Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
 * Copyright (c) 2022 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Real-Time IO device API for moving bytes with low effort
 *
 * RTIO uses a SPSC lock-free queue pair to enable a DMA and ISR friendly I/O API.
 *
 * I/O like operations are setup in a pre-allocated queue with a fixed number of
 * submission requests. Each submission request takes the device to operate on
 * and an operation. The rest is information needed to perform the operation such
 * as a register or mmio address of the device, a source/destination buffers
 * to read from or write to, and other pertinent information.
 *
 * These operations may be chained in a such a way that only when the current
 * operation is complete will the next be executed. If the current request fails
 * all chained requests will also fail.
 *
 * The completion of these requests are pushed into a fixed size completion
 * queue which an application may actively poll for completions.
 *
 * An executor (could use a dma controller!) takes the queues and determines
 * how to perform each requested operation. By default there is a software
 * executor which does all operations in software using software device
 * APIs.
 */

#ifndef ZEPHYR_INCLUDE_RTIO_RTIO_H_
#define ZEPHYR_INCLUDE_RTIO_RTIO_H_

#include <zephyr/rtio/rtio_spsc.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/device.h>
#include <zephyr/kernel.h>

#ifdef __cplusplus
extern "C" {
#endif


/**
 * @brief RTIO
 * @defgroup rtio RTIO
 * @{
 * @}
 */


struct rtio_iodev;

/**
 * @brief RTIO API
 * @defgroup rtio_api RTIO API
 * @ingroup rtio
 * @{
 */

/**
 * @brief RTIO Predefined Priorties
 * @defgroup rtio_sqe_prio RTIO Priorities
 * @ingroup rtio_api
 * @{
 */

/**
 * @brief Low priority
 */
#define RTIO_PRIO_LOW 0U

/**
 * @brief Normal priority
 */
#define RTIO_PRIO_NORM 127U

/**
 * @brief High priority
 */
#define RTIO_PRIO_HIGH 255U

/**
 * @}
 */


/**
 * @brief RTIO SQE Flags
 * @defgroup rtio_sqe_flags RTIO SQE Flags
 * @ingroup rtio_api
 * @{
 */

/**
 * @brief The next request in the queue should wait on this one.
 */
#define RTIO_SQE_CHAINED BIT(0)

/**
 * @}
 */

/**
 * @brief A submission queue event
 */
struct rtio_sqe {
	uint8_t op; /**< Op code */

	uint8_t prio; /**< Op priority */

	uint16_t flags; /**< Op Flags */

	struct rtio_iodev *iodev; /**< Device to operation on */

	/**
	 * User provided pointer to data which is returned upon operation
	 * completion
	 *
	 * If unique identification of completions is desired this should be
	 * unique as well.
	 */
	void *userdata;

	union {
		struct {
			uint32_t buf_len; /**< Length of buffer */

			uint8_t *buf; /**< Buffer to use*/
		};
	};
};

/**
 * @brief Submission queue
 *
 * This is used for typifying the members of an RTIO queue pair
 * but nothing more.
 */
struct rtio_sq {
	struct rtio_spsc _spsc;
	struct rtio_sqe buffer[];
};

/**
 * @brief A completion queue event
 */
struct rtio_cqe {
	int32_t result; /**< Result from operation */
	void *userdata; /**< Associated userdata with operation */
};

/**
 * @brief Completion queue
 *
 * This is used for typifying the members of an RTIO queue pair
 * but nothing more.
 */
struct rtio_cq {
	struct rtio_spsc _spsc;
	struct rtio_cqe buffer[];
};

struct rtio;

struct rtio_executor_api {
	/**
	 * @brief Submit the request queue to executor
	 *
	 * The executor is responsible for interpreting the submission queue and
	 * creating concurrent execution chains.
	 *
	 * Concurrency is optional and implementation dependent.
	 */
	int (*submit)(struct rtio *r);

	/**
	 * @brief SQE completes successfully
	 */
	void (*ok)(struct rtio *r, const struct rtio_sqe *sqe, int result);

	/**
	 * @brief SQE fails to complete
	 */
	void (*err)(struct rtio *r, const struct rtio_sqe *sqe, int result);
};

/**
 * @brief An executor does the work of executing the submissions.
 *
 * This could be a DMA controller backed executor, thread backed,
 * or simple in place executor.
 *
 * A DMA executor might schedule all transfers with priorities
 * and use hardware arbitration.
 *
 * A threaded executor might use a thread pool where each transfer
 * chain is executed across the thread pool and the priority of the
 * transfer is used as the thread priority.
 *
 * A simple in place exector might simply loop over and execute each
 * transfer in the calling threads context. Priority is entirely
 * derived from the calling thread then.
 *
 * An implementation of the executor must place this struct as
 * its first member such that pointer aliasing works.
 */
struct rtio_executor {
	const struct rtio_executor_api *api;
};

/**
 * @brief An RTIO queue pair that both the kernel and application work with
 *
 * The kernel is the consumer of the submission queue, and producer of the completion queue.
 * The application is the consumer of the completion queue and producer of the submission queue.
 *
 * Nothing is done until a call is performed to do the work (rtio_execute).
 */
struct rtio {

	/*
	 * An executor which does the job of working through the submission
	 * queue.
	 */
	struct rtio_executor *executor;


#ifdef CONFIG_RTIO_SUBMIT_SEM
	/* A wait semaphore which may suspend the calling thread
	 * to wait for some number of completions when calling submit
	 */
	struct k_sem *submit_sem;

	uint32_t submit_count;
#endif

#ifdef CONFIG_RTIO_CONSUME_SEM
	/* A wait semaphore which may suspend the calling thread
	 * to wait for some number of completions while consuming
	 * them from the completion queue
	 */
	struct k_sem *consume_sem;
#endif

	/* Number of completions that were unable to be submitted with results
	 * due to the cq spsc being full
	 */
	atomic_t xcqcnt;

	/* Submission queue */
	struct rtio_sq *sq;

	/* Completion queue */
	struct rtio_cq *cq;
};

/**
 * @brief API that an RTIO IO device should implement
 */
struct rtio_iodev_api {
	/**
	 * @brief Submission function for a request to the iodev
	 *
	 * The iodev is responsible for doing the operation described
	 * as a submission queue entry and reporting results using using
	 * `rtio_sqe_ok` or `rtio_sqe_err` once done.
	 */
	void (*submit)(const struct rtio_sqe *sqe,
		       struct rtio *r);

	/**
	 * TODO some form of transactional piece is missing here
	 * where we wish to "transact" on an iodev with multiple requests
	 * over a chain.
	 *
	 * Only once explicitly released or the chain fails do we want
	 * to release. Once released any pending iodevs in the queue
	 * should be done.
	 *
	 * Something akin to a lock/unlock pair.
	 */
};

/* IO device submission queue entry */
struct rtio_iodev_sqe {
	const struct rtio_sqe *sqe;
	struct rtio *r;
};

/**
 * @brief IO device submission queue
 *
 * This is used for reifying the member of the rtio_iodev struct
 */
struct rtio_iodev_sq {
	struct rtio_spsc _spsc;
	struct rtio_iodev_sqe buffer[];
};

/**
 * @brief An IO device with a function table for submitting requests
 *
 * This is required to be the first member of every iodev. There's a strong
 * possibility this will be extended with some common data fields (statistics)
 * in the future.
 */
struct rtio_iodev {
	/* Function pointer table */
	const struct rtio_iodev_api *api;

	/* Queue of RTIO contexts with requests */
	struct rtio_iodev_sq *iodev_sq;
};


/** An operation that does nothing and will complete immediately */
#define RTIO_OP_NOP 0

/** An operation that receives (reads) */
#define RTIO_OP_RX 1

/** An operation that transmits (writes) */
#define RTIO_OP_TX 2

/**
 * @brief Prepare a nop (no op) submission
 */
static inline void rtio_sqe_prep_nop(struct rtio_sqe *sqe,
				struct rtio_iodev *iodev,
				void *userdata)
{
	sqe->op = RTIO_OP_NOP;
	sqe->iodev = iodev;
	sqe->userdata = userdata;
}

/**
 * @brief Prepare a read op submission
 */
static inline void rtio_sqe_prep_read(struct rtio_sqe *sqe,
				      struct rtio_iodev *iodev,
				      int8_t prio,
				      uint8_t *buf,
				      uint32_t len,
				      void *userdata)
{
	sqe->op = RTIO_OP_RX;
	sqe->prio = prio;
	sqe->iodev = iodev;
	sqe->buf_len = len;
	sqe->buf = buf;
	sqe->userdata = userdata;
}

/**
 * @brief Prepare a write op submission
 */
static inline void rtio_sqe_prep_write(struct rtio_sqe *sqe,
				       struct rtio_iodev *iodev,
				       int8_t prio,
				       uint8_t *buf,
				       uint32_t len,
				       void *userdata)
{
	sqe->op = RTIO_OP_TX;
	sqe->prio = prio;
	sqe->iodev = iodev;
	sqe->buf_len = len;
	sqe->buf = buf;
	sqe->userdata = userdata;
}

/**
 * @brief Statically define and initialize a fixed length submission queue.
 *
 * @param name Name of the submission queue.
 * @param len Queue length, power of 2 required (2, 4, 8).
 */
#define RTIO_SQ_DEFINE(name, len)			\
	static RTIO_SPSC_DEFINE(name, struct rtio_sqe, len)

/**
 * @brief Statically define and initialize a fixed length completion queue.
 *
 * @param name Name of the completion queue.
 * @param len Queue length, power of 2 required (2, 4, 8).
 */
#define RTIO_CQ_DEFINE(name, len)			\
	static RTIO_SPSC_DEFINE(name, struct rtio_cqe, len)

/**
 * @brief Statically define and initialize an RTIO context
 *
 * @param name Name of the RTIO
 * @param exec Symbol for rtio_executor (pointer)
 * @param sq_sz Size of the submission queue, must be power of 2
 * @param cq_sz Size of the completion queue, must be power of 2
 */
#define RTIO_DEFINE(name, exec, sq_sz, cq_sz)							   \
	IF_ENABLED(CONFIG_RTIO_SUBMIT_SEM, (K_SEM_DEFINE(_submit_sem_##name, 0, K_SEM_MAX_LIMIT))) \
	IF_ENABLED(CONFIG_RTIO_CONSUME_SEM, (K_SEM_DEFINE(_consume_sem_##name, 0, 1)))		   \
	RTIO_SQ_DEFINE(_sq_##name, sq_sz);							   \
	RTIO_CQ_DEFINE(_cq_##name, cq_sz);							   \
	static struct rtio name = {								   \
		.executor = (exec),								   \
		.xcqcnt = ATOMIC_INIT(0),							   \
		IF_ENABLED(CONFIG_RTIO_SUBMIT_SEM, (.submit_sem = &_submit_sem_##name,))	   \
		IF_ENABLED(CONFIG_RTIO_SUBMIT_SEM, (.submit_count = 0,))			   \
		IF_ENABLED(CONFIG_RTIO_CONSUME_SEM, (.consume_sem = &_consume_sem_##name,))	   \
		.sq = (struct rtio_sq *const)&_sq_##name,					   \
		.cq = (struct rtio_cq *const)&_cq_##name,					   \
	}

/**
 * @brief Set the executor of the rtio context
 */
static inline void rtio_set_executor(struct rtio *r, struct rtio_executor *exc)
{
	r->executor = exc;
}

/**
 * @brief Perform a submitted operation with an iodev
 *
 * @param sqe Submission to work on
 * @param r RTIO context
 */
static inline void rtio_iodev_submit(const struct rtio_sqe *sqe, struct rtio *r)
{
	sqe->iodev->api->submit(sqe, r);
}

/**
 * @brief Submit I/O requests to the underlying executor
 *
 * Submits the queue of requested IO operation chains to
 * the underlying executor. The underlying executor will decide
 * on which hardware and with what sort of parallelism the execution
 * of IO chains is performed.
 *
 * @param r RTIO context
 * @param wait_count Count of completions to wait for
 * If wait_count is for completions flag is set, the call will not
 * return until the desired number of completions are done. A wait count of
 * non-zero requires the caller be on a thread.
 *
 * @retval 0 On success
 */
static inline int rtio_submit(struct rtio *r, uint32_t wait_count)
{
	int res;

	__ASSERT(r->executor != NULL, "expected rtio submit context to have an executor");

#ifdef CONFIG_RTIO_SUBMIT_SEM
	/* TODO undefined behavior if another thread calls submit of course
	 */
	if (wait_count > 0) {
		__ASSERT(!k_is_in_isr(),
			 "expected rtio submit with wait count to be called from a thread");

		k_sem_reset(r->submit_sem);
		r->submit_count = wait_count;
	}
#endif

	/* Enqueue all prepared submissions */
	rtio_spsc_produce_all(r->sq);

	/* Submit the queue to the executor which consumes submissions
	 * and produces completions through ISR chains or other means.
	 */
	res = r->executor->api->submit(r);
	if (res != 0) {
		return res;
	}

	/* TODO could be nicer if we could suspend the thread and not
	 * wake up on each completion here.
	 */
#ifdef CONFIG_RTIO_SUBMIT_SEM

	if (wait_count > 0) {
		res = k_sem_take(r->submit_sem, K_FOREVER);
		__ASSERT(res == 0,
			 "semaphore was reset or timed out while waiting on completions!");
	}
#else
	while (rtio_spsc_consumable(r->cq) < wait_count) {
#ifdef CONFIG_BOARD_NATIVE_POSIX
		k_busy_wait(1);
#else
		k_yield();
#endif /* CONFIG_BOARD_NATIVE_POSIX */
	}
#endif

	return res;
}

/**
 * @brief Consume a single completion queue event if available
 *
 * If a completion queue event is returned rtio_cq_release(r) must be called
 * at some point to release the cqe spot for the cqe producer.
 *
 * @param r RTIO context
 *
 * @retval cqe A valid completion queue event consumed from the completion queue
 * @retval NULL No completion queue event available
 */
static inline struct rtio_cqe *rtio_cqe_consume(struct rtio *r)
{
	return rtio_spsc_consume(r->cq);
}

/**
 * @brief Wait for and consume a single completion queue event
 *
 * If a completion queue event is returned rtio_cq_release(r) must be called
 * at some point to release the cqe spot for the cqe producer.
 *
 * @param r RTIO context
 *
 * @retval cqe A valid completion queue event consumed from the completion queue
 */
static inline struct rtio_cqe *rtio_cqe_consume_block(struct rtio *r)
{
	struct rtio_cqe *cqe;

	/* TODO is there a better way? reset this in submit? */
#ifdef CONFIG_RTIO_CONSUME_SEM
	k_sem_reset(r->consume_sem);
#endif
	cqe = rtio_spsc_consume(r->cq);

	while (cqe == NULL) {
		cqe = rtio_spsc_consume(r->cq);

#ifdef CONFIG_RTIO_CONSUME_SEM
		k_sem_take(r->consume_sem, K_FOREVER);
#else
		k_yield();
#endif
	}

	return cqe;
}

/**
 * @brief Inform the executor of a submission completion with success
 *
 * This may start the next asynchronous request if one is available.
 *
 * @param r RTIO context
 * @param sqe Submission that has succeeded
 * @param result Result of the request
 */
static inline void rtio_sqe_ok(struct rtio *r, const struct rtio_sqe *sqe, int result)
{
	r->executor->api->ok(r, sqe, result);
}

/**
 * @brief Inform the executor of a submissions completion with error
 *
 * This SHALL fail the remaining submissions in the chain.
 *
 * @param r RTIO context
 * @param sqe Submission that has failed
 * @param result Result of the request
 */
static inline void rtio_sqe_err(struct rtio *r, const struct rtio_sqe *sqe, int result)
{
	r->executor->api->err(r, sqe, result);
}

/**
 * Submit a completion queue event with a given result and userdata
 *
 * Called by the executor to produce a completion queue event, no inherent
 * locking is performed and this is not safe to do from multiple callers.
 *
 * @param r RTIO context
 * @param result Integer result code (could be -errno)
 * @param userdata Userdata to pass along to completion
 */
static inline void rtio_cqe_submit(struct rtio *r, int result, void *userdata)
{
	struct rtio_cqe *cqe = rtio_spsc_acquire(r->cq);

	if (cqe == NULL) {
		atomic_inc(&r->xcqcnt);
	} else {
		cqe->result = result;
		cqe->userdata = userdata;
		rtio_spsc_produce(r->cq);
	}
#ifdef CONFIG_RTIO_SUBMIT_SEM
	if (r->submit_count > 0) {
		r->submit_count--;
		if (r->submit_count == 0) {
			k_sem_give(r->submit_sem);
		}
	}
#endif
#ifdef CONFIG_RTIO_CONSUME_SEM
	k_sem_give(r->consume_sem);
#endif
}

/* TODO add rtio_sqe_suspend() for suspending a submission chain that must
 * wait on other in progress submissions or submission chains.
 */

/**
 * @}
 */

#ifdef __cplusplus
}
#endif

#endif /* ZEPHYR_INCLUDE_RTIO_RTIO_H_ */