Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | /* * Copyright (c) 2020 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ /** * @defgroup driver_sensor_subsys_tests sensor_subsys * @ingroup all_tests * @{ * @} */ #include <zephyr/ztest.h> #include "dummy_sensor.h" K_SEM_DEFINE(sem, 0, 1); #define RETURN_SUCCESS (0) struct channel_sequence { enum sensor_channel chan; struct sensor_value data; }; struct trigger_sequence { struct sensor_trigger trig; struct sensor_value data; enum sensor_attribute attr; }; static struct channel_sequence chan_elements[] = { { SENSOR_CHAN_LIGHT, { 0, 0 } }, { SENSOR_CHAN_RED, { 1, 1 } }, { SENSOR_CHAN_GREEN, { 2, 4 } }, { SENSOR_CHAN_BLUE, { 3, 9 } }, { SENSOR_CHAN_PROX, { 4, 16 } } }; static struct trigger_sequence trigger_elements[] = { /* trigger for SENSOR_TRIG_THRESHOLD */ { {SENSOR_TRIG_THRESHOLD, SENSOR_CHAN_PROX}, { 127, 0 }, SENSOR_ATTR_UPPER_THRESH }, /* trigger for SENSOR_TRIG_TIMER */ { {SENSOR_TRIG_TIMER, SENSOR_CHAN_PROX}, { 130, 127 }, SENSOR_ATTR_UPPER_THRESH }, /* trigger for SENSOR_TRIG_DATA_READY */ { {SENSOR_TRIG_DATA_READY, SENSOR_CHAN_PROX}, { 150, 130 }, SENSOR_ATTR_UPPER_THRESH }, /* trigger for SENSOR_TRIG_DELTA */ { {SENSOR_TRIG_DELTA, SENSOR_CHAN_PROX}, { 180, 150 }, SENSOR_ATTR_UPPER_THRESH }, /* trigger for SENSOR_TRIG_NEAR_FAR */ { {SENSOR_TRIG_NEAR_FAR, SENSOR_CHAN_PROX}, { 155, 180 }, SENSOR_ATTR_UPPER_THRESH } }; #define TOTAL_CHAN_ELEMENTS (sizeof(chan_elements) / \ sizeof(struct channel_sequence)) #define TOTAL_TRIG_ELEMENTS (sizeof(trigger_elements) / \ sizeof(struct trigger_sequence)) /** * @brief Test get multiple channels values. * * @ingroup driver_sensor_subsys_tests * * @details * Test Objective: * - get multiple channels values consistently in two operations: * fetch sample and get the values of each channel individually. * - check the results with sensor_value type avoids use of * floating point values * * Testing techniques: * - function and block box testing,Interface testing, * Dynamic analysis and testing, Equivalence classes. * * Prerequisite Conditions: * - N/A * * Input Specifications: * - N/A * * Test Procedure: * -# Define a device and bind to dummy sensor. * -# Fetch the sample of dummy senor and check the result. * -# Get SENSOR_CHAN_LIGHT/SENSOR_CHAN_RED/SENSOR_CHAN_GREEN/ * SENSOR_CHAN_BLUE/SENSOR_CHAN_BLUE channels from the sensor, * and check the result. * * Expected Test Result: * - Application can get multiple channels for dummy sensor. * * Pass/Fail Criteria: * - Successful if check points in test procedure are all passed, otherwise failure. * * Assumptions and Constraints: * - N/A * * @see sensor_sample_fetch(), sensor_channel_get() */ ZTEST(sensor_api, test_sensor_get_channels) { const struct device *dev; struct sensor_value data; dev = device_get_binding(DUMMY_SENSOR_NAME); zassert_not_null(dev, "failed: dev is null."); /* test fetch single channel */ zassert_equal(sensor_sample_fetch_chan(dev, chan_elements[0].chan), RETURN_SUCCESS, "fail to fetch sample."); /* Get and check channel 0 value. */ zassert_equal(sensor_channel_get(dev, chan_elements[0].chan, &data), RETURN_SUCCESS, "fail to get channel."); zassert_equal(data.val1, chan_elements[0].data.val1, "the data is not match."); zassert_equal(data.val2, chan_elements[0].data.val2, "the data is not match."); /* test fetch all channel */ zassert_equal(sensor_sample_fetch(dev), RETURN_SUCCESS, "fail to fetch sample."); /* Get and check channels value except for chanel 0. */ for (int i = 1; i < TOTAL_CHAN_ELEMENTS; i++) { zassert_equal(sensor_channel_get(dev, chan_elements[i].chan, &data), RETURN_SUCCESS, "fail to get channel."); zassert_equal(data.val1, chan_elements[i].data.val1, "the data is not match."); zassert_equal(data.val2, chan_elements[i].data.val2, "the data is not match."); } /* Get data with invalid channel. */ zassert_not_equal(sensor_channel_get(dev, SENSOR_CHAN_DISTANCE, &data), RETURN_SUCCESS, "should fail for invalid channel."); } static void trigger_handler(const struct device *dev, const struct sensor_trigger *trigger) { ARG_UNUSED(dev); ARG_UNUSED(trigger); k_sem_give(&sem); } /** * @brief Test sensor multiple triggers. * * @ingroup driver_sensor_subsys_tests * * @details * Test Objective: * Check if sensor subsys can set multiple triggers and * can set/get sensor attribute. * * Testing techniques: * - function and block box testing,Interface testing, * Dynamic analysis and testing. * * Prerequisite Conditions: * - N/A * * Input Specifications: * - N/A * * Test Procedure: * -# Define a device and bind to dummy sensor and * check the result. * -# set multiple triggers for the dummy sensor and no trig sensor. * then check the result. * -# Handle different types of triggers, based on time, data,threshold, * based on a delta value, near/far events and single/double tap and * check the result. * * Expected Test Result: * - Application can get multiple channels for dummy sensor. * * Pass/Fail Criteria: * - Successful if check points in test procedure are all passed, otherwise failure. * * Assumptions and Constraints: * - N/A * * @see sensor_attr_set(), sensor_trigger_set() */ ZTEST(sensor_api, test_sensor_handle_triggers) { const struct device *dev; const struct device *dev_no_trig; struct sensor_value data; dev = device_get_binding(DUMMY_SENSOR_NAME); dev_no_trig = device_get_binding(DUMMY_SENSOR_NAME_NO_TRIG); zassert_not_null(dev, "failed: dev is null."); zassert_equal(sensor_sample_fetch(dev), RETURN_SUCCESS, "fail to fetch sample."); /* setup multiple triggers */ for (int i = 0; i < TOTAL_TRIG_ELEMENTS; i++) { /* set attributes for trigger */ zassert_equal(sensor_attr_set(dev, trigger_elements[i].trig.chan, trigger_elements[i].attr, &trigger_elements[i].data), RETURN_SUCCESS, "fail to set attributes"); /* read-back attributes for trigger */ zassert_equal(sensor_attr_get(dev, trigger_elements[i].trig.chan, trigger_elements[i].attr, &data), RETURN_SUCCESS, "fail to get attributes"); zassert_equal(trigger_elements[i].data.val1, data.val1, "read-back returned wrong val1"); zassert_equal(trigger_elements[i].data.val2, data.val2, "read-back returned wrong val2"); /* setting a sensor's trigger and handler */ zassert_equal(sensor_trigger_set(dev, &trigger_elements[i].trig, trigger_handler), RETURN_SUCCESS, "fail to set trigger"); /* get channels value after trigger fired */ k_sem_take(&sem, K_FOREVER); zassert_equal(sensor_channel_get(dev, trigger_elements[i].trig.chan, &data), RETURN_SUCCESS, "fail to get channel."); /* check the result of the trigger channel */ zassert_equal(data.val1, trigger_elements[i].data.val1, "retrieved data is not match."); zassert_equal(data.val2, trigger_elements[i].data.val2, "retrieved data is not match."); /* set attributes for no trig dev */ zassert_equal(sensor_attr_set(dev_no_trig, trigger_elements[i].trig.chan, trigger_elements[i].attr, &trigger_elements[i].data), -ENOSYS, "fail to set attributes"); /* read-back attributes for no trig dev*/ zassert_equal(sensor_attr_get(dev_no_trig, trigger_elements[i].trig.chan, trigger_elements[i].attr, &data), -ENOSYS, "fail to get attributes"); /* setting a sensor's trigger and handler for no trig dev */ zassert_equal(sensor_trigger_set(dev_no_trig, &trigger_elements[i].trig, trigger_handler), -ENOSYS, "fail to set trigger"); } } /** * @brief Test unit conversion of sensor module * @details Verify helper function to convert acceleration from * Gs to m/s^2 and from m/s^2 to Gs. Verify helper function * to convert radians to degrees and degrees to radians. Verify * helper function for converting struct sensor_value to double. */ ZTEST(sensor_api, test_sensor_unit_conversion) { struct sensor_value data; /* Test acceleration unit conversion */ sensor_g_to_ms2(1, &data); zassert_equal(data.val1, SENSOR_G/1000000LL, "the data is not match."); zassert_equal(data.val2, SENSOR_G%(data.val1 * 1000000LL), "the data is not match."); zassert_equal(sensor_ms2_to_g(&data), 1, "the data is not match."); /* set test data to negative value */ data.val1 = -data.val1; data.val2 = -data.val2; zassert_equal(sensor_ms2_to_g(&data), -1, "the data is not match."); /* Test the conversion between angle and radian */ sensor_degrees_to_rad(180, &data); zassert_equal(data.val1, SENSOR_PI/1000000LL, "the data is not match."); zassert_equal(data.val2, SENSOR_PI%(data.val1 * 1000000LL), "the data is not match."); zassert_equal(sensor_rad_to_degrees(&data), 180, "the data is not match."); /* set test data to negative value */ data.val1 = -data.val1; data.val2 = -data.val2; zassert_equal(sensor_rad_to_degrees(&data), -180, "the data is not match."); /* reset test data to positive value */ data.val1 = -data.val1; data.val2 = -data.val2; /* Test struct sensor_value to double */ #if defined(CONFIG_FPU) zassert_equal((long long)(sensor_value_to_double(&data) * 1000000LL), SENSOR_PI, "the data is not match."); #endif } ZTEST_SUITE(sensor_api, NULL, NULL, ztest_simple_1cpu_before, ztest_simple_1cpu_after, NULL); |