDRATE_CFG_DLL(baudrate_cfg);
	config->regs->UART2_DLF_REG = BAUDRATE_CFG_DLF(baudrate_cfg);
	config->regs->UART2_LCR_REG &= ~UART2_UART2_LCR_REG_UART_DLAB_Msk;

	/* Configure frame */

	reg_val = 0;

	switch (cfg->parity) {
	case UART_CFG_PARITY_NONE:
		break;
	case UART_CFG_PARITY_EVEN:
		reg_val |= UART2_UART2_LCR_REG_UART_EPS_Msk;
		/* no break */
	case UART_CFG_PARITY_ODD:
		reg_val |= UART2_UART2_LCR_REG_UART_PEN_Msk;
		break;
	}

	if (cfg->stop_bits == UART_CFG_STOP_BITS_2)  {
		reg_val |= STOP_BITS_2 << UART2_UART2_LCR_REG_UART_STOP_Pos;
	}

	switch (cfg->data_bits) {
	case UART_CFG_DATA_BITS_6:
		reg_val |= DATA_BITS_6 << UART2_UART2_LCR_REG_UART_DLS_Pos;
		break;
	case UART_CFG_DATA_BITS_7:
		reg_val |= DATA_BITS_7 << UART2_UART2_LCR_REG_UART_DLS_Pos;
		break;
	case UART_CFG_DATA_BITS_8:
		reg_val |= DATA_BITS_8 << UART2_UART2_LCR_REG_UART_DLS_Pos;
		break;
	}

	config->regs->UART2_LCR_REG = reg_val;

	/* Enable hardware FIFO */
	config->regs->UART2_SFE_REG = UART2_UART2_SFE_REG_UART_SHADOW_FIFO_ENABLE_Msk;

	config->regs->UART2_SRT_REG = RX_FIFO_TRIG_1_CHAR;
	config->regs->UART2_STET_REG = TX_FIFO_TRIG_1_2_FULL;

	data->current_config = *cfg;

	k_spin_unlock(&data->lock, key);

	err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
	if (err < 0) {
		return err;
	}

	return 0;
}

#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_smartbond_config_get(const struct device *dev,
				   struct uart_config *cfg)
{
	struct uart_smartbond_data *data = dev->data;

	*cfg = data->current_config;

	return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */

static int uart_smartbond_init(const struct device *dev)
{
	struct uart_smartbond_data *data = dev->data;

	return uart_smartbond_configure(dev, &data->current_config);
}

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static inline void irq_tx_enable(const struct device *dev)
{
	const struct uart_smartbond_cfg *config = dev->config;

	config->regs->UART2_IER_DLH_REG |= UART2_UART2_IER_DLH_REG_PTIME_DLH7_Msk |
					   UART2_UART2_IER_DLH_REG_ETBEI_DLH1_Msk;
}

static inline void irq_tx_disable(const struct device *dev)
{
	const struct uart_smartbond_cfg *config = dev->config;

	config->regs->UART2_IER_DLH_REG &= ~(UART2_UART2_IER_DLH_REG_PTIME_DLH7_Msk |
					     UART2_UART2_IER_DLH_REG_ETBEI_DLH1_Msk);
}

static inline void irq_rx_enable(const struct device *dev)
{
	const struct uart_smartbond_cfg *config = dev->config;

	config->regs->UART2_IER_DLH_REG |= UART2_UART2_IER_DLH_REG_ERBFI_DLH0_Msk;
}

static inline void irq_rx_disable(const struct device *dev)
{
	const struct uart_smartbond_cfg *config = dev->config;

	config->regs->UART2_IER_DLH_REG &= ~UART2_UART2_IER_DLH_REG_ERBFI_DLH0_Msk;
}

static int uart_smartbond_fifo_fill(const struct device *dev,
				  const uint8_t *tx_data,
				  int len)
{
	const struct uart_smartbond_cfg *config = dev->config;
	struct uart_smartbond_data *data = dev->data;
	int num_tx = 0;
	k_spinlock_key_t key = k_spin_lock(&data->lock);

	while ((len - num_tx > 0) &&
	       (config->regs->UART2_USR_REG & UART2_UART2_USR_REG_UART_TFNF_Msk)) {
		config->regs->UART2_RBR_THR_DLL_REG = tx_data[num_tx++];
	}

	if (data->tx_enabled) {
		irq_tx_enable(dev);
	}

	k_spin_unlock(&data->lock, key);

	return num_tx;
}

static int uart_smartbond_fifo_read(const struct device *dev, uint8_t *rx_data,
				  const int size)
{
	const struct uart_smartbond_cfg *config = dev->config;
	struct uart_smartbond_data *data = dev->data;
	int num_rx = 0;
	k_spinlock_key_t key = k_spin_lock(&data->lock);

	while ((size - num_rx > 0) &&
	       (config->regs->UART2_USR_REG & UART2_UART2_USR_REG_UART_RFNE_Msk)) {
		rx_data[num_rx++] = config->regs->UART2_RBR_THR_DLL_REG;
	}

	if (data->rx_enabled) {
		irq_rx_enable(dev);
	}

	k_spin_unlock(&data->lock, key);

	return num_rx;
}

static void uart_smartbond_irq_tx_enable(const struct device *dev)
{
	struct uart_smartbond_data *data = dev->data;
	k_spinlock_key_t key = k_spin_lock(&data->lock);

	data->tx_enabled = 1;
	irq_tx_enable(dev);

	k_spin_unlock(&data->lock, key);
}

static void uart_smartbond_irq_tx_disable(const struct device *dev)
{
	struct uart_smartbond_data *data = dev->data;
	k_spinlock_key_t key = k_spin_lock(&data->lock);

	irq_tx_disable(dev);
	data->tx_enabled = 0;

	k_spin_unlock(&data->lock, key);
}

static int uart_smartbond_irq_tx_ready(const struct device *dev)
{
	const struct uart_smartbond_cfg *config = dev->config;

	return (config->regs->UART2_USR_REG & UART2_UART2_USR_REG_UART_TFNF_Msk) != 0;
}

static void uart_smartbond_irq_rx_enable(const struct device *dev)
{
	struct uart_smartbond_data *data = dev->data;
	k_spinlock_key_t key = k_spin_lock(&data->lock);

	data->rx_enabled = 1;
	irq_rx_enable(dev);

	k_spin_unlock(&data->lock, key);
}

static void uart_smartbond_irq_rx_disable(const struct device *dev)
{
	struct uart_smartbond_data *data = dev->data;
	k_spinlock_key_t key = k_spin_lock(&data->lock);

	irq_rx_disable(dev);
	data->rx_enabled = 0;

	k_spin_unlock(&data->lock, key);
}

static int uart_smartbond_irq_tx_complete(const struct device *dev)
{
	const struct uart_smartbond_cfg *config = dev->config;

	return (config->regs->UART2_USR_REG & UART2_UART2_USR_REG_UART_TFE_Msk) != 0;
}

static int uart_smartbond_irq_rx_ready(const struct device *dev)
{
	const struct uart_smartbond_cfg *config = dev->config;

	return (config->regs->UART2_USR_REG & UART2_UART2_USR_REG_UART_RFNE_Msk) != 0;
}

static void uart_smartbond_irq_err_enable(const struct device *dev)
{
	k_panic();
}

static void uart_smartbond_irq_err_disable(const struct device *dev)
{
	k_panic();
}

static int uart_smartbond_irq_is_pending(const struct device *dev)
{
	k_panic();

	return 0;
}

static int uart_smartbond_irq_update(const struct device *dev)
{
	const struct uart_smartbond_cfg *config = dev->config;
	bool no_intr = false;

	while (!no_intr) {
		switch (config->regs->UART2_IIR_FCR_REG & 0x0F) {
		case IIR_NO_INTR:
			no_intr = true;
			break;
		case IIR_THR_EMPTY:
			irq_tx_disable(dev);
			break;
		case IIR_RX_DATA:
			irq_rx_disable(dev);
			break;
		case IIR_LINE_STATUS:
		case IIR_TIMEOUT:
			/* ignore */
			break;
		case IIR_BUSY:
			/* busy detect */
			/* fall-through */
		default:
			k_panic();
			break;
		}
	}

	return 1;
}

static void uart_smartbond_irq_callback_set(const struct device *dev,
					  uart_irq_callback_user_data_t cb,
					  void *cb_data)
{
	struct uart_smartbond_data *data = dev->data;

	data->callback = cb;
	data->cb_data = cb_data;
}

static void uart_smartbond_isr(const struct device *dev)
{
	struct uart_smartbond_data *data = dev->data;

	if (data->callback) {
		data->callback(dev, data->cb_data);
	}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */

static const struct uart_driver_api uart_smartbond_driver_api = {
	.poll_in = uart_smartbond_poll_in,
	.poll_out = uart_smartbond_poll_out,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
	.configure = uart_smartbond_configure,
	.config_get = uart_smartbond_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	.fifo_fill = uart_smartbond_fifo_fill,
	.fifo_read = uart_smartbond_fifo_read,
	.irq_tx_enable = uart_smartbond_irq_tx_enable,
	.irq_tx_disable = uart_smartbond_irq_tx_disable,
	.irq_tx_ready = uart_smartbond_irq_tx_ready,
	.irq_rx_enable = uart_smartbond_irq_rx_enable,
	.irq_rx_disable = uart_smartbond_irq_rx_disable,
	.irq_tx_complete = uart_smartbond_irq_tx_complete,
	.irq_rx_ready = uart_smartbond_irq_rx_ready,
	.irq_err_enable = uart_smartbond_irq_err_enable,
	.irq_err_disable = uart_smartbond_irq_err_disable,
	.irq_is_pending = uart_smartbond_irq_is_pending,
	.irq_update = uart_smartbond_irq_update,
	.irq_callback_set = uart_smartbond_irq_callback_set,
#endif  /* CONFIG_UART_INTERRUPT_DRIVEN */
};

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define UART_SMARTBOND_CONFIGURE(id)			\
	do {						\
		IRQ_CONNECT(DT_INST_IRQN(id),		\
			    DT_INST_IRQ(id, priority),	\
			    uart_smartbond_isr,		\
			    DEVICE_DT_INST_GET(id), 0);	\
							\
		irq_enable(DT_INST_IRQN(id));		\
	} while (0)
#else
#define UART_SMARTBOND_CONFIGURE(id)
#endif

#define UART_SMARTBOND_DEVICE(id)								\
	PINCTRL_DT_INST_DEFINE(id);								\
	static const struct uart_smartbond_cfg uart_smartbond_##id##_cfg = {			\
		.regs = (UART2_Type *)DT_INST_REG_ADDR(id),					\
		.periph_clock_config = DT_INST_PROP(id, periph_clock_config),			\
		.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id),					\
		.hw_flow_control_supported = DT_INST_PROP(id, hw_flow_control_supported),	\
	};											\
	static struct uart_smartbond_data uart_smartbond_##id##_data = {			\
		.current_config = {								\
			.baudrate = DT_INST_PROP(id, current_speed),				\
			.parity = UART_CFG_PARITY_NONE,						\
			.stop_bits = UART_CFG_STOP_BITS_1,					\
			.data_bits = UART_CFG_DATA_BITS_8,					\
			.flow_ctrl = UART_CFG_FLOW_CTRL_NONE,					\
		},										\
	};											\
	static int uart_smartbond_##id##_init(const struct device *dev)				\
	{											\
		UART_SMARTBOND_CONFIGURE(id);							\
		return uart_smartbond_init(dev);						\
	}											\
	DEVICE_DT_INST_DEFINE(id,								\
			      uart_smartbond_##id##_init,					\
			      NULL,								\
			      &uart_smartbond_##id##_data,					\
			      &uart_smartbond_##id##_cfg,					\
			      PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY,			\
			      &uart_smartbond_driver_api);					\

DT_INST_FOREACH_STATUS_OKAY(UART_SMARTBOND_DEVICE)