Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
/*
 * Copyright (c) 2021 Espressif Systems (Shanghai) Co., Ltd.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr/kernel.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <soc.h>
#include <zephyr/drivers/interrupt_controller/intc_esp32.h>
#include "esp_attr.h"
#include <hal/cpu_hal.h>
#include <hal/interrupt_controller_hal.h>
#include <limits.h>
#include <assert.h>
#include "soc/soc.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(esp32_intc, CONFIG_LOG_DEFAULT_LEVEL);

#define ETS_INTERNAL_TIMER0_INTR_NO 6
#define ETS_INTERNAL_TIMER1_INTR_NO 15
#define ETS_INTERNAL_TIMER2_INTR_NO 16
#define ETS_INTERNAL_SW0_INTR_NO 7
#define ETS_INTERNAL_SW1_INTR_NO 29
#define ETS_INTERNAL_PROFILING_INTR_NO 11

#define VECDESC_FL_RESERVED     (1 << 0)
#define VECDESC_FL_INIRAM       (1 << 1)
#define VECDESC_FL_SHARED       (1 << 2)
#define VECDESC_FL_NONSHARED    (1 << 3)

/*
 * Define this to debug the choices made when allocating the interrupt. This leads to much debugging
 * output within a critical region, which can lead to weird effects like e.g. the interrupt watchdog
 * being triggered, that is why it is separate from the normal LOG* scheme.
 */
#ifdef CONFIG_INTC_ESP32_DECISIONS_LOG
# define INTC_LOG(...) LOG_INF(__VA_ARGS__)
#else
# define INTC_LOG(...) do {} while (false)
#endif

/* Typedef for C-callable interrupt handler function */
typedef void (*intc_handler_t)(void *);
typedef void (*intc_dyn_handler_t)(const void *);

/* shared critical section context */
static int esp_intc_csec;

static inline void esp_intr_lock(void)
{
	esp_intc_csec = irq_lock();
}

static inline void esp_intr_unlock(void)
{
	irq_unlock(esp_intc_csec);
}

/*
 * Interrupt handler table and unhandled interrupt routine. Duplicated
 * from xtensa_intr.c... it's supposed to be private, but we need to look
 * into it in order to see if someone allocated an int using
 * set_interrupt_handler.
 */
struct intr_alloc_table_entry {
	void (*handler)(void *arg);
	void *arg;
};

/* Default handler for unhandled interrupts. */
void default_intr_handler(void *arg)
{
	printk("Unhandled interrupt %d on cpu %d!\n", (int)arg, esp_core_id());
}

static struct intr_alloc_table_entry intr_alloc_table[ESP_INTC_INTS_NUM * CONFIG_MP_NUM_CPUS];

static void set_interrupt_handler(int n, intc_handler_t f, void *arg)
{
	irq_disable(n);
	intr_alloc_table[n * CONFIG_MP_NUM_CPUS].handler = f;
	irq_connect_dynamic(n, n, (intc_dyn_handler_t)f, arg, 0);
	irq_enable(n);
}

/* Linked list of vector descriptions, sorted by cpu.intno value */
static struct vector_desc_t *vector_desc_head; /* implicitly initialized to NULL */

/* This bitmask has an 1 if the int should be disabled when the flash is disabled. */
static uint32_t non_iram_int_mask[CONFIG_MP_NUM_CPUS];
/* This bitmask has 1 in it if the int was disabled using esp_intr_noniram_disable. */
static uint32_t non_iram_int_disabled[CONFIG_MP_NUM_CPUS];
static bool non_iram_int_disabled_flag[CONFIG_MP_NUM_CPUS];

/*
 * Inserts an item into vector_desc list so that the list is sorted
 * with an incrementing cpu.intno value.
 */
static void insert_vector_desc(struct vector_desc_t *to_insert)
{
	struct vector_desc_t *vd = vector_desc_head;
	struct vector_desc_t *prev = NULL;

	while (vd != NULL) {
		if (vd->cpu > to_insert->cpu) {
			break;
		}
		if (vd->cpu == to_insert->cpu && vd->intno >= to_insert->intno) {
			break;
		}
		prev = vd;
		vd = vd->next;
	}
	if ((vector_desc_head == NULL) || (prev == NULL)) {
		/* First item */
		to_insert->next = vd;
		vector_desc_head = to_insert;
	} else {
		prev->next = to_insert;
		to_insert->next = vd;
	}
}

/* Returns a vector_desc entry for an intno/cpu, or NULL if none exists. */
static struct vector_desc_t *find_desc_for_int(int intno, int cpu)
{
	struct vector_desc_t *vd = vector_desc_head;

	while (vd != NULL) {
		if (vd->cpu == cpu && vd->intno == intno) {
			break;
		}
		vd = vd->next;
	}
	return vd;
}

/*
 * Returns a vector_desc entry for an intno/cpu.
 * Either returns a preexisting one or allocates a new one and inserts
 * it into the list. Returns NULL on malloc fail.
 */
static struct vector_desc_t *get_desc_for_int(int intno, int cpu)
{
	struct vector_desc_t *vd = find_desc_for_int(intno, cpu);

	if (vd == NULL) {
		struct vector_desc_t *newvd = k_malloc(sizeof(struct vector_desc_t));

		if (newvd == NULL) {
			return NULL;
		}
		memset(newvd, 0, sizeof(struct vector_desc_t));
		newvd->intno = intno;
		newvd->cpu = cpu;
		insert_vector_desc(newvd);
		return newvd;
	} else {
		return vd;
	}
}

/*
 * Returns a vector_desc entry for an source, the cpu parameter is used
 * to tell GPIO_INT and GPIO_NMI from different CPUs
 */
static struct vector_desc_t *find_desc_for_source(int source, int cpu)
{
	struct vector_desc_t *vd = vector_desc_head;

	while (vd != NULL) {
		if (!(vd->flags & VECDESC_FL_SHARED)) {
			if (vd->source == source && cpu == vd->cpu) {
				break;
			}
		} else if (vd->cpu == cpu) {
			/* check only shared vds for the correct cpu, otherwise skip */
			bool found = false;
			struct shared_vector_desc_t *svd = vd->shared_vec_info;

			assert(svd != NULL);
			while (svd) {
				if (svd->source == source) {
					found = true;
					break;
				}
				svd = svd->next;
			}
			if (found) {
				break;
			}
		}
		vd = vd->next;
	}
	return vd;
}

void esp_intr_initialize(void)
{
	for (size_t i = 0; i < (ESP_INTC_INTS_NUM * CONFIG_MP_NUM_CPUS); ++i) {
		intr_alloc_table[i].handler = default_intr_handler;
		intr_alloc_table[i].arg = (void *)i;
	}
}

int esp_intr_mark_shared(int intno, int cpu, bool is_int_ram)
{
	if (intno >= ESP_INTC_INTS_NUM) {
		return -EINVAL;
	}
	if (cpu >= CONFIG_MP_NUM_CPUS) {
		return -EINVAL;
	}

	esp_intr_lock();
	struct vector_desc_t *vd = get_desc_for_int(intno, cpu);

	if (vd == NULL) {
		esp_intr_unlock();
		return -ENOMEM;
	}
	vd->flags = VECDESC_FL_SHARED;
	if (is_int_ram) {
		vd->flags |= VECDESC_FL_INIRAM;
	}
	esp_intr_unlock();

	return 0;
}

int esp_intr_reserve(int intno, int cpu)
{
	if (intno >= ESP_INTC_INTS_NUM) {
		return -EINVAL;
	}
	if (cpu >= CONFIG_MP_NUM_CPUS) {
		return -EINVAL;
	}

	esp_intr_lock();
	struct vector_desc_t *vd = get_desc_for_int(intno, cpu);

	if (vd == NULL) {
		esp_intr_unlock();
		return -ENOMEM;
	}
	vd->flags = VECDESC_FL_RESERVED;
	esp_intr_unlock();

	return 0;
}

/* Returns true if handler for interrupt is not the default unhandled interrupt handler */
static bool intr_has_handler(int intr, int cpu)
{
	return (intr_alloc_table[intr * CONFIG_MP_NUM_CPUS + cpu].handler != default_intr_handler);
}

static bool is_vect_desc_usable(struct vector_desc_t *vd, int flags, int cpu, int force)
{
	/* Check if interrupt is not reserved by design */
	int x = vd->intno;

	if (interrupt_controller_hal_get_cpu_desc_flags(x, cpu) == INTDESC_RESVD) {
		INTC_LOG("....Unusable: reserved");
		return false;
	}
	if (interrupt_controller_hal_get_cpu_desc_flags(x, cpu) == INTDESC_SPECIAL && force == -1) {
		INTC_LOG("....Unusable: special-purpose int");
		return false;
	}
	/* Check if the interrupt level is acceptable */
	if (!(flags & (1 << interrupt_controller_hal_get_level(x)))) {
		INTC_LOG("....Unusable: incompatible level");
		return false;
	}
	/* check if edge/level type matches what we want */
	if (((flags & ESP_INTR_FLAG_EDGE) &&
		(interrupt_controller_hal_get_type(x) == INTTP_LEVEL)) ||
		(((!(flags & ESP_INTR_FLAG_EDGE)) &&
		(interrupt_controller_hal_get_type(x) == INTTP_EDGE)))) {
		INTC_LOG("....Unusable: incompatible trigger type");
		return false;
	}
	/* check if interrupt is reserved at runtime */
	if (vd->flags & VECDESC_FL_RESERVED) {
		INTC_LOG("....Unusable: reserved at runtime.");
		return false;
	}

	/* Ints can't be both shared and non-shared. */
	assert(!((vd->flags & VECDESC_FL_SHARED) && (vd->flags & VECDESC_FL_NONSHARED)));
	/* check if interrupt already is in use by a non-shared interrupt */
	if (vd->flags & VECDESC_FL_NONSHARED) {
		INTC_LOG("....Unusable: already in (non-shared) use.");
		return false;
	}
	/* check shared interrupt flags */
	if (vd->flags & VECDESC_FL_SHARED) {
		if (flags & ESP_INTR_FLAG_SHARED) {
			bool in_iram_flag = ((flags & ESP_INTR_FLAG_IRAM) != 0);
			bool desc_in_iram_flag = ((vd->flags & VECDESC_FL_INIRAM) != 0);
			/*
			 * Bail out if int is shared, but iram property
			 * doesn't match what we want.
			 */
			if ((vd->flags & VECDESC_FL_SHARED) &&
				(desc_in_iram_flag != in_iram_flag)) {
				INTC_LOG("....Unusable: shared but iram prop doesn't match");
				return false;
			}
		} else {
			/*
			 * We need an unshared IRQ; can't use shared ones;
			 * bail out if this is shared.
			 */
			INTC_LOG("...Unusable: int is shared, we need non-shared.");
			return false;
		}
	} else if (intr_has_handler(x, cpu)) {
		/* Check if interrupt already is allocated by set_interrupt_handler */
		INTC_LOG("....Unusable: already allocated");
		return false;
	}

	return true;
}

/*
 * Locate a free interrupt compatible with the flags given.
 * The 'force' argument can be -1, or 0-31 to force checking a certain interrupt.
 * When a CPU is forced, the INTDESC_SPECIAL marked interrupts are also accepted.
 */
static int get_available_int(int flags, int cpu, int force, int source)
{
	int x;
	int best = -1;
	int best_level = 9;
	int best_shared_ct = INT_MAX;
	/* Default vector desc, for vectors not in the linked list */
	struct vector_desc_t empty_vect_desc;

	memset(&empty_vect_desc, 0, sizeof(struct vector_desc_t));


	/* Level defaults to any low/med interrupt */
	if (!(flags & ESP_INTR_FLAG_LEVELMASK)) {
		flags |= ESP_INTR_FLAG_LOWMED;
	}

	INTC_LOG("%s: try to find existing. Cpu: %d, Source: %d", __func__, cpu, source);
	struct vector_desc_t *vd = find_desc_for_source(source, cpu);

	if (vd) {
		/* if existing vd found, don't need to search any more. */
		INTC_LOG("%s: existing vd found. intno: %d", __func__, vd->intno);
		if (force != -1 && force != vd->intno) {
			INTC_LOG("%s: intr forced but not match existing. "
				 "existing intno: %d, force: %d", __func__, vd->intno, force);
		} else if (!is_vect_desc_usable(vd, flags, cpu, force)) {
			INTC_LOG("%s: existing vd invalid.", __func__);
		} else {
			best = vd->intno;
		}
		return best;
	}
	if (force != -1) {
		INTC_LOG("%s: try to find force. "
			 "Cpu: %d, Source: %d, Force: %d", __func__, cpu, source, force);
		/* if force assigned, don't need to search any more. */
		vd = find_desc_for_int(force, cpu);
		if (vd == NULL) {
			/* if existing vd not found, just check the default state for the intr. */
			empty_vect_desc.intno = force;
			vd = &empty_vect_desc;
		}
		if (is_vect_desc_usable(vd, flags, cpu, force)) {
			best = vd->intno;
		} else {
			INTC_LOG("%s: forced vd invalid.", __func__);
		}
		return best;
	}

	INTC_LOG("%s: start looking. Current cpu: %d", __func__, cpu);
	/* No allocated handlers as well as forced intr, iterate over the 32 possible interrupts */
	for (x = 0; x < ESP_INTC_INTS_NUM; x++) {
		/* Grab the vector_desc for this vector. */
		vd = find_desc_for_int(x, cpu);
		if (vd == NULL) {
			empty_vect_desc.intno = x;
			vd = &empty_vect_desc;
		}

		INTC_LOG("Int %d reserved %d level %d %s hasIsr %d",
			 x,
			 interrupt_controller_hal_get_cpu_desc_flags(x, cpu) == INTDESC_RESVD,
			 interrupt_controller_hal_get_level(x),
			 interrupt_controller_hal_get_type(x) == INTTP_LEVEL ? "LEVEL" : "EDGE",
			 intr_has_handler(x, cpu));

		if (!is_vect_desc_usable(vd, flags, cpu, force)) {
			continue;
		}

		if (flags & ESP_INTR_FLAG_SHARED) {
			/* We're allocating a shared int. */

			/* See if int already is used as a shared interrupt. */
			if (vd->flags & VECDESC_FL_SHARED) {
				/*
				 * We can use this already-marked-as-shared interrupt. Count the
				 * already attached isrs in order to see how useful it is.
				 */
				int no = 0;
				struct shared_vector_desc_t *svdesc = vd->shared_vec_info;

				while (svdesc != NULL) {
					no++;
					svdesc = svdesc->next;
				}
				if (no < best_shared_ct ||
					best_level > interrupt_controller_hal_get_level(x)) {
					/*
					 * Seems like this shared vector is both okay and has
					 * the least amount of ISRs already attached to it.
					 */
					best = x;
					best_shared_ct = no;
					best_level = interrupt_controller_hal_get_level(x);
					INTC_LOG("...int %d more usable as a shared int: "
						 "has %d existing vectors", x, no);
				} else {
					INTC_LOG("...worse than int %d", best);
				}
			} else {
				if (best == -1) {
					/*
					 * We haven't found a feasible shared interrupt yet.
					 * This one is still free and usable, even if not
					 * marked as shared.
					 * Remember it in case we don't find any other shared
					 * interrupt that qualifies.
					 */
					if (best_level > interrupt_controller_hal_get_level(x)) {
						best = x;
						best_level = interrupt_controller_hal_get_level(x);
						INTC_LOG("...int %d usable as new shared int", x);
					}
				} else {
					INTC_LOG("...already have a shared int");
				}
			}
		} else {
			/*
			 * Seems this interrupt is feasible. Select it and break out of the loop
			 * No need to search further.
			 */
			if (best_level > interrupt_controller_hal_get_level(x)) {
				best = x;
				best_level = interrupt_controller_hal_get_level(x);
			} else {
				INTC_LOG("...worse than int %d", best);
			}
		}
	}
	INTC_LOG("%s: using int %d", __func__, best);

	/*
	 * By now we have looked at all potential interrupts and
	 * hopefully have selected the best one in best.
	 */
	return best;
}

/* Common shared isr handler. Chain-call all ISRs. */
static void IRAM_ATTR shared_intr_isr(void *arg)
{
	struct vector_desc_t *vd = (struct vector_desc_t *)arg;
	struct shared_vector_desc_t *sh_vec = vd->shared_vec_info;

	esp_intr_lock();
	while (sh_vec) {
		if (!sh_vec->disabled) {
			if (!(sh_vec->statusreg) || (*sh_vec->statusreg & sh_vec->statusmask)) {
				sh_vec->isr(sh_vec->arg);
			}
		}
		sh_vec = sh_vec->next;
	}
	esp_intr_unlock();
}

int esp_intr_alloc_intrstatus(int source,
			      int flags,
			      uint32_t intrstatusreg,
			      uint32_t intrstatusmask,
			      intr_handler_t handler,
			      void *arg,
			      struct intr_handle_data_t **ret_handle)
{
	struct intr_handle_data_t *ret = NULL;
	int force = -1;

	INTC_LOG("%s (cpu %d): checking args", __func__, esp_core_id());
	/* Shared interrupts should be level-triggered. */
	if ((flags & ESP_INTR_FLAG_SHARED) && (flags & ESP_INTR_FLAG_EDGE)) {
		return -EINVAL;
	}
	/* You can't set an handler / arg for a non-C-callable interrupt. */
	if ((flags & ESP_INTR_FLAG_HIGH) && (handler)) {
		return -EINVAL;
	}
	/* Shared ints should have handler and non-processor-local source */
	if ((flags & ESP_INTR_FLAG_SHARED) && (!handler || source < 0)) {
		return -EINVAL;
	}
	/* Statusreg should have a mask */
	if (intrstatusreg && !intrstatusmask) {
		return -EINVAL;
	}
	/*
	 * If the ISR is marked to be IRAM-resident, the handler must not be in the cached region
	 * If we are to allow placing interrupt handlers into the 0x400c0000—0x400c2000 region,
	 * we need to make sure the interrupt is connected to the CPU0.
	 * CPU1 does not have access to the RTC fast memory through this region.
	 */
	if ((flags & ESP_INTR_FLAG_IRAM) &&
	    (ptrdiff_t) handler >= SOC_RTC_IRAM_HIGH &&
	    (ptrdiff_t) handler < SOC_RTC_DATA_LOW) {
		return -EINVAL;
	}

	/*
	 * Default to prio 1 for shared interrupts.
	 * Default to prio 1, 2 or 3 for non-shared interrupts.
	 */
	if ((flags & ESP_INTR_FLAG_LEVELMASK) == 0) {
		if (flags & ESP_INTR_FLAG_SHARED) {
			flags |= ESP_INTR_FLAG_LEVEL1;
		} else {
			flags |= ESP_INTR_FLAG_LOWMED;
		}
	}
	INTC_LOG("%s (cpu %d): Args okay."
		"Resulting flags 0x%X", __func__, esp_core_id(), flags);

	/*
	 * Check 'special' interrupt sources. These are tied to one specific
	 * interrupt, so we have to force get_available_int to only look at that.
	 */
	switch (source) {
	case ETS_INTERNAL_TIMER0_INTR_SOURCE:
		force = ETS_INTERNAL_TIMER0_INTR_NO;
		break;
	case ETS_INTERNAL_TIMER1_INTR_SOURCE:
		force = ETS_INTERNAL_TIMER1_INTR_NO;
		break;
	case ETS_INTERNAL_TIMER2_INTR_SOURCE:
		force = ETS_INTERNAL_TIMER2_INTR_NO;
		break;
	case ETS_INTERNAL_SW0_INTR_SOURCE:
		force = ETS_INTERNAL_SW0_INTR_NO;
		break;
	case ETS_INTERNAL_SW1_INTR_SOURCE:
		force = ETS_INTERNAL_SW1_INTR_NO;
		break;
	case ETS_INTERNAL_PROFILING_INTR_SOURCE:
		force = ETS_INTERNAL_PROFILING_INTR_NO;
		break;
	default:
		break;
	}

	/* Allocate a return handle. If we end up not needing it, we'll free it later on. */
	ret = k_malloc(sizeof(struct intr_handle_data_t));
	if (ret == NULL) {
		return -ENOMEM;
	}

	esp_intr_lock();
	int cpu = esp_core_id();
	/* See if we can find an interrupt that matches the flags. */
	int intr = get_available_int(flags, cpu, force, source);

	if (intr == -1) {
		/* None found. Bail out. */
		esp_intr_unlock();
		k_free(ret);
		return -ENODEV;
	}
	/* Get an int vector desc for int. */
	struct vector_desc_t *vd = get_desc_for_int(intr, cpu);

	if (vd == NULL) {
		esp_intr_unlock();
		k_free(ret);
		return -ENOMEM;
	}

	/* Allocate that int! */
	if (flags & ESP_INTR_FLAG_SHARED) {
		/* Populate vector entry and add to linked list. */
		struct shared_vector_desc_t *sv = k_malloc(sizeof(struct shared_vector_desc_t));

		if (sv == NULL) {
			esp_intr_unlock();
			k_free(ret);
			return -ENOMEM;
		}
		memset(sv, 0, sizeof(struct shared_vector_desc_t));
		sv->statusreg = (uint32_t *)intrstatusreg;
		sv->statusmask = intrstatusmask;
		sv->isr = handler;
		sv->arg = arg;
		sv->next = vd->shared_vec_info;
		sv->source = source;
		sv->disabled = 0;
		vd->shared_vec_info = sv;
		vd->flags |= VECDESC_FL_SHARED;
		/* (Re-)set shared isr handler to new value. */
		set_interrupt_handler(intr, shared_intr_isr, vd);
	} else {
		/* Mark as unusable for other interrupt sources. This is ours now! */
		vd->flags = VECDESC_FL_NONSHARED;
		if (handler) {
			set_interrupt_handler(intr, handler, arg);
		}
		if (flags & ESP_INTR_FLAG_EDGE) {
			xthal_set_intclear(1 << intr);
		}
		vd->source = source;
	}
	if (flags & ESP_INTR_FLAG_IRAM) {
		vd->flags |= VECDESC_FL_INIRAM;
		non_iram_int_mask[cpu] &= ~(1 << intr);
	} else {
		vd->flags &= ~VECDESC_FL_INIRAM;
		non_iram_int_mask[cpu] |= (1 << intr);
	}
	if (source >= 0) {
		intr_matrix_set(cpu, source, intr);
	}

	/* Fill return handle data. */
	ret->vector_desc = vd;
	ret->shared_vector_desc = vd->shared_vec_info;

	/* Enable int at CPU-level; */
	irq_enable(intr);

	/*
	 * If interrupt has to be started disabled, do that now; ints won't be enabled for
	 * real until the end of the critical section.
	 */
	if (flags & ESP_INTR_FLAG_INTRDISABLED) {
		esp_intr_disable(ret);
	}

	esp_intr_unlock();

	/* Fill return handle if needed, otherwise free handle. */
	if (ret_handle != NULL) {
		*ret_handle = ret;
	} else {
		k_free(ret);
	}

	LOG_DBG("Connected src %d to int %d (cpu %d)", source, intr, cpu);
	return 0;
}

int esp_intr_alloc(int source,
		int flags,
		intr_handler_t handler,
		void *arg,
		struct intr_handle_data_t **ret_handle)
{
	/*
	 * As an optimization, we can create a table with the possible interrupt status
	 * registers and masks for every single source there is. We can then add code here to
	 * look up an applicable value and pass that to the esp_intr_alloc_intrstatus function.
	 */
	return esp_intr_alloc_intrstatus(source, flags, 0, 0, handler, arg, ret_handle);
}

int IRAM_ATTR esp_intr_set_in_iram(struct intr_handle_data_t *handle, bool is_in_iram)
{
	if (!handle) {
		return -EINVAL;
	}
	struct vector_desc_t *vd = handle->vector_desc;

	if (vd->flags & VECDESC_FL_SHARED) {
		return -EINVAL;
	}
	esp_intr_lock();
	uint32_t mask = (1 << vd->intno);

	if (is_in_iram) {
		vd->flags |= VECDESC_FL_INIRAM;
		non_iram_int_mask[vd->cpu] &= ~mask;
	} else {
		vd->flags &= ~VECDESC_FL_INIRAM;
		non_iram_int_mask[vd->cpu] |= mask;
	}
	esp_intr_unlock();
	return 0;
}

int esp_intr_free(struct intr_handle_data_t *handle)
{
	bool free_shared_vector = false;

	if (!handle) {
		return -EINVAL;
	}

	esp_intr_lock();
	esp_intr_disable(handle);
	if (handle->vector_desc->flags & VECDESC_FL_SHARED) {
		/* Find and kill the shared int */
		struct shared_vector_desc_t *svd = handle->vector_desc->shared_vec_info;
		struct shared_vector_desc_t *prevsvd = NULL;

		assert(svd); /* should be something in there for a shared int */
		while (svd != NULL) {
			if (svd == handle->shared_vector_desc) {
				/* Found it. Now kill it. */
				if (prevsvd) {
					prevsvd->next = svd->next;
				} else {
					handle->vector_desc->shared_vec_info = svd->next;
				}
				k_free(svd);
				break;
			}
			prevsvd = svd;
			svd = svd->next;
		}
		/* If nothing left, disable interrupt. */
		if (handle->vector_desc->shared_vec_info == NULL) {
			free_shared_vector = true;
		}
		INTC_LOG("%s: Deleting shared int: %s. "
			"Shared int is %s", __func__, svd ? "not found or last one" : "deleted",
			free_shared_vector ? "empty now." : "still in use");
	}

	if ((handle->vector_desc->flags & VECDESC_FL_NONSHARED) || free_shared_vector) {
		INTC_LOG("%s: Disabling int, killing handler", __func__);
		/* Reset to normal handler */
		set_interrupt_handler(handle->vector_desc->intno,
				      default_intr_handler,
				      (void *)((int)handle->vector_desc->intno));
		/*
		 * Theoretically, we could free the vector_desc... not sure if that's worth the
		 * few bytes of memory we save.(We can also not use the same exit path for empty
		 * shared ints anymore if we delete the desc.) For now, just mark it as free.
		 */
		handle->vector_desc->flags &= !(VECDESC_FL_NONSHARED | VECDESC_FL_RESERVED);
		/* Also kill non_iram mask bit. */
		non_iram_int_mask[handle->vector_desc->cpu] &= ~(1 << (handle->vector_desc->intno));
	}
	esp_intr_unlock();
	k_free(handle);
	return 0;
}

int esp_intr_get_intno(struct intr_handle_data_t *handle)
{
	return handle->vector_desc->intno;
}

int esp_intr_get_cpu(struct intr_handle_data_t *handle)
{
	return handle->vector_desc->cpu;
}

/**
 * Interrupt disabling strategy:
 * If the source is >=0 (meaning a muxed interrupt), we disable it by muxing the interrupt to a
 * non-connected interrupt. If the source is <0 (meaning an internal, per-cpu interrupt).
 * This allows us to, for the muxed CPUs, disable an int from
 * the other core. It also allows disabling shared interrupts.
 */

/*
 * Muxing an interrupt source to interrupt 6, 7, 11, 15, 16 or 29
 * cause the interrupt to effectively be disabled.
 */
#define INT_MUX_DISABLED_INTNO 6

int IRAM_ATTR esp_intr_enable(struct intr_handle_data_t *handle)
{
	if (!handle) {
		return -EINVAL;
	}
	esp_intr_lock();
	int source;

	if (handle->shared_vector_desc) {
		handle->shared_vector_desc->disabled = 0;
		source = handle->shared_vector_desc->source;
	} else {
		source = handle->vector_desc->source;
	}
	if (source >= 0) {
		/* Disabled using int matrix; re-connect to enable */
		intr_matrix_set(handle->vector_desc->cpu, source, handle->vector_desc->intno);
	} else {
		/* Re-enable using cpu int ena reg */
		if (handle->vector_desc->cpu != esp_core_id()) {
			return -EINVAL; /* Can only enable these ints on this cpu */
		}
		irq_enable(handle->vector_desc->intno);
	}
	esp_intr_unlock();
	return 0;
}

int IRAM_ATTR esp_intr_disable(struct intr_handle_data_t *handle)
{
	if (!handle) {
		return -EINVAL;
	}
	esp_intr_lock();
	int source;
	bool disabled = 1;

	if (handle->shared_vector_desc) {
		handle->shared_vector_desc->disabled = 1;
		source = handle->shared_vector_desc->source;

		struct shared_vector_desc_t *svd = handle->vector_desc->shared_vec_info;

		assert(svd != NULL);
		while (svd) {
			if (svd->source == source && svd->disabled == 0) {
				disabled = 0;
				break;
			}
			svd = svd->next;
		}
	} else {
		source = handle->vector_desc->source;
	}

	if (source >= 0) {
		if (disabled) {
			/* Disable using int matrix */
			intr_matrix_set(handle->vector_desc->cpu, source, INT_MUX_DISABLED_INTNO);
		}
	} else {
		/* Disable using per-cpu regs */
		if (handle->vector_desc->cpu != esp_core_id()) {
			esp_intr_unlock();
			return -EINVAL; /* Can only enable these ints on this cpu */
		}
		irq_disable(handle->vector_desc->intno);
	}
	esp_intr_unlock();
	return 0;
}


void IRAM_ATTR esp_intr_noniram_disable(void)
{
	int oldint;
	int cpu = esp_core_id();
	int non_iram_ints = ~non_iram_int_mask[cpu];

	if (non_iram_int_disabled_flag[cpu]) {
		abort();
	}
	non_iram_int_disabled_flag[cpu] = true;
	oldint = interrupt_controller_hal_read_interrupt_mask();
	interrupt_controller_hal_disable_interrupts(non_iram_ints);
	/* Save which ints we did disable */
	non_iram_int_disabled[cpu] = oldint & non_iram_ints;
}

void IRAM_ATTR esp_intr_noniram_enable(void)
{
	int cpu = esp_core_id();
	int non_iram_ints = non_iram_int_disabled[cpu];

	if (!non_iram_int_disabled_flag[cpu]) {
		abort();
	}
	non_iram_int_disabled_flag[cpu] = false;
	interrupt_controller_hal_enable_interrupts(non_iram_ints);
}