Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
 * Copyright (c) 2019-2020 Cobham Gaisler AB
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT gaisler_apbuart

#include <zephyr/drivers/uart.h>
#include <errno.h>

/* APBUART registers
 *
 * Offset | Name   | Description
 * ------ | ------ | ----------------------------------------
 * 0x0000 | data   | UART data register
 * 0x0004 | status | UART status register
 * 0x0008 | ctrl   | UART control register
 * 0x000c | scaler | UART scaler register
 * 0x0010 | debug  | UART FIFO debug register
 */

struct apbuart_regs {
	/** @brief UART data register
	 *
	 * Bit    | Name   | Description
	 * ------ | ------ | ----------------------------------------
	 * 7-0    | data   | Holding register or FIFO
	 */
	uint32_t data;          /* 0x0000 */

	/** @brief UART status register
	 *
	 * Bit    | Name   | Description
	 * ------ | ------ | ----------------------------------------
	 * 31-26  | RCNT   | Receiver FIFO count
	 * 25-20  | TCNT   | Transmitter FIFO count
	 * 10     | RF     | Receiver FIFO full
	 * 9      | TF     | Transmitter FIFO full
	 * 8      | RH     | Receiver FIFO half-full
	 * 7      | TH     | Transmitter FIFO half-full
	 * 6      | FE     | Framing error
	 * 5      | PE     | Parity error
	 * 4      | OV     | Overrun
	 * 3      | BR     | Break received
	 * 2      | TE     | Transmitter FIFO empty
	 * 1      | TS     | Transmitter shift register empty
	 * 0      | DR     | Data ready
	 */
	uint32_t status;        /* 0x0004 */

	/** @brief UART control register
	 *
	 * Bit    | Name   | Description
	 * ------ | ------ | ----------------------------------------
	 * 31     | FA     | FIFOs available
	 * 14     | SI     | Transmitter shift register empty interrupt enable
	 * 13     | DI     | Delayed interrupt enable
	 * 12     | BI     | Break interrupt enable
	 * 11     | DB     | FIFO debug mode enable
	 * 10     | RF     | Receiver FIFO interrupt enable
	 * 9      | TF     | Transmitter FIFO interrupt enable
	 * 8      | EC     | External clock
	 * 7      | LB     | Loop back
	 * 6      | FL     | Flow control
	 * 5      | PE     | Parity enable
	 * 4      | PS     | Parity select
	 * 3      | TI     | Transmitter interrupt enable
	 * 2      | RI     | Receiver interrupt enable
	 * 1      | TE     | Transmitter enable
	 * 0      | RE     | Receiver enable
	 */
	uint32_t ctrl;          /* 0x0008 */

	/** @brief UART scaler register
	 *
	 * Bit    | Name   | Description
	 * ------ | ------ | ----------------------------------------
	 * 11-0   | RELOAD | Scaler reload value
	 */
	uint32_t scaler;        /* 0x000c */

	/** @brief UART FIFO debug register
	 *
	 * Bit    | Name   | Description
	 * ------ | ------ | ----------------------------------------
	 * 7-0    | data   | Holding register or FIFO
	 */
	uint32_t debug;         /* 0x0010 */
};

/* APBUART register bits. */

/* Control register */
#define APBUART_CTRL_FA         (1 << 31)
#define APBUART_CTRL_DB         (1 << 11)
#define APBUART_CTRL_RF         (1 << 10)
#define APBUART_CTRL_TF         (1 <<  9)
#define APBUART_CTRL_LB         (1 <<  7)
#define APBUART_CTRL_FL         (1 <<  6)
#define APBUART_CTRL_PE         (1 <<  5)
#define APBUART_CTRL_PS         (1 <<  4)
#define APBUART_CTRL_TI         (1 <<  3)
#define APBUART_CTRL_RI         (1 <<  2)
#define APBUART_CTRL_TE         (1 <<  1)
#define APBUART_CTRL_RE         (1 <<  0)

/* Status register */
#define APBUART_STATUS_RF       (1 << 10)
#define APBUART_STATUS_TF       (1 <<  9)
#define APBUART_STATUS_RH       (1 <<  8)
#define APBUART_STATUS_TH       (1 <<  7)
#define APBUART_STATUS_FE       (1 <<  6)
#define APBUART_STATUS_PE       (1 <<  5)
#define APBUART_STATUS_OV       (1 <<  4)
#define APBUART_STATUS_BR       (1 <<  3)
#define APBUART_STATUS_TE       (1 <<  2)
#define APBUART_STATUS_TS       (1 <<  1)
#define APBUART_STATUS_DR       (1 <<  0)

/* For APBUART implemented without FIFO */
#define APBUART_STATUS_HOLD_REGISTER_EMPTY (1 << 2)

struct apbuart_dev_cfg {
	struct apbuart_regs *regs;
	int interrupt;
};

struct apbuart_dev_data {
	int usefifo;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	uart_irq_callback_user_data_t cb;
	void *cb_data;
#endif
};

/*
 * This routine waits for the TX holding register or TX FIFO to be ready and
 * then it writes a character to the data register.
 */
static void apbuart_poll_out(const struct device *dev, unsigned char x)
{
	const struct apbuart_dev_cfg *config = dev->config;
	struct apbuart_dev_data *data = dev->data;
	volatile struct apbuart_regs *regs = (void *) config->regs;

	if (data->usefifo) {
		/* Transmitter FIFO full flag is available. */
		while (regs->status & APBUART_STATUS_TF) {
			;
		}
	} else {
		/*
		 * Transmitter "hold register empty" AKA "FIFO empty" flag is
		 * available.
		 */
		while (!(regs->status & APBUART_STATUS_HOLD_REGISTER_EMPTY)) {
			;
		}
	}

	regs->data = x & 0xff;
}

static int apbuart_poll_in(const struct device *dev, unsigned char *c)
{
	const struct apbuart_dev_cfg *config = dev->config;
	volatile struct apbuart_regs *regs = (void *) config->regs;

	if ((regs->status & APBUART_STATUS_DR) == 0) {
		return -1;
	}
	*c = regs->data & 0xff;

	return 0;
}

static int apbuart_err_check(const struct device *dev)
{
	const struct apbuart_dev_cfg *config = dev->config;
	volatile struct apbuart_regs *regs = (void *) config->regs;
	const uint32_t status = regs->status;
	int err = 0;

	if (status & APBUART_STATUS_FE) {
		err |= UART_ERROR_FRAMING;
	}
	if (status & APBUART_STATUS_PE) {
		err |= UART_ERROR_PARITY;
	}
	if (status & APBUART_STATUS_OV) {
		err |= UART_ERROR_OVERRUN;
	}
	if (status & APBUART_STATUS_BR) {
		err |= UART_BREAK;
	}

	return err;
}

#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int get_baud(volatile struct apbuart_regs *const regs)
{
	unsigned int core_clk_hz;
	unsigned int scaler;

	scaler = regs->scaler;
	core_clk_hz = sys_clock_hw_cycles_per_sec();

	/* Calculate baud rate from generator "scaler" number */
	return core_clk_hz / ((scaler + 1) * 8);
}

static void set_baud(volatile struct apbuart_regs *const regs, uint32_t baud)
{
	unsigned int core_clk_hz;
	unsigned int scaler;

	if (baud == 0) {
		return;
	}

	core_clk_hz = sys_clock_hw_cycles_per_sec();

	/* Calculate Baud rate generator "scaler" number */
	scaler = (((core_clk_hz * 10) / (baud * 8)) - 5) / 10;

	/* Set new baud rate by setting scaler */
	regs->scaler = scaler;
}

static int apbuart_configure(const struct device *dev,
			     const struct uart_config *cfg)
{
	const struct apbuart_dev_cfg *config = dev->config;
	volatile struct apbuart_regs *regs = (void *) config->regs;
	uint32_t ctrl = 0;
	uint32_t newctrl = 0;

	switch (cfg->parity) {
	case UART_CFG_PARITY_NONE:
		break;
	case UART_CFG_PARITY_EVEN:
		newctrl |= APBUART_CTRL_PE;
		break;
	case UART_CFG_PARITY_ODD:
		newctrl |= APBUART_CTRL_PE | APBUART_CTRL_PS;
		break;
	default:
		return -ENOTSUP;
	}

	if (cfg->stop_bits != UART_CFG_STOP_BITS_1) {
		return -ENOTSUP;
	}

	if (cfg->data_bits != UART_CFG_DATA_BITS_8) {
		return -ENOTSUP;
	}

	switch (cfg->flow_ctrl) {
	case UART_CFG_FLOW_CTRL_NONE:
		break;
	case UART_CFG_FLOW_CTRL_RTS_CTS:
		newctrl |= APBUART_CTRL_FL;
		break;
	default:
		return -ENOTSUP;
	}

	set_baud(regs, cfg->baudrate);

	ctrl = regs->ctrl;
	ctrl &= ~(APBUART_CTRL_PE | APBUART_CTRL_PS | APBUART_CTRL_FL);
	regs->ctrl = ctrl | newctrl;

	return 0;
}

static int apbuart_config_get(const struct device *dev, struct uart_config *cfg)
{
	const struct apbuart_dev_cfg *config = dev->config;
	volatile struct apbuart_regs *regs = (void *) config->regs;
	const uint32_t ctrl = regs->ctrl;

	cfg->parity = UART_CFG_PARITY_NONE;
	if (ctrl & APBUART_CTRL_PE) {
		if (ctrl & APBUART_CTRL_PS) {
			cfg->parity = UART_CFG_PARITY_ODD;
		} else {
			cfg->parity = UART_CFG_PARITY_EVEN;
		}
	}

	cfg->flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
	if (ctrl & APBUART_CTRL_FL) {
		cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RTS_CTS;
	}

	cfg->baudrate = get_baud(regs);

	cfg->data_bits = UART_CFG_DATA_BITS_8;
	cfg->stop_bits = UART_CFG_STOP_BITS_1;

	return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void apbuart_isr(const struct device *dev);

static int apbuart_fifo_fill(const struct device *dev, const uint8_t *tx_data,
			     int size)
{
	const struct apbuart_dev_cfg *config = dev->config;
	struct apbuart_dev_data *data = dev->data;
	volatile struct apbuart_regs *regs = (void *) config->regs;
	int i;

	if (data->usefifo) {
		/* Transmitter FIFO full flag is available. */
		for (
			i = 0;
			(i < size) && !(regs->status & APBUART_STATUS_TF);
			i++
		) {
			regs->data = tx_data[i];
		}
		return i;
	}
	for (i = 0; (i < size) && (regs->status & APBUART_STATUS_TE); i++) {
		regs->data = tx_data[i];
	}

	return i;
}

static int apbuart_fifo_read(const struct device *dev, uint8_t *rx_data,
			     const int size)
{
	const struct apbuart_dev_cfg *config = dev->config;
	volatile struct apbuart_regs *regs = (void *) config->regs;
	int i;

	for (i = 0; (i < size) && (regs->status & APBUART_STATUS_DR); i++) {
		rx_data[i] = regs->data & 0xff;
	}

	return i;
}

static void apbuart_irq_tx_enable(const struct device *dev)
{
	const struct apbuart_dev_cfg *config = dev->config;
	struct apbuart_dev_data *data = dev->data;
	volatile struct apbuart_regs *regs = (void *) config->regs;
	unsigned int key;

	if (data->usefifo) {
		/* Enable the FIFO level interrupt */
		regs->ctrl |= APBUART_CTRL_TF;
		return;
	}

	regs->ctrl |= APBUART_CTRL_TI;
	/*
	 * The "TI" interrupt is an edge interrupt.  It fires each time the TX
	 * holding register (or FIFO if implemented) moves from non-empty to
	 * empty.
	 *
	 * When the APBUART is implemented _without_ FIFO, the TI interrupt is
	 * the only TX interrupt we have. When the APBUART is implemented
	 * _with_ FIFO, the TI will fire on each TX byte.
	 */
	regs->ctrl |= APBUART_CTRL_TI;
	/* Fire the first "TI" edge interrupt to get things going. */
	key = irq_lock();
	apbuart_isr(dev);
	irq_unlock(key);
}

static void apbuart_irq_tx_disable(const struct device *dev)
{
	const struct apbuart_dev_cfg *config = dev->config;
	volatile struct apbuart_regs *regs = (void *) config->regs;

	regs->ctrl &= ~(APBUART_CTRL_TF | APBUART_CTRL_TI);
}

static int apbuart_irq_tx_ready(const struct device *dev)
{
	const struct apbuart_dev_cfg *config = dev->config;
	struct apbuart_dev_data *data = dev->data;
	volatile struct apbuart_regs *regs = (void *) config->regs;

	if (data->usefifo) {
		return !(regs->status & APBUART_STATUS_TF);
	}
	return !!(regs->status & APBUART_STATUS_TE);
}

static int apbuart_irq_tx_complete(const struct device *dev)
{
	const struct apbuart_dev_cfg *config = dev->config;
	volatile struct apbuart_regs *regs = (void *) config->regs;

	return !!(regs->status & APBUART_STATUS_TS);
}

static void apbuart_irq_rx_enable(const struct device *dev)
{
	const struct apbuart_dev_cfg *config = dev->config;
	volatile struct apbuart_regs *regs = (void *) config->regs;

	regs->ctrl |= APBUART_CTRL_RI;
}

static void apbuart_irq_rx_disable(const struct device *dev)
{
	const struct apbuart_dev_cfg *config = dev->config;
	volatile struct apbuart_regs *regs = (void *) config->regs;

	regs->ctrl &= ~APBUART_CTRL_RI;
}

static int apbuart_irq_rx_ready(const struct device *dev)
{
	const struct apbuart_dev_cfg *config = dev->config;
	volatile struct apbuart_regs *regs = (void *) config->regs;

	return !!(regs->status & APBUART_STATUS_DR);
}

static int apbuart_irq_is_pending(const struct device *dev)
{
	const struct apbuart_dev_cfg *config = dev->config;
	struct apbuart_dev_data *data = dev->data;
	volatile struct apbuart_regs *regs = (void *) config->regs;
	uint32_t status = regs->status;
	uint32_t ctrl = regs->ctrl;

	if ((ctrl & APBUART_CTRL_RI) && (status & APBUART_STATUS_DR)) {
		return 1;
	}

	if (data->usefifo) {
		/* TH is the TX FIFO half-empty flag */
		if (status & APBUART_STATUS_TH) {
			return 1;
		}
	} else {
		if ((ctrl & APBUART_CTRL_TI) && (status & APBUART_STATUS_TE)) {
			return 1;
		}
	}

	return 0;
}

static int apbuart_irq_update(const struct device *dev)
{
	return 1;
}

static void apbuart_irq_callback_set(const struct device *dev,
				     uart_irq_callback_user_data_t cb,
				     void *cb_data)
{
	struct apbuart_dev_data *const dev_data = dev->data;

	dev_data->cb = cb;
	dev_data->cb_data = cb_data;
}

static void apbuart_isr(const struct device *dev)
{
	struct apbuart_dev_data *const dev_data = dev->data;

	if (dev_data->cb) {
		dev_data->cb(dev, dev_data->cb_data);
	}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */

static int apbuart_init(const struct device *dev)
{
	const struct apbuart_dev_cfg *config = dev->config;
	struct apbuart_dev_data *data = dev->data;
	volatile struct apbuart_regs *regs = (void *) config->regs;
	const uint32_t APBUART_DEBUG_MASK = APBUART_CTRL_DB | APBUART_CTRL_FL;
	uint32_t dm;
	uint32_t ctrl;

	ctrl = regs->ctrl;
	data->usefifo = !!(ctrl & APBUART_CTRL_FA);
	/* NOTE: CTRL_FL has reset value 0. CTRL_DB has no reset value. */
	dm = ctrl & APBUART_DEBUG_MASK;
	if (dm == APBUART_DEBUG_MASK) {
		/* Debug mode enabled so assume APBUART already initialized. */
		;
	} else {
		regs->ctrl = APBUART_CTRL_TE | APBUART_CTRL_RE;
	}

	regs->status = 0;

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	irq_connect_dynamic(config->interrupt,
			    0, (void (*)(const void *))apbuart_isr, dev, 0);
	irq_enable(config->interrupt);
#endif

	return 0;
}

/* Driver API defined in uart.h */
static const struct uart_driver_api apbuart_driver_api = {
	.poll_in                = apbuart_poll_in,
	.poll_out               = apbuart_poll_out,
	.err_check              = apbuart_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
	.configure              = apbuart_configure,
	.config_get             = apbuart_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	.fifo_fill              = apbuart_fifo_fill,
	.fifo_read              = apbuart_fifo_read,
	.irq_tx_enable          = apbuart_irq_tx_enable,
	.irq_tx_disable         = apbuart_irq_tx_disable,
	.irq_tx_ready           = apbuart_irq_tx_ready,
	.irq_rx_enable          = apbuart_irq_rx_enable,
	.irq_rx_disable         = apbuart_irq_rx_disable,
	.irq_tx_complete        = apbuart_irq_tx_complete,
	.irq_rx_ready           = apbuart_irq_rx_ready,
	.irq_is_pending         = apbuart_irq_is_pending,
	.irq_update             = apbuart_irq_update,
	.irq_callback_set       = apbuart_irq_callback_set,
#endif
};

#define APBUART_INIT(index)						\
	static const struct apbuart_dev_cfg apbuart##index##_config = {	\
		.regs           = (struct apbuart_regs *)		\
				  DT_INST_REG_ADDR(index),		\
		IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN,		\
			(.interrupt      = DT_INST_IRQN(index),))	\
	};								\
									\
	static struct apbuart_dev_data apbuart##index##_data = {	\
		.usefifo        = 0,					\
	};								\
									\
	DEVICE_DT_INST_DEFINE(index,					\
			    &apbuart_init,				\
			    NULL,					\
			    &apbuart##index##_data,			\
			    &apbuart##index##_config,			\
			    PRE_KERNEL_1,				\
			    CONFIG_SERIAL_INIT_PRIORITY,		\
			    &apbuart_driver_api);

DT_INST_FOREACH_STATUS_OKAY(APBUART_INIT)