Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
/*
 * Copyright (c) 2018 Foundries.io Ltd
 * Copyright (c) 2019 STMicroelectronics
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr/device.h>
#include <soc.h>
#include <stm32_ll_lptim.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_system.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>

#include <zephyr/spinlock.h>

#define DT_DRV_COMPAT st_stm32_lptim

#if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) > 1
#error Only one LPTIM instance should be enabled
#endif

#define LPTIM (LPTIM_TypeDef *) DT_INST_REG_ADDR(0)

#if DT_INST_NUM_CLOCKS(0) == 1
#warning Kconfig for LPTIM source clock (LSI/LSE) is deprecated, use device tree.
static const struct stm32_pclken lptim_clk[] = {
	STM32_CLOCK_INFO(0, DT_DRV_INST(0)),
	/* Use Kconfig to configure source clocks fields */
	/* Fortunately, values are consistent across enabled series */
#ifdef CONFIG_STM32_LPTIM_CLOCK_LSI
	{.bus = STM32_SRC_LSI, .enr = LPTIM1_SEL(1)}
#else
	{.bus = STM32_SRC_LSE, .enr = LPTIM1_SEL(3)}
#endif
};
#else
static const struct stm32_pclken lptim_clk[] = STM32_DT_INST_CLOCKS(0);
#endif

static const struct device *const clk_ctrl = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);

/*
 * Assumptions and limitations:
 *
 * - system clock based on an LPTIM instance, clocked by LSI or LSE
 * - prescaler is set to 1 (LL_LPTIM_PRESCALER_DIV1 in the related register)
 * - using LPTIM AutoReload capability to trig the IRQ (timeout irq)
 * - when timeout irq occurs the counter is already reset
 * - the maximum timeout duration is reached with the lptim_time_base value
 * - with prescaler of 1, the max timeout (lptim_time_base) is 2seconds
 */

static uint32_t lptim_clock_freq = 32000;
static int32_t lptim_time_base;


/* minimum nb of clock cycles to have to set autoreload register correctly */
#define LPTIM_GUARD_VALUE 2

/* A 32bit value cannot exceed 0xFFFFFFFF/LPTIM_TIMEBASE counting cycles.
 * This is for example about of 65000 x 2000ms when clocked by LSI
 */
static uint32_t accumulated_lptim_cnt;
/* Next autoreload value to set */
static uint32_t autoreload_next;
/* Indicate if the autoreload register is ready for a write */
static bool autoreload_ready = true;

static struct k_spinlock lock;

static void lptim_irq_handler(const struct device *unused)
{

	ARG_UNUSED(unused);

	uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM);

	if ((LL_LPTIM_IsActiveFlag_ARROK(LPTIM) != 0)
		&& LL_LPTIM_IsEnabledIT_ARROK(LPTIM) != 0) {
		LL_LPTIM_ClearFlag_ARROK(LPTIM);
		if ((autoreload_next > 0) && (autoreload_next != autoreload)) {
			/* the new autoreload value change, we set it */
			autoreload_ready = false;
			LL_LPTIM_SetAutoReload(LPTIM, autoreload_next);
		} else {
			autoreload_ready = true;
		}
	}

	if ((LL_LPTIM_IsActiveFlag_ARRM(LPTIM) != 0)
		&& LL_LPTIM_IsEnabledIT_ARRM(LPTIM) != 0) {

		k_spinlock_key_t key = k_spin_lock(&lock);

		/* do not change ARR yet, sys_clock_announce will do */
		LL_LPTIM_ClearFLAG_ARRM(LPTIM);

		/* increase the total nb of autoreload count
		 * used in the sys_clock_cycle_get_32() function.
		 */
		autoreload++;

		accumulated_lptim_cnt += autoreload;

		k_spin_unlock(&lock, key);

		/* announce the elapsed time in ms (count register is 16bit) */
		uint32_t dticks = (autoreload
				* CONFIG_SYS_CLOCK_TICKS_PER_SEC)
				/ lptim_clock_freq;

		sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL)
				? dticks : (dticks > 0));
	}
}

static void lptim_set_autoreload(uint32_t arr)
{
	/* Update autoreload register */
	autoreload_next = arr;

	if (!autoreload_ready)
		return;

	/* The ARR register ready, we could set it directly */
	if ((arr > 0) && (arr != LL_LPTIM_GetAutoReload(LPTIM))) {
		/* The new autoreload value change, we set it */
		autoreload_ready = false;
		LL_LPTIM_ClearFlag_ARROK(LPTIM);
		LL_LPTIM_SetAutoReload(LPTIM, arr);
	}
}

static inline uint32_t z_clock_lptim_getcounter(void)
{
	uint32_t lp_time;
	uint32_t lp_time_prev_read;

	/* It should be noted that to read reliably the content
	 * of the LPTIM_CNT register, two successive read accesses
	 * must be performed and compared
	 */
	lp_time = LL_LPTIM_GetCounter(LPTIM);
	do {
		lp_time_prev_read = lp_time;
		lp_time = LL_LPTIM_GetCounter(LPTIM);
	} while (lp_time != lp_time_prev_read);
	return lp_time;
}

void sys_clock_set_timeout(int32_t ticks, bool idle)
{
	/* new LPTIM AutoReload value to set (aligned on Kernel ticks) */
	uint32_t next_arr = 0;

	ARG_UNUSED(idle);

	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		return;
	}

	if (ticks == K_TICKS_FOREVER) {
		clock_control_off(clk_ctrl, (clock_control_subsys_t *) &lptim_clk[0]);
		return;
	}

	/* if LPTIM clock was previously stopped, it must now be restored */
	clock_control_on(clk_ctrl, (clock_control_subsys_t *) &lptim_clk[0]);

	/* passing ticks==1 means "announce the next tick",
	 * ticks value of zero (or even negative) is legal and
	 * treated identically: it simply indicates the kernel would like the
	 * next tick announcement as soon as possible.
	 */
	ticks = CLAMP(ticks - 1, 1, lptim_time_base);

	k_spinlock_key_t key = k_spin_lock(&lock);

	/* read current counter value (cannot exceed 16bit) */

	uint32_t lp_time = z_clock_lptim_getcounter();

	uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM);

	if (LL_LPTIM_IsActiveFlag_ARRM(LPTIM)
	    || ((autoreload - lp_time) < LPTIM_GUARD_VALUE)) {
		/* interrupt happens or happens soon.
		 * It's impossible to set autoreload value.
		 */
		k_spin_unlock(&lock, key);
		return;
	}

	/* calculate the next arr value (cannot exceed 16bit)
	 * adjust the next ARR match value to align on Ticks
	 * from the current counter value to first next Tick
	 */
	next_arr = (((lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC)
			/ lptim_clock_freq) + 1) * lptim_clock_freq
			/ (CONFIG_SYS_CLOCK_TICKS_PER_SEC);
	/* add count unit from the expected nb of Ticks */
	next_arr = next_arr + ((uint32_t)(ticks) * lptim_clock_freq)
			/ CONFIG_SYS_CLOCK_TICKS_PER_SEC - 1;

	/* maximise to TIMEBASE */
	if (next_arr > lptim_time_base) {
		next_arr = lptim_time_base;
	}
	/* The new autoreload value must be LPTIM_GUARD_VALUE clock cycles
	 * after current lptim to make sure we don't miss
	 * an autoreload interrupt
	 */
	else if (next_arr < (lp_time + LPTIM_GUARD_VALUE)) {
		next_arr = lp_time + LPTIM_GUARD_VALUE;
	}

	/* Update autoreload register */
	lptim_set_autoreload(next_arr);

	k_spin_unlock(&lock, key);
}

uint32_t sys_clock_elapsed(void)
{
	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		return 0;
	}

	k_spinlock_key_t key = k_spin_lock(&lock);

	uint32_t lp_time = z_clock_lptim_getcounter();

	/* In case of counter roll-over, add this value,
	 * even if the irq has not yet been handled
	 */
	if ((LL_LPTIM_IsActiveFlag_ARRM(LPTIM) != 0)
	  && LL_LPTIM_IsEnabledIT_ARRM(LPTIM) != 0) {
		lp_time += LL_LPTIM_GetAutoReload(LPTIM) + 1;
	}

	k_spin_unlock(&lock, key);

	/* gives the value of LPTIM counter (ms)
	 * since the previous 'announce'
	 */
	uint64_t ret = ((uint64_t)lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / lptim_clock_freq;

	return (uint32_t)(ret);
}

uint32_t sys_clock_cycle_get_32(void)
{
	/* just gives the accumulated count in a number of hw cycles */

	k_spinlock_key_t key = k_spin_lock(&lock);

	uint32_t lp_time = z_clock_lptim_getcounter();

	/* In case of counter roll-over, add this value,
	 * even if the irq has not yet been handled
	 */
	if ((LL_LPTIM_IsActiveFlag_ARRM(LPTIM) != 0)
	  && LL_LPTIM_IsEnabledIT_ARRM(LPTIM) != 0) {
		lp_time += LL_LPTIM_GetAutoReload(LPTIM) + 1;
	}

	lp_time += accumulated_lptim_cnt;

	/* convert lptim count in a nb of hw cycles with precision */
	uint64_t ret = ((uint64_t)lp_time * sys_clock_hw_cycles_per_sec()) / lptim_clock_freq;

	k_spin_unlock(&lock, key);

	/* convert in hw cycles (keeping 32bit value) */
	return (uint32_t)(ret);
}

static int sys_clock_driver_init(const struct device *dev)
{
	int err;

	ARG_UNUSED(dev);

	if (!device_is_ready(clk_ctrl)) {
		return -ENODEV;
	}

	/* Enable LPTIM bus clock */
	err = clock_control_on(clk_ctrl, (clock_control_subsys_t *) &lptim_clk[0]);
	if (err < 0) {
		return -EIO;
	}

#if defined(LL_APB1_GRP1_PERIPH_LPTIM1)
	LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_LPTIM1);
#elif defined(LL_APB3_GRP1_PERIPH_LPTIM1)
	LL_SRDAMR_GRP1_EnableAutonomousClock(LL_SRDAMR_GRP1_PERIPH_LPTIM1AMEN);
#endif

	/* For tick accuracy, a specific tick to freq ratio is expected */
	/* This check assumes LSI@32KHz or LSE@32768Hz */
	if (((lptim_clk[1].bus == STM32_SRC_LSI) &&
	      (CONFIG_SYS_CLOCK_TICKS_PER_SEC != 4000)) ||
	    ((lptim_clk[1].bus == STM32_SRC_LSE) &&
	      (CONFIG_SYS_CLOCK_TICKS_PER_SEC != 4096))) {
		return -ENOTSUP;
	}

	/* Enable LPTIM clock source */
	err = clock_control_configure(clk_ctrl,
				      (clock_control_subsys_t *) &lptim_clk[1],
				      NULL);
	if (err < 0) {
		return -EIO;
	}

	/* Get LPTIM clock freq */
	err = clock_control_get_rate(clk_ctrl, (clock_control_subsys_t *) &lptim_clk[1],
			       &lptim_clock_freq);

	if (err < 0) {
		return -EIO;
	}
#if defined(CONFIG_SOC_SERIES_STM32L0X)
	/* Driver only supports freqs up to 32768Hz. On L0, LSI freq is 37KHz,
	 * which will overflow the LPTIM counter.
	 * Previous LPTIM configuration using device tree was doing forcing this
	 * with a Kconfig default. Impact is that time is 1.13 faster than reality.
	 * Following lines reproduce this behavior in order not to change behavior.
	 * This issue will be fixed by implementation LPTIM prescaler support.
	 */
	if (lptim_clk[1].bus == STM32_SRC_LSI) {
		lptim_clock_freq = KHZ(32);
	}
#endif

	/* Set LPTIM time base based on clck source freq
	 * Time base = (2s * freq) - 1
	 */
	if (lptim_clock_freq == KHZ(32)) {
		lptim_time_base = 0xF9FF;
	} else if (lptim_clock_freq == 32768) {
		lptim_time_base = 0xFFFF;
	} else {
		return -EIO;
	}

	/* Clear the event flag and possible pending interrupt */
	IRQ_CONNECT(DT_INST_IRQN(0),
		    DT_INST_IRQ(0, priority),
		    lptim_irq_handler, 0, 0);
	irq_enable(DT_INST_IRQN(0));

#ifdef CONFIG_SOC_SERIES_STM32WLX
	/* Enable the LPTIM wakeup EXTI line */
	LL_EXTI_EnableIT_0_31(LL_EXTI_LINE_29);
#endif

	/* configure the LPTIM counter */
	LL_LPTIM_SetClockSource(LPTIM, LL_LPTIM_CLK_SOURCE_INTERNAL);
	/* configure the LPTIM prescaler with 1 */
	LL_LPTIM_SetPrescaler(LPTIM, LL_LPTIM_PRESCALER_DIV1);
#ifdef CONFIG_SOC_SERIES_STM32U5X
	LL_LPTIM_OC_SetPolarity(LPTIM, LL_LPTIM_CHANNEL_CH1,
				LL_LPTIM_OUTPUT_POLARITY_REGULAR);
#else
	LL_LPTIM_SetPolarity(LPTIM, LL_LPTIM_OUTPUT_POLARITY_REGULAR);
#endif
	LL_LPTIM_SetUpdateMode(LPTIM, LL_LPTIM_UPDATE_MODE_IMMEDIATE);
	LL_LPTIM_SetCounterMode(LPTIM, LL_LPTIM_COUNTER_MODE_INTERNAL);
	LL_LPTIM_DisableTimeout(LPTIM);
	/* counting start is initiated by software */
	LL_LPTIM_TrigSw(LPTIM);

#ifdef CONFIG_SOC_SERIES_STM32U5X
	/* Enable the LPTIM before proceeding with configuration */
	LL_LPTIM_Enable(LPTIM);

	LL_LPTIM_DisableIT_CC1(LPTIM);
	while (LL_LPTIM_IsActiveFlag_DIEROK(LPTIM) == 0) {
	}
	LL_LPTIM_ClearFlag_DIEROK(LPTIM);
	LL_LPTIM_ClearFLAG_CC1(LPTIM);
#else
	/* LPTIM interrupt set-up before enabling */
	/* no Compare match Interrupt */
	LL_LPTIM_DisableIT_CMPM(LPTIM);
	LL_LPTIM_ClearFLAG_CMPM(LPTIM);
#endif

	/* Autoreload match Interrupt */
	LL_LPTIM_EnableIT_ARRM(LPTIM);
#ifdef CONFIG_SOC_SERIES_STM32U5X
	while (LL_LPTIM_IsActiveFlag_DIEROK(LPTIM) == 0) {
	}
	LL_LPTIM_ClearFlag_DIEROK(LPTIM);
#endif
	LL_LPTIM_ClearFLAG_ARRM(LPTIM);
	/* ARROK bit validates the write operation to ARR register */
	LL_LPTIM_EnableIT_ARROK(LPTIM);
	LL_LPTIM_ClearFlag_ARROK(LPTIM);

	accumulated_lptim_cnt = 0;

#ifndef CONFIG_SOC_SERIES_STM32U5X
	/* Enable the LPTIM counter */
	LL_LPTIM_Enable(LPTIM);
#endif

	/* Set the Autoreload value once the timer is enabled */
	if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		/* LPTIM is triggered on a LPTIM_TIMEBASE period */
		lptim_set_autoreload(lptim_time_base);
	} else {
		/* LPTIM is triggered on a Tick period */
		lptim_set_autoreload((lptim_clock_freq / CONFIG_SYS_CLOCK_TICKS_PER_SEC) - 1);
	}

	/* Start the LPTIM counter in continuous mode */
	LL_LPTIM_StartCounter(LPTIM, LL_LPTIM_OPERATING_MODE_CONTINUOUS);

#ifdef CONFIG_DEBUG
	/* stop LPTIM during DEBUG */
#if defined(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP)
	LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP);
#elif defined(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP)
	LL_DBGMCU_APB3_GRP1_FreezePeriph(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP);
#endif

#endif
	return 0;
}

SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
	 CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);