Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/*
 * Copyright (c) 2016 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <ztest.h>

#define STACK_SIZE	(1024 + CONFIG_TEST_EXTRA_STACK_SIZE)
#define PIPE_LEN	(4 * 16)
#define BYTES_TO_WRITE	16
#define BYTES_TO_READ BYTES_TO_WRITE

K_HEAP_DEFINE(mpool, PIPE_LEN * 1);

static ZTEST_DMEM unsigned char __aligned(4) data[] =
"abcd1234$%^&PIPEefgh5678!/?*EPIPijkl9012[]<>PEPImnop3456{}()IPEP";
BUILD_ASSERT(sizeof(data) >= PIPE_LEN);

/**TESTPOINT: init via K_PIPE_DEFINE*/
K_PIPE_DEFINE(kpipe, PIPE_LEN, 4);
K_PIPE_DEFINE(khalfpipe, (PIPE_LEN / 2), 4);
K_PIPE_DEFINE(kpipe1, PIPE_LEN, 4);
K_PIPE_DEFINE(pipe_test_alloc, PIPE_LEN, 4);
K_PIPE_DEFINE(ksmallpipe, 10, 2);
struct k_pipe pipe, pipe1;

K_THREAD_STACK_DEFINE(tstack, STACK_SIZE);
K_THREAD_STACK_DEFINE(tstack1, STACK_SIZE);
K_THREAD_STACK_DEFINE(tstack2, STACK_SIZE);
struct k_thread tdata;
struct k_thread tdata1;
struct k_thread tdata2;
K_SEM_DEFINE(end_sema, 0, 1);

#ifdef CONFIG_64BIT
#define SZ 256
#else
#define SZ 128
#endif
K_HEAP_DEFINE(test_pool, SZ * 4);

struct mem_block {
	void *data;
};

static void tpipe_put(struct k_pipe *ppipe, k_timeout_t timeout)
{
	size_t to_wt, wt_byte = 0;

	for (int i = 0; i < PIPE_LEN; i += wt_byte) {
		/**TESTPOINT: pipe put*/
		to_wt = (PIPE_LEN - i) >= BYTES_TO_WRITE ?
			BYTES_TO_WRITE : (PIPE_LEN - i);
		zassert_false(k_pipe_put(ppipe, &data[i], to_wt,
					 &wt_byte, 1, timeout), NULL);
		zassert_true(wt_byte == to_wt || wt_byte == 1, NULL);
	}
}

static void tpipe_get(struct k_pipe *ppipe, k_timeout_t timeout)
{
	unsigned char rx_data[PIPE_LEN];
	size_t to_rd, rd_byte = 0;

	/*get pipe data from "pipe_put"*/
	for (int i = 0; i < PIPE_LEN; i += rd_byte) {
		/**TESTPOINT: pipe get*/
		to_rd = (PIPE_LEN - i) >= BYTES_TO_READ ?
			BYTES_TO_READ : (PIPE_LEN - i);
		zassert_false(k_pipe_get(ppipe, &rx_data[i], to_rd,
					 &rd_byte, 1, timeout), NULL);
		zassert_true(rd_byte == to_rd || rd_byte == 1, NULL);
	}
	for (int i = 0; i < PIPE_LEN; i++) {
		zassert_equal(rx_data[i], data[i], NULL);
	}
}

static void tThread_entry(void *p1, void *p2, void *p3)
{
	tpipe_get((struct k_pipe *)p1, K_FOREVER);
	k_sem_give(&end_sema);

	tpipe_put((struct k_pipe *)p1, K_NO_WAIT);
	k_sem_give(&end_sema);
}

static void tpipe_thread_thread(struct k_pipe *ppipe)
{
	/**TESTPOINT: thread-thread data passing via pipe*/
	k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
				      tThread_entry, ppipe, NULL, NULL,
				      K_PRIO_PREEMPT(0),
				      K_INHERIT_PERMS | K_USER, K_NO_WAIT);

	tpipe_put(ppipe, K_NO_WAIT);
	k_sem_take(&end_sema, K_FOREVER);

	k_sem_take(&end_sema, K_FOREVER);
	tpipe_get(ppipe, K_FOREVER);

	/* clear the spawned thread avoid side effect */
	k_thread_abort(tid);
}

static void tpipe_kthread_to_kthread(struct k_pipe *ppipe)
{
	/**TESTPOINT: thread-thread data passing via pipe*/
	k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
				      tThread_entry, ppipe, NULL, NULL,
				      K_PRIO_PREEMPT(0), 0, K_NO_WAIT);

	tpipe_put(ppipe, K_NO_WAIT);
	k_sem_take(&end_sema, K_FOREVER);

	k_sem_take(&end_sema, K_FOREVER);
	tpipe_get(ppipe, K_FOREVER);

	/* clear the spawned thread avoid side effect */
	k_thread_abort(tid);
}

static void tpipe_put_no_wait(struct k_pipe *ppipe)
{
	size_t to_wt, wt_byte = 0;

	for (int i = 0; i < PIPE_LEN; i += wt_byte) {
	/**TESTPOINT: pipe put*/
		to_wt = (PIPE_LEN - i) >= BYTES_TO_WRITE ?
			BYTES_TO_WRITE : (PIPE_LEN - i);
		zassert_false(k_pipe_put(ppipe, &data[i], to_wt,
					&wt_byte, 1, K_NO_WAIT), NULL);
		zassert_true(wt_byte == to_wt || wt_byte == 1, NULL);
	}
}

static void tpipe_put_small_size(struct k_pipe *ppipe, k_timeout_t timeout)
{
	size_t to_wt, wt_byte = 0;

	for (int i = 0; i < PIPE_LEN; i += wt_byte) {
		/**TESTPOINT: pipe put*/
		to_wt = 15;
		zassert_false(k_pipe_put(ppipe, &data[i], to_wt, &wt_byte,
		1, timeout) != 0, NULL);

	}
}

static void tpipe_get_small_size(struct k_pipe *ppipe, k_timeout_t timeout)
{
	unsigned char rx_data[PIPE_LEN];
	size_t to_rd, rd_byte = 0;

	/*get pipe data from "pipe_put"*/
	for (int i = 0; i < PIPE_LEN; i += rd_byte) {
		/**TESTPOINT: pipe get*/
		to_rd = 15;
		zassert_false(k_pipe_get(ppipe, &rx_data[i], to_rd,
					 &rd_byte, 1, timeout), NULL);
	}
}


static void tpipe_get_large_size(struct k_pipe *ppipe, k_timeout_t timeout)
{
	unsigned char rx_data[PIPE_LEN];
	size_t to_rd, rd_byte = 0;

	/*get pipe data from "pipe_put"*/
	for (int i = 0; i < PIPE_LEN; i += rd_byte) {
		/**TESTPOINT: pipe get*/
		to_rd = (PIPE_LEN - i) >= 128 ?
			128 : (PIPE_LEN - i);
		zassert_false(k_pipe_get(ppipe, &rx_data[i], to_rd,
					 &rd_byte, 1, timeout), NULL);
	}
}


/**
 * @brief Test Initialization and buffer allocation of pipe,
 * with various parameters
 * @see k_pipe_alloc_init(), k_pipe_cleanup()
 */
void test_pipe_alloc(void)
{
	int ret;

	zassert_false(k_pipe_alloc_init(&pipe_test_alloc, PIPE_LEN), NULL);

	tpipe_kthread_to_kthread(&pipe_test_alloc);
	k_pipe_cleanup(&pipe_test_alloc);

	zassert_false(k_pipe_alloc_init(&pipe_test_alloc, 0), NULL);
	k_pipe_cleanup(&pipe_test_alloc);

	ret = k_pipe_alloc_init(&pipe_test_alloc, 2048);
	zassert_true(ret == -ENOMEM,
		"resource pool max block size is not smaller then requested buffer");
}

static void thread_for_get_forever(void *p1, void *p2, void *p3)
{
	tpipe_get((struct k_pipe *)p1, K_FOREVER);
}

void test_pipe_cleanup(void)
{
	int ret;

	zassert_false(k_pipe_alloc_init(&pipe_test_alloc, PIPE_LEN), NULL);

	/**TESTPOINT: test if a dynamically allocated buffer can be freed*/
	ret = k_pipe_cleanup(&pipe_test_alloc);
	zassert_true((ret == 0) && (pipe_test_alloc.buffer == NULL),
			"Failed to free buffer with k_pipe_cleanup().");

	/**TESTPOINT: nothing to do with k_pipe_cleanup() for static buffer in pipe*/
	ret = k_pipe_cleanup(&kpipe);
	zassert_true((ret == 0) && (kpipe.buffer != NULL),
			"Static buffer should not be freed.");

	zassert_false(k_pipe_alloc_init(&pipe_test_alloc, PIPE_LEN), NULL);

	k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
			thread_for_get_forever, &pipe_test_alloc, NULL,
			NULL, K_PRIO_PREEMPT(0), 0, K_NO_WAIT);
	k_sleep(K_MSEC(100));

	ret = k_pipe_cleanup(&pipe_test_alloc);
	zassert_true(ret == -EAGAIN, "k_pipe_cleanup() should not return with 0.");
	k_thread_abort(tid);
}

static void thread_handler(void *p1, void *p2, void *p3)
{
	tpipe_put_no_wait((struct k_pipe *)p1);
	k_sem_give(&end_sema);
}

/**
 * @addtogroup kernel_pipe_tests
 * @{
 */

/**
 * @brief Test pipe data passing between threads
 *
 * @ingroup kernel_pipe_tests
 *
 * @details
 * Test Objective:
 * - Verify data passing with "pipe put/get" APIs between
 * threads
 *
 * Testing techniques:
 * - function and block box testing,Interface testing,
 * Dynamic analysis and testing.
 *
 * Prerequisite Conditions:
 * - CONFIG_TEST_USERSPACE.
 *
 * Input Specifications:
 * - N/A
 *
 * Test Procedure:
 * -# Initialize a pipe, which is defined at run time.
 * -# Create a thread (A).
 * -# In A thread, check if it can get data, which is sent
 * by main thread via the pipe.
 * -# In A thread, send data to main thread via the pipe.
 * -# In main thread, send data to A thread  via the pipe.
 * -# In main thread, check if it can get data, which is sent
 * by A thread.
 * -# Do the same testing with a pipe, which is defined at compile
 * time
 *
 * Expected Test Result:
 * - Data can be sent/received between threads.
 *
 * Pass/Fail Criteria:
 * - Successful if check points in test procedure are all passed, otherwise failure.
 *
 * Assumptions and Constraints:
 * - N/A
 *
 * @see k_pipe_init(), k_pipe_put(), #K_PIPE_DEFINE(x)
 */

void test_pipe_thread2thread(void)
{
	/**TESTPOINT: test k_pipe_init pipe*/
	k_pipe_init(&pipe, data, PIPE_LEN);
	tpipe_thread_thread(&pipe);

	/**TESTPOINT: test K_PIPE_DEFINE pipe*/
	tpipe_thread_thread(&kpipe);
}

#ifdef CONFIG_USERSPACE
/**
 * @brief Test data passing using pipes between user threads
 * @see k_pipe_init(), k_pipe_put(), #K_PIPE_DEFINE(x)
 */
void test_pipe_user_thread2thread(void)
{
	/**TESTPOINT: test k_object_alloc pipe*/
	struct k_pipe *p = k_object_alloc(K_OBJ_PIPE);

	zassert_true(p != NULL, NULL);

	/**TESTPOINT: test k_pipe_alloc_init*/
	zassert_false(k_pipe_alloc_init(p, PIPE_LEN), NULL);
	tpipe_thread_thread(p);

}
#endif

/**
 * @brief Test resource pool free
 * @see k_heap_alloc()
 */
#ifdef CONFIG_USERSPACE
void test_resource_pool_auto_free(void)
{
	/* Pool has 2 blocks, both should succeed if kernel object and pipe
	 * buffer are auto-freed when the allocating threads exit
	 */
	zassert_true(k_heap_alloc(&test_pool, 64, K_NO_WAIT) != NULL, NULL);
	zassert_true(k_heap_alloc(&test_pool, 64, K_NO_WAIT) != NULL, NULL);
}
#endif

static void tThread_half_pipe_put(void *p1, void *p2, void *p3)
{
	tpipe_put((struct k_pipe *)p1, K_FOREVER);
}

static void tThread_half_pipe_get(void *p1, void *p2, void *p3)
{
	tpipe_get((struct k_pipe *)p1, K_FOREVER);
}

/**
 * @brief Test put/get with smaller pipe buffer
 * @see k_pipe_put(), k_pipe_get()
 */
void test_half_pipe_put_get(void)
{
	unsigned char rx_data[PIPE_LEN];
	size_t rd_byte = 0;
	int ret;

	/* TESTPOINT: min_xfer > bytes_to_read */
	ret = k_pipe_put(&kpipe, &rx_data[0], 1, &rd_byte, 24, K_NO_WAIT);
	zassert_true(ret == -EINVAL, NULL);
	ret = k_pipe_put(&kpipe, &rx_data[0], 24, NULL, 1, K_NO_WAIT);
	zassert_true(ret == -EINVAL, NULL);

	/**TESTPOINT: thread-thread data passing via pipe*/
	k_tid_t tid1 = k_thread_create(&tdata1, tstack1, STACK_SIZE,
				      tThread_half_pipe_get, &khalfpipe,
				      NULL, NULL, K_PRIO_PREEMPT(0),
				      K_INHERIT_PERMS | K_USER, K_NO_WAIT);

	k_tid_t tid2 = k_thread_create(&tdata2, tstack2, STACK_SIZE,
				      tThread_half_pipe_get, &khalfpipe,
				      NULL, NULL, K_PRIO_PREEMPT(0),
				      K_INHERIT_PERMS | K_USER, K_NO_WAIT);

	k_sleep(K_MSEC(100));
	tpipe_put_small_size(&khalfpipe, K_NO_WAIT);

	/* clear the spawned thread avoid side effect */
	k_thread_abort(tid1);
	k_thread_abort(tid2);
}

void test_pipe_get_put(void)
{
	unsigned char rx_data[PIPE_LEN];
	size_t rd_byte = 0;
	int ret;

	/* TESTPOINT: min_xfer > bytes_to_read */
	ret = k_pipe_get(&kpipe, &rx_data[0], 1, &rd_byte, 24, K_NO_WAIT);
	zassert_true(ret == -EINVAL, NULL);
	ret = k_pipe_get(&kpipe, &rx_data[0], 24, NULL, 1, K_NO_WAIT);
	zassert_true(ret == -EINVAL, NULL);

	/**TESTPOINT: thread-thread data passing via pipe*/
	k_tid_t tid1 = k_thread_create(&tdata1, tstack1, STACK_SIZE,
				      tThread_half_pipe_put, &khalfpipe,
				      NULL, NULL, K_PRIO_PREEMPT(0),
				      K_INHERIT_PERMS | K_USER, K_NO_WAIT);

	k_tid_t tid2 = k_thread_create(&tdata2, tstack2, STACK_SIZE,
				      tThread_half_pipe_put, &khalfpipe,
				      NULL, NULL, K_PRIO_PREEMPT(0),
				      K_INHERIT_PERMS | K_USER, K_NO_WAIT);

	k_sleep(K_MSEC(100));
	tpipe_get_small_size(&khalfpipe, K_NO_WAIT);

	/* clear the spawned thread avoid side effect */
	k_thread_abort(tid1);
	k_thread_abort(tid2);
}

void test_pipe_get_large(void)
{
	/**TESTPOINT: thread-thread data passing via pipe*/
	k_tid_t tid1 = k_thread_create(&tdata1, tstack1, STACK_SIZE,
				      tThread_half_pipe_put, &khalfpipe,
				      NULL, NULL, K_PRIO_PREEMPT(0),
				      K_INHERIT_PERMS | K_USER, K_NO_WAIT);

	k_tid_t tid2 = k_thread_create(&tdata2, tstack2, STACK_SIZE,
				      tThread_half_pipe_put, &khalfpipe,
				      NULL, NULL, K_PRIO_PREEMPT(0),
				      K_INHERIT_PERMS | K_USER, K_NO_WAIT);

	k_sleep(K_MSEC(100));
	tpipe_get_large_size(&khalfpipe, K_NO_WAIT);

	/* clear the spawned thread avoid side effect */
	k_thread_abort(tid1);
	k_thread_abort(tid2);
}


/**
 * @brief Test pending reader in pipe
 * @see k_pipe_put(), k_pipe_get()
 */
void test_pipe_reader_wait(void)
{
	/**TESTPOINT: test k_pipe_block_put with semaphore*/
	k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
					thread_handler, &kpipe1, NULL, NULL,
					K_PRIO_PREEMPT(0), 0, K_NO_WAIT);

	tpipe_get(&kpipe1, K_FOREVER);
	k_sem_take(&end_sema, K_FOREVER);
	k_thread_abort(tid);
}

/**
 * @}
 */