Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
/*
 * Copyright (c) 2017 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include "test_queue.h"

#define STACK_SIZE (512 + CONFIG_TEST_EXTRA_STACK_SIZE)
#define LIST_LEN 2
/**TESTPOINT: init via K_QUEUE_DEFINE*/
K_QUEUE_DEFINE(kqueue);

K_HEAP_DEFINE(mem_pool_fail, 8 + 128);
K_HEAP_DEFINE(mem_pool_pass, 64 * 4 + 128);

struct k_queue queue;
static qdata_t data[LIST_LEN];
static qdata_t data_p[LIST_LEN];
static qdata_t data_l[LIST_LEN];
static qdata_t data_sl[LIST_LEN];

static qdata_t *data_append;
static qdata_t *data_prepend;

static K_THREAD_STACK_DEFINE(tstack, STACK_SIZE);
static struct k_thread tdata;
static K_THREAD_STACK_DEFINE(tstack1, STACK_SIZE);
static struct k_thread tdata1;
static K_THREAD_STACK_DEFINE(tstack2, STACK_SIZE);
static struct k_thread tdata2;
static struct k_sem end_sema;

static void tqueue_append(struct k_queue *pqueue)
{
	k_queue_insert(pqueue, k_queue_peek_tail(pqueue),
		       (void *)&data[0]);

	for (int i = 1; i < LIST_LEN; i++) {
		/**TESTPOINT: queue append */
		k_queue_append(pqueue, (void *)&data[i]);
	}

	for (int i = LIST_LEN - 1; i >= 0; i--) {
		/**TESTPOINT: queue prepend */
		k_queue_prepend(pqueue, (void *)&data_p[i]);
	}

	/**TESTPOINT: queue append list*/
	static qdata_t *head = &data_l[0], *tail = &data_l[LIST_LEN - 1];

	head->snode.next = (sys_snode_t *)tail;
	tail->snode.next = NULL;
	k_queue_append_list(pqueue, (uint32_t *)head, (uint32_t *)tail);

	/**TESTPOINT: queue merge slist*/
	sys_slist_t slist;

	sys_slist_init(&slist);
	sys_slist_append(&slist, (sys_snode_t *)&(data_sl[0].snode));
	sys_slist_append(&slist, (sys_snode_t *)&(data_sl[1].snode));
	k_queue_merge_slist(pqueue, &slist);
}

static void tqueue_get(struct k_queue *pqueue)
{
	void *rx_data;

	/*get queue data from "queue_prepend"*/
	for (int i = 0; i < LIST_LEN; i++) {
		/**TESTPOINT: queue get*/
		rx_data = k_queue_get(pqueue, K_NO_WAIT);
		zassert_equal(rx_data, (void *)&data_p[i]);
	}
	/*get queue data from "queue_append"*/
	for (int i = 0; i < LIST_LEN; i++) {
		/**TESTPOINT: queue get*/
		rx_data = k_queue_get(pqueue, K_NO_WAIT);
		zassert_equal(rx_data, (void *)&data[i]);
	}
	/*get queue data from "queue_append_list"*/
	for (int i = 0; i < LIST_LEN; i++) {
		rx_data = k_queue_get(pqueue, K_NO_WAIT);
		zassert_equal(rx_data, (void *)&data_l[i]);
	}
	/*get queue data from "queue_merge_slist"*/
	for (int i = 0; i < LIST_LEN; i++) {
		rx_data = k_queue_get(pqueue, K_NO_WAIT);
		zassert_equal(rx_data, (void *)&data_sl[i]);
	}
}

/*entry of contexts*/
static void tIsr_entry_append(const void *p)
{
	tqueue_append((struct k_queue *)p);
}

static void tIsr_entry_get(const void *p)
{
	tqueue_get((struct k_queue *)p);
}

static void tThread_entry(void *p1, void *p2, void *p3)
{
	tqueue_get((struct k_queue *)p1);
	k_sem_give(&end_sema);
}

static void tqueue_thread_thread(struct k_queue *pqueue)
{
	k_sem_init(&end_sema, 0, 1);
	/**TESTPOINT: thread-thread data passing via queue*/
	k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
				      tThread_entry, pqueue, NULL, NULL,
				      K_PRIO_PREEMPT(0), 0, K_NO_WAIT);
	tqueue_append(pqueue);
	k_sem_take(&end_sema, K_FOREVER);
	k_thread_abort(tid);
}

static void tqueue_thread_isr(struct k_queue *pqueue)
{
	k_sem_init(&end_sema, 0, 1);
	/**TESTPOINT: thread-isr data passing via queue*/
	irq_offload(tIsr_entry_append, (const void *)pqueue);
	tqueue_get(pqueue);
}

static void tqueue_isr_thread(struct k_queue *pqueue)
{
	k_sem_init(&end_sema, 0, 1);
	/**TESTPOINT: isr-thread data passing via queue*/
	tqueue_append(pqueue);
	irq_offload(tIsr_entry_get, (const void *)pqueue);
}

/*test cases*/
/**
 * @brief Verify data passing between threads using queue
 *
 * @details Static define and Dynamic define queues,
 * Then initialize them.
 * Create a new thread to wait for reading data.
 * Current thread will append item into queue.
 * Verify if rx_data is equal insert-data address.
 * Verify queue can be define at compile time.
 *
 * @ingroup kernel_queue_tests
 *
 * @see k_queue_init(), k_queue_insert(), k_queue_append()
 * K_THREAD_STACK_DEFINE()
 */
ZTEST(queue_api_1cpu, test_queue_thread2thread)
{
	/**TESTPOINT: init via k_queue_init*/
	k_queue_init(&queue);
	tqueue_thread_thread(&queue);

	/**TESTPOINT: test K_QUEUE_DEFINEed queue*/
	tqueue_thread_thread(&kqueue);
}

/**
 * @brief Verify data passing between thread and ISR
 *
 * @details Create a new ISR to insert data
 * And current thread is used for getting data
 * Verify if the rx_data is equal insert-data address.
 * If the received data address is the same as
 * the created array, prove that the queue data structures
 * are stored within the provided data items.
 *
 * @ingroup kernel_queue_tests
 *
 * @see k_queue_init(), k_queue_insert(), k_queue_append()
 */
ZTEST(queue_api, test_queue_thread2isr)
{
	/**TESTPOINT: init via k_queue_init*/
	k_queue_init(&queue);
	tqueue_thread_isr(&queue);

	/**TESTPOINT: test K_QUEUE_DEFINEed queue*/
	tqueue_thread_isr(&kqueue);
}

/**
 * @brief Verify data passing between ISR and thread
 *
 * @details Create a new ISR and ready for getting data
 * And current thread is used for inserting data
 * Verify if the rx_data is equal insert-data address.
 *
 * @ingroup kernel_queue_tests
 *
 * @see k_queue_init(), k_queue_insert(), k_queue_get(),
 * k_queue_append(), k_queue_remove()
 */
ZTEST(queue_api, test_queue_isr2thread)
{
	/**TESTPOINT: test k_queue_init queue*/
	k_queue_init(&queue);
	tqueue_isr_thread(&queue);

	/**TESTPOINT: test K_QUEUE_DEFINE queue*/
	tqueue_isr_thread(&kqueue);
}

static void tThread_get(void *p1, void *p2, void *p3)
{
	zassert_true(k_queue_get((struct k_queue *)p1, K_FOREVER) != NULL,
		     NULL);
	k_sem_give(&end_sema);
}

static void tqueue_get_2threads(struct k_queue *pqueue)
{
	k_sem_init(&end_sema, 0, 1);
	k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
				      tThread_get, pqueue, NULL, NULL,
				      K_PRIO_PREEMPT(0), 0, K_NO_WAIT);

	k_tid_t tid1 = k_thread_create(&tdata1, tstack1, STACK_SIZE,
				       tThread_get, pqueue, NULL, NULL,
				       K_PRIO_PREEMPT(0), 0, K_NO_WAIT);

	/* Wait threads to initialize */
	k_sleep(K_MSEC(10));

	k_queue_append(pqueue, (void *)&data[0]);
	k_queue_append(pqueue, (void *)&data[1]);
	/* Wait threads to finalize */
	k_sem_take(&end_sema, K_FOREVER);
	k_sem_take(&end_sema, K_FOREVER);

	k_thread_abort(tid);
	k_thread_abort(tid1);
}

/**
 * @brief Verify k_queue_get()
 * @ingroup kernel_queue_tests
 * @see k_queue_init(), k_queue_get(),
 * k_queue_append(), k_queue_alloc_prepend()
 */
ZTEST(queue_api_1cpu, test_queue_get_2threads)
{
	/**TESTPOINT: test k_queue_init queue*/
	k_queue_init(&queue);

	tqueue_get_2threads(&queue);
}

static void tqueue_alloc(struct k_queue *pqueue)
{
	k_thread_heap_assign(k_current_get(), NULL);

	/* Alloc append without resource pool */
	k_queue_alloc_append(pqueue, (void *)&data_append);

	/* Insertion fails and alloc returns NOMEM */
	zassert_false(k_queue_remove(pqueue, &data_append));

	/* Assign resource pool of lower size */
	k_thread_heap_assign(k_current_get(), &mem_pool_fail);

	/* Prepend to the queue, but fails because of
	 * insufficient memory
	 */
	k_queue_alloc_prepend(pqueue, (void *)&data_prepend);

	zassert_false(k_queue_remove(pqueue, &data_prepend));

	/* No element must be present in the queue, as all
	 * operations failed
	 */
	zassert_true(k_queue_is_empty(pqueue));

	/* Assign resource pool of sufficient size */
	k_thread_heap_assign(k_current_get(), &mem_pool_pass);

	zassert_false(k_queue_alloc_prepend(pqueue, (void *)&data_prepend),
		      NULL);

	/* Now queue shouldn't be empty */
	zassert_false(k_queue_is_empty(pqueue));

	zassert_true(k_queue_get(pqueue, K_FOREVER) != NULL,
		     NULL);
}

/**
 * @brief Test queue alloc append and prepend
 * @ingroup kernel_queue_tests
 * @see k_queue_alloc_append(), k_queue_alloc_prepend(),
 * z_thread_heap_assign(), k_queue_is_empty(),
 * k_queue_get(), k_queue_remove()
 */
ZTEST(queue_api, test_queue_alloc)
{
	/* The mem_pool_fail pool is supposed to be too small to
	 * succeed any allocations, but in fact with the heap backend
	 * there's some base minimal memory in there that can be used.
	 * Make sure it's really truly full.
	 */
	while (k_heap_alloc(&mem_pool_fail, 1, K_NO_WAIT) != NULL) {
	}

	k_queue_init(&queue);

	tqueue_alloc(&queue);
}


/* Does nothing but read items out of the queue and verify that they
 * are non-null.  Two such threads will be created.
 */
static void queue_poll_race_consume(void *p1, void *p2, void *p3)
{
	struct k_queue *q = p1;
	int *count = p2;

	while (true) {
		zassert_true(k_queue_get(q, K_FOREVER) != NULL);
		*count += 1;
	}
}

/* There was a historical race in the queue internals when CONFIG_POLL
 * was enabled -- it was possible to wake up a lower priority thread
 * with an insert but then steal it with a higher priority thread
 * before it got a chance to run, and the lower priority thread would
 * then return NULL before its timeout expired.
 */
ZTEST(queue_api_1cpu, test_queue_poll_race)
{
	int prio = k_thread_priority_get(k_current_get());
	static volatile int mid_count, low_count;

	k_queue_init(&queue);

	k_thread_create(&tdata, tstack, STACK_SIZE,
			queue_poll_race_consume,
			&queue, (void *)&mid_count, NULL,
			prio + 1, 0, K_NO_WAIT);

	k_thread_create(&tdata1, tstack1, STACK_SIZE,
			queue_poll_race_consume,
			&queue, (void *)&low_count, NULL,
			prio + 2, 0, K_NO_WAIT);

	/* Let them initialize and block */
	k_sleep(K_MSEC(10));

	/* Insert two items.  This will wake up both threads, but the
	 * higher priority thread (tdata1) might (if CONFIG_POLL)
	 * consume both.  The lower priority thread should stay
	 * asleep.
	 */
	k_queue_append(&queue, &data[0]);
	k_queue_append(&queue, &data[1]);

	zassert_true(low_count == 0);
	zassert_true(mid_count == 0);

	k_sleep(K_MSEC(10));

	zassert_true(low_count + mid_count == 2);

	k_thread_abort(&tdata);
	k_thread_abort(&tdata1);
}

/**
 * @brief Verify that multiple queues can be defined
 * simultaneously
 *
 * @details define multiple queues to verify
 * they can work.
 *
 * @ingroup kernel_queue_tests
 *
 * @see k_queue_init()
 */
#define QUEUE_NUM 10
ZTEST(queue_api, test_multiple_queues)
{
	/*define multiple queues*/
	static struct k_queue queues[QUEUE_NUM];

	for (int i = 0; i < QUEUE_NUM; i++) {
		k_queue_init(&queues[i]);

		/*Indicating that they are working*/
		tqueue_append(&queues[i]);
		tqueue_get(&queues[i]);
	}
}

void user_access_queue_private_data(void *p1, void *p2, void *p3)
{
	ztest_set_fault_valid(true);
	/* try to access to private kernel data, will happen kernel oops */
	k_queue_is_empty(&queue);
}

/**
 * @brief Test access kernel object with private data using system call
 *
 * @details
 * - When defining system calls, it is very important to ensure that
 *   access to the API’s private data is done exclusively through system call
 *   interfaces. Private kernel data should never be made available to user mode
 *   threads directly. For example, the k_queue APIs were intentionally not made
 *   available as they store bookkeeping information about the queue directly
 *   in the queue buffers which are visible from user mode.
 * - Current test makes user thread try to access private kernel data within
 *   their associated data structures. Kernel will track that system call
 *   access to these object with the kernel object permission system.
 *   Current user thread doesn't have permission on it, trying to access
 *   &pqueue kernel object will happen kernel oops, because current user
 *   thread doesn't have permission on k_queue object with private kernel data.
 *
 * @ingroup kernel_memprotect_tests
 */
ZTEST(queue_api, test_access_kernel_obj_with_priv_data)
{
	k_queue_init(&queue);
	k_queue_insert(&queue, k_queue_peek_tail(&queue), (void *)&data[0]);
	k_thread_create(&tdata, tstack, STACK_SIZE, user_access_queue_private_data,
					NULL, NULL, NULL, 0, K_USER, K_NO_WAIT);
	k_thread_join(&tdata, K_FOREVER);
}

static void low_prio_wait_for_queue(void *p1, void *p2, void *p3)
{
	struct k_queue *q = p1;
	uint32_t *ret = NULL;

	ret = k_queue_get(q, K_FOREVER);
	zassert_true(*ret == 0xccc,
	"The low priority thread get the queue data failed lastly");
}

static void high_prio_t1_wait_for_queue(void *p1, void *p2, void *p3)
{
	struct k_queue *q = p1;
	uint32_t *ret = NULL;

	ret = k_queue_get(q, K_FOREVER);
	zassert_true(*ret == 0xaaa,
	"The highest priority and waited longest get the queue data failed firstly");
}

static void high_prio_t2_wait_for_queue(void *p1, void *p2, void *p3)
{
	struct k_queue *q = p1;
	uint32_t *ret = NULL;

	ret = k_queue_get(q, K_FOREVER);
	zassert_true(*ret == 0xbbb,
	"The higher priority and waited longer get the queue data failed secondly");
}

/**
 * @brief Test multi-threads to get data from a queue.
 *
 * @details Define three threads, and set a higher priority for two of them,
 * and set a lower priority for the last one. Then Add a delay between
 * creating the two high priority threads.
 * Test point:
 * 1. Any number of threads may wait on an empty FIFO simultaneously.
 * 2. When a data item is added, it is given to the highest priority
 * thread that has waited longest.
 *
 * @ingroup kernel_queue_tests
 */
ZTEST(queue_api_1cpu, test_queue_multithread_competition)
{
	int old_prio = k_thread_priority_get(k_current_get());
	int prio = 10;
	uint32_t test_data[3];

	memset(test_data, 0, sizeof(test_data));
	k_thread_priority_set(k_current_get(), prio);
	k_queue_init(&queue);
	zassert_true(k_queue_is_empty(&queue) != 0, " Initializing queue failed");

	/* Set up some values */
	test_data[0] = 0xAAA;
	test_data[1] = 0xBBB;
	test_data[2] = 0xCCC;

	k_thread_create(&tdata, tstack, STACK_SIZE,
			low_prio_wait_for_queue,
			&queue, NULL, NULL,
			prio + 4, 0, K_NO_WAIT);

	k_thread_create(&tdata1, tstack1, STACK_SIZE,
			high_prio_t1_wait_for_queue,
			&queue, NULL, NULL,
			prio + 2, 0, K_NO_WAIT);

	/* Make thread tdata and tdata1 wait more time */
	k_sleep(K_MSEC(10));

	k_thread_create(&tdata2, tstack2, STACK_SIZE,
			high_prio_t2_wait_for_queue,
			&queue, NULL, NULL,
			prio + 2, 0, K_NO_WAIT);

	/* Initialize them and block */
	k_sleep(K_MSEC(50));

	/* Insert some data to wake up thread */
	k_queue_append(&queue, &test_data[0]);
	k_queue_append(&queue, &test_data[1]);
	k_queue_append(&queue, &test_data[2]);

	/* Wait for thread exiting */
	k_thread_join(&tdata, K_FOREVER);
	k_thread_join(&tdata1, K_FOREVER);
	k_thread_join(&tdata2, K_FOREVER);

	/* Revert priority of the main thread */
	k_thread_priority_set(k_current_get(), old_prio);
}

/**
 * @brief Verify k_queue_unique_append()
 *
 * @ingroup kernel_queue_tests
 *
 * @details Append the same data to the queue repeatedly,
 * see if it returns expected value.
 * And verify operation succeed if append different data to
 * the queue.
 *
 * @see k_queue_unique_append()
 */
ZTEST(queue_api, test_queue_unique_append)
{
	bool ret;

	k_queue_init(&queue);
	ret = k_queue_unique_append(&queue, (void *)&data[0]);
	zassert_true(ret, "queue unique append failed");

	ret = k_queue_unique_append(&queue, (void *)&data[0]);
	zassert_false(ret, "queue unique append should fail");

	ret = k_queue_unique_append(&queue, (void *)&data[1]);
	zassert_true(ret, "queue unique append failed");
}