Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
/*
 * Copyright (c) 2016 Freescale Semiconductor, Inc.
 * Copyright (c) 2018 Phytec Messtechnik GmbH
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT nxp_fxos8700

#include "fxos8700.h"
#include <zephyr/sys/util.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/logging/log.h>
#include <stdlib.h>

LOG_MODULE_REGISTER(FXOS8700, CONFIG_SENSOR_LOG_LEVEL);

/* Convert the range (8g, 4g, 2g) to the encoded FS register field value */
#define RANGE2FS(x) (__builtin_ctz(x) - 1)

static int fxos8700_set_odr(const struct device *dev,
		const struct sensor_value *val)
{
	const struct fxos8700_config *config = dev->config;
	struct fxos8700_data *data = dev->data;
	uint8_t dr;
	enum fxos8700_power power;

#ifdef CONFIG_FXOS8700_MODE_HYBRID
	/* ODR is halved in hybrid mode */
	if (val->val1 == 400 && val->val2 == 0) {
		dr = FXOS8700_CTRLREG1_DR_RATE_800;
	} else if (val->val1 == 200 && val->val2 == 0) {
		dr = FXOS8700_CTRLREG1_DR_RATE_400;
	} else if (val->val1 == 100 && val->val2 == 0) {
		dr = FXOS8700_CTRLREG1_DR_RATE_200;
	} else if (val->val1 == 50 && val->val2 == 0) {
		dr = FXOS8700_CTRLREG1_DR_RATE_100;
	} else if (val->val1 == 25 && val->val2 == 0) {
		dr = FXOS8700_CTRLREG1_DR_RATE_50;
	} else if (val->val1 == 6 && val->val2 == 250000) {
		dr = FXOS8700_CTRLREG1_DR_RATE_12_5;
	} else if (val->val1 == 3 && val->val2 == 125000) {
		dr = FXOS8700_CTRLREG1_DR_RATE_6_25;
	} else if (val->val1 == 0 && val->val2 == 781300) {
		dr = FXOS8700_CTRLREG1_DR_RATE_1_56;
	} else {
		return -EINVAL;
	}
#else
	if (val->val1 == 800 && val->val2 == 0) {
		dr = FXOS8700_CTRLREG1_DR_RATE_800;
	} else if (val->val1 == 400 && val->val2 == 0) {
		dr = FXOS8700_CTRLREG1_DR_RATE_400;
	} else if (val->val1 == 200 && val->val2 == 0) {
		dr = FXOS8700_CTRLREG1_DR_RATE_200;
	} else if (val->val1 == 100 && val->val2 == 0) {
		dr = FXOS8700_CTRLREG1_DR_RATE_100;
	} else if (val->val1 == 50 && val->val2 == 0) {
		dr = FXOS8700_CTRLREG1_DR_RATE_50;
	} else if (val->val1 == 12 && val->val2 == 500000) {
		dr = FXOS8700_CTRLREG1_DR_RATE_12_5;
	} else if (val->val1 == 6 && val->val2 == 250000) {
		dr = FXOS8700_CTRLREG1_DR_RATE_6_25;
	} else if (val->val1 == 1 && val->val2 == 562500) {
		dr = FXOS8700_CTRLREG1_DR_RATE_1_56;
	} else {
		return -EINVAL;
	}
#endif

	LOG_DBG("Set ODR to 0x%x", dr);

	/*
	 * Modify FXOS8700_REG_CTRLREG1 can only occur when the device
	 * is in standby mode. Get the current power mode to restore it later.
	 */
	if (fxos8700_get_power(dev, &power)) {
		LOG_ERR("Could not get power mode");
		return -EIO;
	}

	/* Set standby power mode */
	if (fxos8700_set_power(dev, FXOS8700_POWER_STANDBY)) {
		LOG_ERR("Could not set standby");
		return -EIO;
	}

	/* Change the attribute and restore power mode. */
	return i2c_reg_update_byte(data->i2c, config->i2c_address,
		FXOS8700_REG_CTRLREG1,
		FXOS8700_CTRLREG1_DR_MASK | FXOS8700_CTRLREG1_ACTIVE_MASK,
		dr | power);
}

static int fxos8700_set_mt_ths(const struct device *dev,
			       const struct sensor_value *val)
{
#ifdef CONFIG_FXOS8700_MOTION
	const struct fxos8700_config *config = dev->config;
	struct fxos8700_data *data = dev->data;
	uint64_t micro_ms2 = abs(val->val1 * 1000000LL + val->val2);
	uint64_t ths = micro_ms2 / FXOS8700_FF_MT_THS_SCALE;

	if (ths > FXOS8700_FF_MT_THS_MASK) {
		LOG_ERR("Threshold value is out of range");
		return -EINVAL;
	}

	LOG_DBG("Set FF_MT_THS to %d", (uint8_t)ths);

	return i2c_reg_update_byte(data->i2c, config->i2c_address,
				   FXOS8700_REG_FF_MT_THS,
				   FXOS8700_FF_MT_THS_MASK, (uint8_t)ths);
#else
	return -ENOTSUP;
#endif
}

static int fxos8700_attr_set(const struct device *dev,
			     enum sensor_channel chan,
			     enum sensor_attribute attr,
			     const struct sensor_value *val)
{
	if (chan != SENSOR_CHAN_ALL) {
		return -ENOTSUP;
	}

	if (attr == SENSOR_ATTR_SAMPLING_FREQUENCY) {
		return fxos8700_set_odr(dev, val);
	} else if (attr == SENSOR_ATTR_SLOPE_TH) {
		return fxos8700_set_mt_ths(dev, val);
	} else {
		return -ENOTSUP;
	}

	return 0;
}

static int fxos8700_sample_fetch(const struct device *dev,
				 enum sensor_channel chan)
{
	const struct fxos8700_config *config = dev->config;
	struct fxos8700_data *data = dev->data;
	uint8_t buffer[FXOS8700_MAX_NUM_BYTES];
	uint8_t num_bytes;
	int16_t *raw;
	int ret = 0;
	int i;

	if (chan != SENSOR_CHAN_ALL) {
		LOG_ERR("Unsupported sensor channel");
		return -ENOTSUP;
	}

	k_sem_take(&data->sem, K_FOREVER);

	/* Read all the channels in one I2C transaction. The number of bytes to
	 * read and the starting register address depend on the mode
	 * configuration (accel-only, mag-only, or hybrid).
	 */
	num_bytes = config->num_channels * FXOS8700_BYTES_PER_CHANNEL_NORMAL;

	__ASSERT(num_bytes <= sizeof(buffer), "Too many bytes to read");

	if (i2c_burst_read(data->i2c, config->i2c_address, config->start_addr,
			   buffer, num_bytes)) {
		LOG_ERR("Could not fetch sample");
		ret = -EIO;
		goto exit;
	}

	/* Parse the buffer into raw channel data (16-bit integers). To save
	 * RAM, store the data in raw format and wait to convert to the
	 * normalized sensor_value type until later.
	 */
	__ASSERT(config->start_channel + config->num_channels
			<= ARRAY_SIZE(data->raw),
			"Too many channels");

	raw = &data->raw[config->start_channel];

	for (i = 0; i < num_bytes; i += 2) {
		*raw++ = (buffer[i] << 8) | (buffer[i+1]);
	}

#ifdef CONFIG_FXOS8700_TEMP
	if (i2c_reg_read_byte(data->i2c, config->i2c_address, FXOS8700_REG_TEMP,
			      &data->temp)) {
		LOG_ERR("Could not fetch temperature");
		ret = -EIO;
		goto exit;
	}
#endif

exit:
	k_sem_give(&data->sem);

	return ret;
}

static void fxos8700_accel_convert(struct sensor_value *val, int16_t raw,
				   uint8_t range)
{
	uint8_t frac_bits;
	int64_t micro_ms2;

	/* The range encoding is convenient to compute the number of fractional
	 * bits:
	 * - 2g mode (fs = 0) has 14 fractional bits
	 * - 4g mode (fs = 1) has 13 fractional bits
	 * - 8g mode (fs = 2) has 12 fractional bits
	 */
	frac_bits = 14 - RANGE2FS(range);

	/* Convert units to micro m/s^2. Intermediate results before the shift
	 * are 40 bits wide.
	 */
	micro_ms2 = (raw * SENSOR_G) >> frac_bits;

	/* The maximum possible value is 8g, which in units of micro m/s^2
	 * always fits into 32-bits. Cast down to int32_t so we can use a
	 * faster divide.
	 */
	val->val1 = (int32_t) micro_ms2 / 1000000;
	val->val2 = (int32_t) micro_ms2 % 1000000;
}

static void fxos8700_magn_convert(struct sensor_value *val, int16_t raw)
{
	int32_t micro_g;

	/* Convert units to micro Gauss. Raw magnetic data always has a
	 * resolution of 0.1 uT/LSB, which is equivalent to 0.001 G/LSB.
	 */
	micro_g = raw * 1000;

	val->val1 = micro_g / 1000000;
	val->val2 = micro_g % 1000000;
}

#ifdef CONFIG_FXOS8700_TEMP
static void fxos8700_temp_convert(struct sensor_value *val, int8_t raw)
{
	int32_t micro_c;

	/* Convert units to micro Celsius. Raw temperature data always has a
	 * resolution of 0.96 deg C/LSB.
	 */
	micro_c = raw * 960 * 1000;

	val->val1 = micro_c / 1000000;
	val->val2 = micro_c % 1000000;
}
#endif

static int fxos8700_channel_get(const struct device *dev,
				enum sensor_channel chan,
				struct sensor_value *val)
{
	const struct fxos8700_config *config = dev->config;
	struct fxos8700_data *data = dev->data;
	int start_channel;
	int num_channels;
	int16_t *raw;
	int ret;
	int i;

	k_sem_take(&data->sem, K_FOREVER);

	/* Start with an error return code by default, then clear it if we find
	 * a supported sensor channel.
	 */
	ret = -ENOTSUP;

	/* If we're in an accelerometer-enabled mode (accel-only or hybrid),
	 * then convert raw accelerometer data to the normalized sensor_value
	 * type.
	 */
	if (config->mode != FXOS8700_MODE_MAGN) {
		switch (chan) {
		case SENSOR_CHAN_ACCEL_X:
			start_channel = FXOS8700_CHANNEL_ACCEL_X;
			num_channels = 1;
			break;
		case SENSOR_CHAN_ACCEL_Y:
			start_channel = FXOS8700_CHANNEL_ACCEL_Y;
			num_channels = 1;
			break;
		case SENSOR_CHAN_ACCEL_Z:
			start_channel = FXOS8700_CHANNEL_ACCEL_Z;
			num_channels = 1;
			break;
		case SENSOR_CHAN_ACCEL_XYZ:
			start_channel = FXOS8700_CHANNEL_ACCEL_X;
			num_channels = 3;
			break;
		default:
			start_channel = 0;
			num_channels = 0;
			break;
		}

		raw = &data->raw[start_channel];
		for (i = 0; i < num_channels; i++) {
			fxos8700_accel_convert(val++, *raw++, config->range);
		}

		if (num_channels > 0) {
			ret = 0;
		}
	}

	/* If we're in an magnetometer-enabled mode (mag-only or hybrid), then
	 * convert raw magnetometer data to the normalized sensor_value type.
	 */
	if (config->mode != FXOS8700_MODE_ACCEL) {
		switch (chan) {
		case SENSOR_CHAN_MAGN_X:
			start_channel = FXOS8700_CHANNEL_MAGN_X;
			num_channels = 1;
			break;
		case SENSOR_CHAN_MAGN_Y:
			start_channel = FXOS8700_CHANNEL_MAGN_Y;
			num_channels = 1;
			break;
		case SENSOR_CHAN_MAGN_Z:
			start_channel = FXOS8700_CHANNEL_MAGN_Z;
			num_channels = 1;
			break;
		case SENSOR_CHAN_MAGN_XYZ:
			start_channel = FXOS8700_CHANNEL_MAGN_X;
			num_channels = 3;
			break;
		default:
			start_channel = 0;
			num_channels = 0;
			break;
		}

		raw = &data->raw[start_channel];
		for (i = 0; i < num_channels; i++) {
			fxos8700_magn_convert(val++, *raw++);
		}

		if (num_channels > 0) {
			ret = 0;
		}
#ifdef CONFIG_FXOS8700_TEMP
		if (chan == SENSOR_CHAN_DIE_TEMP) {
			fxos8700_temp_convert(val, data->temp);
			ret = 0;
		}
#endif
	}

	if (ret != 0) {
		LOG_ERR("Unsupported sensor channel");
	}

	k_sem_give(&data->sem);

	return ret;
}

int fxos8700_get_power(const struct device *dev, enum fxos8700_power *power)
{
	const struct fxos8700_config *config = dev->config;
	struct fxos8700_data *data = dev->data;
	uint8_t val = *power;

	if (i2c_reg_read_byte(data->i2c, config->i2c_address,
			      FXOS8700_REG_CTRLREG1,
			      &val)) {
		LOG_ERR("Could not get power setting");
		return -EIO;
	}
	val &= FXOS8700_M_CTRLREG1_MODE_MASK;
	*power = val;

	return 0;
}

int fxos8700_set_power(const struct device *dev, enum fxos8700_power power)
{
	const struct fxos8700_config *config = dev->config;
	struct fxos8700_data *data = dev->data;

	return i2c_reg_update_byte(data->i2c, config->i2c_address,
				   FXOS8700_REG_CTRLREG1,
				   FXOS8700_CTRLREG1_ACTIVE_MASK,
				   power);
}

static int fxos8700_init(const struct device *dev)
{
	const struct fxos8700_config *config = dev->config;
	struct fxos8700_data *data = dev->data;
	struct sensor_value odr = {.val1 = 6, .val2 = 250000};
	const struct device *rst;

	/* Get the I2C device */
	data->i2c = device_get_binding(config->i2c_name);
	if (data->i2c == NULL) {
		LOG_ERR("Could not find I2C device");
		return -EINVAL;
	}

	if (config->reset_name) {
		/* Pulse RST pin high to perform a hardware reset of
		 * the sensor.
		 */
		rst = device_get_binding(config->reset_name);
		if (!rst) {
			LOG_ERR("Could not find reset GPIO device");
			return -EINVAL;
		}

		gpio_pin_configure(rst, config->reset_pin,
				   GPIO_OUTPUT_INACTIVE | config->reset_flags);

		gpio_pin_set(rst, config->reset_pin, 1);
		/* The datasheet does not mention how long to pulse
		 * the RST pin high in order to reset. Stay on the
		 * safe side and pulse for 1 millisecond.
		 */
		k_busy_wait(USEC_PER_MSEC);
		gpio_pin_set(rst, config->reset_pin, 0);
	} else {
		/* Software reset the sensor. Upon issuing a software
		 * reset command over the I2C interface, the sensor
		 * immediately resets and does not send any
		 * acknowledgment (ACK) of the written byte to the
		 * master. Therefore, do not check the return code of
		 * the I2C transaction.
		 */
		i2c_reg_write_byte(data->i2c, config->i2c_address,
				   FXOS8700_REG_CTRLREG2,
				   FXOS8700_CTRLREG2_RST_MASK);
	}

	/* The sensor requires us to wait 1 ms after a reset before
	 * attempting further communications.
	 */
	k_busy_wait(USEC_PER_MSEC);

	/*
	 * Read the WHOAMI register to make sure we are talking to FXOS8700 or
	 * compatible device and not some other type of device that happens to
	 * have the same I2C address.
	 */
	if (i2c_reg_read_byte(data->i2c, config->i2c_address,
			      FXOS8700_REG_WHOAMI, &data->whoami)) {
		LOG_ERR("Could not get WHOAMI value");
		return -EIO;
	}

	switch (data->whoami) {
	case WHOAMI_ID_MMA8451:
	case WHOAMI_ID_MMA8652:
	case WHOAMI_ID_MMA8653:
		if (config->mode != FXOS8700_MODE_ACCEL) {
			LOG_ERR("Device 0x%x supports only "
				    "accelerometer mode",
				    data->whoami);
			return -EIO;
		}
		break;
	case WHOAMI_ID_FXOS8700:
		LOG_DBG("Device ID 0x%x", data->whoami);
		break;
	default:
		LOG_ERR("Unknown Device ID 0x%x", data->whoami);
		return -EIO;
	}

	if (fxos8700_set_odr(dev, &odr)) {
		LOG_ERR("Could not set default data rate");
		return -EIO;
	}

	if (i2c_reg_update_byte(data->i2c, config->i2c_address,
				FXOS8700_REG_CTRLREG2,
				FXOS8700_CTRLREG2_MODS_MASK,
				config->power_mode)) {
		LOG_ERR("Could not set power scheme");
		return -EIO;
	}

	/* Set the mode (accel-only, mag-only, or hybrid) */
	if (i2c_reg_update_byte(data->i2c, config->i2c_address,
				FXOS8700_REG_M_CTRLREG1,
				FXOS8700_M_CTRLREG1_MODE_MASK,
				config->mode)) {
		LOG_ERR("Could not set mode");
		return -EIO;
	}

	/* Set hybrid autoincrement so we can read accel and mag channels in
	 * one I2C transaction.
	 */
	if (i2c_reg_update_byte(data->i2c, config->i2c_address,
				FXOS8700_REG_M_CTRLREG2,
				FXOS8700_M_CTRLREG2_AUTOINC_MASK,
				FXOS8700_M_CTRLREG2_AUTOINC_MASK)) {
		LOG_ERR("Could not set hybrid autoincrement");
		return -EIO;
	}

	/* Set the full-scale range */
	if (i2c_reg_update_byte(data->i2c, config->i2c_address,
				FXOS8700_REG_XYZ_DATA_CFG,
				FXOS8700_XYZ_DATA_CFG_FS_MASK,
				RANGE2FS(config->range))) {
		LOG_ERR("Could not set range");
		return -EIO;
	}

	k_sem_init(&data->sem, 0, K_SEM_MAX_LIMIT);

#if CONFIG_FXOS8700_TRIGGER
	if (fxos8700_trigger_init(dev)) {
		LOG_ERR("Could not initialize interrupts");
		return -EIO;
	}
#endif

	/* Set active */
	if (fxos8700_set_power(dev, FXOS8700_POWER_ACTIVE)) {
		LOG_ERR("Could not set active");
		return -EIO;
	}
	k_sem_give(&data->sem);

	LOG_DBG("Init complete");

	return 0;
}

static const struct sensor_driver_api fxos8700_driver_api = {
	.sample_fetch = fxos8700_sample_fetch,
	.channel_get = fxos8700_channel_get,
	.attr_set = fxos8700_attr_set,
#if CONFIG_FXOS8700_TRIGGER
	.trigger_set = fxos8700_trigger_set,
#endif
};

#define FXOS8700_MODE_PROPS_ACCEL					\
	.mode = FXOS8700_MODE_ACCEL,					\
	.start_addr = FXOS8700_REG_OUTXMSB,				\
	.start_channel = FXOS8700_CHANNEL_ACCEL_X,			\
	.num_channels = FXOS8700_NUM_ACCEL_CHANNELS,

#define FXOS8700_MODE_PROPS_MAGN					\
	.mode = FXOS8700_MODE_MAGN,					\
	.start_addr = FXOS8700_REG_M_OUTXMSB,				\
	.start_channel = FXOS8700_CHANNEL_MAGN_X,			\
	.num_channels = FXOS8700_NUM_MAG_CHANNELS,

#define FXOS8700_MODE_PROPS_HYBRID					\
	.mode = FXOS8700_MODE_HYBRID,					\
	.start_addr = FXOS8700_REG_OUTXMSB,				\
	.start_channel = FXOS8700_CHANNEL_ACCEL_X,			\
	.num_channels = FXOS8700_NUM_HYBRID_CHANNELS,			\

#define FXOS8700_MODE(n)						\
	COND_CODE_1(CONFIG_FXOS8700_MODE_ACCEL,				\
		    (FXOS8700_MODE_PROPS_ACCEL),			\
		    (COND_CODE_1(CONFIG_FXOS8700_MODE_MAGN,		\
		    (FXOS8700_MODE_PROPS_MAGN),				\
		    (FXOS8700_MODE_PROPS_HYBRID))))

#define FXOS8700_RESET_PROPS(n)						\
	.reset_name = DT_INST_GPIO_LABEL(n, reset_gpios),		\
	.reset_pin = DT_INST_GPIO_PIN(n, reset_gpios),			\
	.reset_flags = DT_INST_GPIO_FLAGS(n, reset_gpios),

#define FXOS8700_RESET(n)						\
	COND_CODE_1(DT_INST_NODE_HAS_PROP(n, reset_gpios),		\
		    (FXOS8700_RESET_PROPS(n)),				\
		    ())

#define FXOS8700_INTM_PROPS(n, m)					\
	.gpio_name = DT_INST_GPIO_LABEL(n, int##m##_gpios),		\
	.gpio_pin = DT_INST_GPIO_PIN(n, int##m##_gpios),		\
	.gpio_flags = DT_INST_GPIO_FLAGS(n, int##m##_gpios),

#define FXOS8700_INT_PROPS(n)						\
	COND_CODE_1(CONFIG_FXOS8700_DRDY_INT1,				\
		    (FXOS8700_INTM_PROPS(n, 1)),			\
		    (FXOS8700_INTM_PROPS(n, 2)))

#define FXOS8700_INT(n)							\
	COND_CODE_1(CONFIG_FXOS8700_TRIGGER,				\
		    (FXOS8700_INT_PROPS(n)),				\
		    ())

#define FXOS8700_PULSE_PROPS(n)						\
	.pulse_cfg = DT_INST_PROP(n, pulse_cfg),			\
	.pulse_ths[0] = DT_INST_PROP(n, pulse_thsx),			\
	.pulse_ths[1] = DT_INST_PROP(n, pulse_thsy),			\
	.pulse_ths[2] = DT_INST_PROP(n, pulse_thsz),			\
	.pulse_tmlt = DT_INST_PROP(n, pulse_tmlt),			\
	.pulse_ltcy = DT_INST_PROP(n, pulse_ltcy),			\
	.pulse_wind = DT_INST_PROP(n, pulse_wind),

#define FXOS8700_PULSE(n)						\
	COND_CODE_1(CONFIG_FXOS8700_PULSE,				\
		    (FXOS8700_PULSE_PROPS(n)),				\
		    ())

#define FXOS8700_MAG_VECM_PROPS(n)					\
	.mag_vecm_cfg = DT_INST_PROP(n, mag_vecm_cfg),			\
	.mag_vecm_ths[0] = DT_INST_PROP(n, mag_vecm_ths_msb),		\
	.mag_vecm_ths[1] = DT_INST_PROP(n, mag_vecm_ths_lsb),

#define FXOS8700_MAG_VECM(n)						\
	COND_CODE_1(CONFIG_FXOS8700_MAG_VECM,				\
		    (FXOS8700_MAG_VECM_PROPS(n)),			\
		    ())

#define FXOS8700_INIT(n)						\
	static const struct fxos8700_config fxos8700_config_##n = {	\
		.i2c_name = DT_INST_BUS_LABEL(n),			\
		.i2c_address = DT_INST_REG_ADDR(n),			\
		.power_mode = DT_INST_PROP(n, power_mode),		\
		.range = DT_INST_PROP(n, range),			\
		FXOS8700_RESET(n)					\
		FXOS8700_MODE(n)					\
		FXOS8700_INT(n)						\
		FXOS8700_PULSE(n)					\
		FXOS8700_MAG_VECM(n)					\
	};								\
									\
	static struct fxos8700_data fxos8700_data_##n;			\
									\
	DEVICE_DT_INST_DEFINE(n,					\
			    fxos8700_init,				\
			    NULL,					\
			    &fxos8700_data_##n,				\
			    &fxos8700_config_##n,			\
			    POST_KERNEL,				\
			    CONFIG_SENSOR_INIT_PRIORITY,		\
			    &fxos8700_driver_api);

DT_INST_FOREACH_STATUS_OKAY(FXOS8700_INIT)