Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
/*
 * Copyright (c) 2021 Nordic Semiconductor ASA
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr/zephyr.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/pinctrl.h>

#include <nrfx_spim.h>
#include <nrfx_uarte.h>
#include <drivers/src/prs/nrfx_prs.h>

#define TRANSFER_LENGTH 10

/* Devicetree nodes corresponding to the peripherals to be used directly via
 * nrfx drivers (SPIM2 and UARTE2).
 */
#define SPIM_NODE  DT_NODELABEL(spi2)
#define UARTE_NODE DT_NODELABEL(uart2)

/* Devicetree node corresponding to the peripheral to be used via Zephyr SPI
 * driver (SPIM1), in the background transfer.
 */
#define SPI_DEV_NODE DT_NODELABEL(spi1)

static nrfx_spim_t spim = NRFX_SPIM_INSTANCE(2);
static nrfx_uarte_t uarte = NRFX_UARTE_INSTANCE(2);
static bool spim_initialized;
static bool uarte_initialized;
static volatile size_t received;
static K_SEM_DEFINE(transfer_finished, 0, 1);

static enum {
	PERFORM_TRANSFER,
	SWITCH_PERIPHERAL
} user_request;
static K_SEM_DEFINE(button_pressed, 0, 1);

static void sw0_handler(const struct device *dev, struct gpio_callback *cb,
			uint32_t pins)
{
	user_request = PERFORM_TRANSFER;
	k_sem_give(&button_pressed);
}

static void sw1_handler(const struct device *dev, struct gpio_callback *cb,
			uint32_t pins)
{
	user_request = SWITCH_PERIPHERAL;
	k_sem_give(&button_pressed);
}

static bool init_buttons(void)
{
	static const struct button_spec {
		struct gpio_dt_spec gpio;
		char const *label;
		char const *action;
		gpio_callback_handler_t handler;
	} btn_spec[] = {
		{
			GPIO_DT_SPEC_GET(DT_ALIAS(sw0), gpios),
			DT_PROP(DT_ALIAS(sw0), label),
			"trigger a transfer",
			sw0_handler
		},
		{
			GPIO_DT_SPEC_GET(DT_ALIAS(sw1), gpios),
			DT_PROP(DT_ALIAS(sw1), label),
			"switch the type of peripheral",
			sw1_handler
		},
	};
	static struct gpio_callback btn_cb_data[ARRAY_SIZE(btn_spec)];

	for (int i = 0; i < ARRAY_SIZE(btn_spec); ++i) {
		const struct button_spec *btn = &btn_spec[i];
		int ret;

		if (!device_is_ready(btn->gpio.port)) {
			printk("%s is not ready\n", btn->gpio.port->name);
			return false;
		}

		ret = gpio_pin_configure_dt(&btn->gpio, GPIO_INPUT);
		if (ret < 0) {
			printk("Failed to configure %s pin %d: %d\n",
				btn->gpio.port->name, btn->gpio.pin, ret);
			return false;
		}

		ret = gpio_pin_interrupt_configure_dt(&btn->gpio,
						      GPIO_INT_EDGE_TO_ACTIVE);
		if (ret < 0) {
			printk("Failed to configure interrupt on %s pin %d: %d\n",
				btn->gpio.port->name, btn->gpio.pin, ret);
			return false;
		}

		gpio_init_callback(&btn_cb_data[i],
				   btn->handler, BIT(btn->gpio.pin));
		gpio_add_callback(btn->gpio.port, &btn_cb_data[i]);
		printk("-> press \"%s\" to %s\n", btn->label, btn->action);
	}

	return true;
}

static void spim_handler(const nrfx_spim_evt_t *p_event, void *p_context)
{
	if (p_event->type == NRFX_SPIM_EVENT_DONE) {
		k_sem_give(&transfer_finished);
	}
}

static bool switch_to_spim(void)
{
	int ret;
	nrfx_err_t err;

	PINCTRL_DT_DEFINE(SPIM_NODE);

	if (spim_initialized) {
		return true;
	}

	/* If the UARTE is currently initialized, it must be deinitialized
	 * before the SPIM can be used.
	 */
	if (uarte_initialized) {
		nrfx_uarte_uninit(&uarte);
		uarte_initialized = false;
	}

	nrfx_spim_config_t spim_config = NRFX_SPIM_DEFAULT_CONFIG(
		NRFX_SPIM_PIN_NOT_USED,
		NRFX_SPIM_PIN_NOT_USED,
		NRFX_SPIM_PIN_NOT_USED,
		NRF_DT_GPIOS_TO_PSEL(SPIM_NODE, cs_gpios));
	spim_config.frequency = NRF_SPIM_FREQ_1M;
	spim_config.skip_gpio_cfg = true;
	spim_config.skip_psel_cfg = true;

	ret = pinctrl_apply_state(PINCTRL_DT_DEV_CONFIG_GET(SPIM_NODE),
				  PINCTRL_STATE_DEFAULT);
	if (ret < 0) {
		return ret;
	}

	err = nrfx_spim_init(&spim, &spim_config, spim_handler, NULL);
	if (err != NRFX_SUCCESS) {
		printk("nrfx_spim_init() failed: 0x%08x\n", err);
		return false;
	}

	spim_initialized = true;
	printk("Switched to SPIM\n");
	return true;
}

static bool spim_transfer(const uint8_t *tx_data, size_t tx_data_len,
			  uint8_t *rx_buf, size_t rx_buf_size)
{
	nrfx_err_t err;
	nrfx_spim_xfer_desc_t xfer_desc = {
		.p_tx_buffer = tx_data,
		.tx_length = tx_data_len,
		.p_rx_buffer = rx_buf,
		.rx_length = rx_buf_size,
	};

	err = nrfx_spim_xfer(&spim, &xfer_desc, 0);
	if (err != NRFX_SUCCESS) {
		printk("nrfx_spim_xfer() failed: 0x%08x\n", err);
		return false;
	}

	if (k_sem_take(&transfer_finished, K_MSEC(100)) != 0) {
		printk("SPIM transfer timeout\n");
		return false;
	}

	received = rx_buf_size;
	return true;
}

static void uarte_handler(const nrfx_uarte_event_t *p_event, void *p_context)
{
	if (p_event->type == NRFX_UARTE_EVT_RX_DONE) {
		received = p_event->data.rxtx.bytes;
		k_sem_give(&transfer_finished);
	} else if (p_event->type == NRFX_UARTE_EVT_ERROR) {
		received = 0;
		k_sem_give(&transfer_finished);
	}
}

static bool switch_to_uarte(void)
{
	int ret;
	nrfx_err_t err;

	PINCTRL_DT_DEFINE(UARTE_NODE);

	if (uarte_initialized) {
		return true;
	}

	/* If the SPIM is currently initialized, it must be deinitialized
	 * before the UARTE can be used.
	 */
	if (spim_initialized) {
		nrfx_spim_uninit(&spim);
		spim_initialized = false;
	}

	nrfx_uarte_config_t uarte_config = NRFX_UARTE_DEFAULT_CONFIG(
		NRF_UARTE_PSEL_DISCONNECTED,
		NRF_UARTE_PSEL_DISCONNECTED);
	uarte_config.baudrate = NRF_UARTE_BAUDRATE_1000000;
	uarte_config.skip_gpio_cfg = true;
	uarte_config.skip_psel_cfg = true;

	ret = pinctrl_apply_state(PINCTRL_DT_DEV_CONFIG_GET(UARTE_NODE),
				  PINCTRL_STATE_DEFAULT);
	if (ret < 0) {
		return ret;
	}

	err = nrfx_uarte_init(&uarte, &uarte_config, uarte_handler);
	if (err != NRFX_SUCCESS) {
		printk("nrfx_uarte_init() failed: 0x%08x\n", err);
		return false;
	}

	uarte_initialized = true;
	printk("Switched to UARTE\n");
	return true;
}

static bool uarte_transfer(const uint8_t *tx_data, size_t tx_data_len,
			   uint8_t *rx_buf, size_t rx_buf_size)
{
	nrfx_err_t err;

	err = nrfx_uarte_rx(&uarte, rx_buf, rx_buf_size);
	if (err != NRFX_SUCCESS) {
		printk("nrfx_uarte_rx() failed: 0x%08x\n", err);
		return false;
	}

	err = nrfx_uarte_tx(&uarte, tx_data, tx_data_len);
	if (err != NRFX_SUCCESS) {
		printk("nrfx_uarte_tx() failed: 0x%08x\n", err);
		return false;
	}

	if (k_sem_take(&transfer_finished, K_MSEC(100)) != 0) {
		/* The UARTE transfer finishes when the RX buffer is completely
		 * filled. In case the UARTE receives less data (or nothing at
		 * all) within the specified time, taking the semaphore will
		 * fail. In such case, stop the reception and end the transfer
		 * this way. Now taking the semaphore should be successful.
		 */
		nrfx_uarte_rx_abort(&uarte);
		if (k_sem_take(&transfer_finished, K_MSEC(10)) != 0) {
			printk("UARTE transfer timeout\n");
			return false;
		}
	}

	return true;
}

static void buffer_dump(const uint8_t *buffer, size_t length)
{
	for (int i = 0; i < length; ++i) {
		printk(" %02X", buffer[i]);
	}
	printk("\n");
}

static bool background_transfer(const struct device *spi_dev)
{
	static const uint8_t tx_buffer[] = "Nordic Semiconductor";
	static uint8_t rx_buffer[sizeof(tx_buffer)];
	static const struct spi_cs_control spi_dev_cs_ctrl = {
		.gpio_dev = DEVICE_DT_GET(DT_GPIO_CTLR(SPI_DEV_NODE, cs_gpios)),
		.gpio_pin = DT_GPIO_PIN(SPI_DEV_NODE, cs_gpios),
		.gpio_dt_flags = DT_GPIO_FLAGS(SPI_DEV_NODE, cs_gpios)
	};
	static const struct spi_config spi_dev_cfg = {
		.operation = SPI_OP_MODE_MASTER | SPI_WORD_SET(8) |
			     SPI_TRANSFER_MSB,
		.frequency = 1000000,
		.cs = &spi_dev_cs_ctrl
	};
	static const struct spi_buf tx_buf = {
		.buf = (void *)tx_buffer,
		.len = sizeof(tx_buffer)
	};
	static const struct spi_buf_set tx = {
		.buffers = &tx_buf,
		.count = 1
	};
	static const struct spi_buf rx_buf = {
		.buf = rx_buffer,
		.len = sizeof(rx_buffer),
	};
	static const struct spi_buf_set rx = {
		.buffers = &rx_buf,
		.count = 1
	};
	int ret;

	printk("-- Background transfer on \"%s\" --\n", spi_dev->name);

	ret = spi_transceive(spi_dev, &spi_dev_cfg, &tx, &rx);
	if (ret < 0) {
		printk("Background transfer failed: %d\n", ret);
		return false;
	}

	printk("Tx:");
	buffer_dump(tx_buf.buf, tx_buf.len);
	printk("Rx:");
	buffer_dump(rx_buf.buf, rx_buf.len);
	return true;
}

void main(void)
{
	printk("nrfx PRS example on %s\n", CONFIG_BOARD);

	static uint8_t tx_buffer[TRANSFER_LENGTH];
	static uint8_t rx_buffer[sizeof(tx_buffer)];
	uint8_t fill_value = 0;
	const struct device *spi_dev = DEVICE_DT_GET(SPI_DEV_NODE);

	if (!device_is_ready(spi_dev)) {
		printk("%s is not ready\n", spi_dev->name);
		return;
	}

	/* Install a shared interrupt handler for peripherals used via
	 * nrfx drivers. It will dispatch the interrupt handling to the
	 * driver for the currently initialized peripheral.
	 */
	BUILD_ASSERT(
		DT_IRQ(SPIM_NODE, priority) == DT_IRQ(UARTE_NODE, priority),
		"Interrupt priorities for " DT_LABEL(SPIM_NODE) " and "
		DT_LABEL(UARTE_NODE) " need to be equal.");
	IRQ_CONNECT(DT_IRQN(SPIM_NODE), DT_IRQ(SPIM_NODE, priority),
		    nrfx_isr, nrfx_prs_box_2_irq_handler, 0);

	if (!init_buttons()) {
		return;
	}

	/* Initially use the SPIM. */
	if (!switch_to_spim()) {
		return;
	}

	for (;;) {
		/* Wait 5 seconds for the user to press a button. If no button
		 * is pressed within this time, perform the background transfer.
		 * Otherwise, realize the operation requested by the user.
		 */
		if (k_sem_take(&button_pressed, K_MSEC(5000)) != 0) {
			if (!background_transfer(spi_dev)) {
				return;
			}
		} else {
			bool res;

			switch (user_request) {
			case PERFORM_TRANSFER:
				printk("-- %s transfer --\n",
					spim_initialized ? "SPIM" : "UARTE");
				received = 0;
				for (int i = 0; i < sizeof(tx_buffer); ++i) {
					tx_buffer[i] = fill_value++;
				}
				res = (spim_initialized
				       ? spim_transfer(tx_buffer,
						       sizeof(tx_buffer),
						       rx_buffer,
						       sizeof(rx_buffer))
				       : uarte_transfer(tx_buffer,
							sizeof(tx_buffer),
							rx_buffer,
							sizeof(rx_buffer)));
				if (!res) {
					return;
				}

				printk("Tx:");
				buffer_dump(tx_buffer, sizeof(tx_buffer));
				printk("Rx:");
				buffer_dump(rx_buffer, received);
				break;

			case SWITCH_PERIPHERAL:
				res = (spim_initialized
				       ? switch_to_uarte()
				       : switch_to_spim());
				if (!res) {
					return;
				}
				break;
			}
		}
	}
}