Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 | /* ieee802154_cc1200.c - TI CC1200 driver */ #define DT_DRV_COMPAT ti_cc1200 /* * Copyright (c) 2017 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #define LOG_MODULE_NAME ieee802154_cc1200 #define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL #include <zephyr/logging/log.h> LOG_MODULE_REGISTER(LOG_MODULE_NAME); #include <errno.h> #include <zephyr/kernel.h> #include <zephyr/arch/cpu.h> #include <zephyr/debug/stack.h> #include <zephyr/device.h> #include <zephyr/init.h> #include <zephyr/net/net_if.h> #include <zephyr/net/net_pkt.h> #include <zephyr/sys/byteorder.h> #include <string.h> #include <zephyr/random/rand32.h> #include <zephyr/drivers/spi.h> #include <zephyr/drivers/gpio.h> #include <zephyr/net/ieee802154_radio.h> #include "ieee802154_cc1200.h" #include "ieee802154_cc1200_rf.h" /* ToDo: supporting 802.15.4g will require GPIO2 * used as CC1200_GPIO_SIG_RXFIFO_THR * * Note: GPIO3 is unused. */ #define CC1200_IOCFG3 CC1200_GPIO_SIG_MARC_2PIN_STATUS_0 #define CC1200_IOCFG2 CC1200_GPIO_SIG_MARC_2PIN_STATUS_1 #define CC1200_IOCFG0 CC1200_GPIO_SIG_PKT_SYNC_RXTX /*********************** * Debugging functions * **********************/ static void cc1200_print_status(uint8_t status) { if (status == CC1200_STATUS_IDLE) { LOG_DBG("Idling"); } else if (status == CC1200_STATUS_RX) { LOG_DBG("Receiving"); } else if (status == CC1200_STATUS_TX) { LOG_DBG("Transmitting"); } else if (status == CC1200_STATUS_FSTXON) { LOG_DBG("FS TX on"); } else if (status == CC1200_STATUS_CALIBRATE) { LOG_DBG("Calibrating"); } else if (status == CC1200_STATUS_SETTLING) { LOG_DBG("Settling"); } else if (status == CC1200_STATUS_RX_FIFO_ERROR) { LOG_DBG("RX FIFO error!"); } else if (status == CC1200_STATUS_TX_FIFO_ERROR) { LOG_DBG("TX FIFO error!"); } } /********************* * Generic functions * ********************/ bool z_cc1200_access_reg(const struct device *dev, bool read, uint8_t addr, void *data, size_t length, bool extended, bool burst) { const struct cc1200_config *config = dev->config; uint8_t cmd_buf[2]; const struct spi_buf buf[2] = { { .buf = cmd_buf, .len = extended ? 2 : 1, }, { .buf = data, .len = length, } }; struct spi_buf_set tx = { .buffers = buf }; cmd_buf[0] = 0U; if (burst) { cmd_buf[0] |= CC1200_ACCESS_BURST; } if (extended) { cmd_buf[0] |= CC1200_REG_EXTENDED_ADDRESS; cmd_buf[1] = addr; } else { cmd_buf[0] |= addr; } if (read) { const struct spi_buf_set rx = { .buffers = buf, .count = 2 }; cmd_buf[0] |= CC1200_ACCESS_RD; tx.count = 1; return (spi_transceive_dt(&config->bus, &tx, &rx) == 0); } /* CC1200_ACCESS_WR is 0 so no need to play with it */ tx.count = data ? 2 : 1; return (spi_write_dt(&config->bus, &tx) == 0); } static inline uint8_t *get_mac(const struct device *dev) { struct cc1200_context *cc1200 = dev->data; #if defined(CONFIG_IEEE802154_CC1200_RANDOM_MAC) uint32_t *ptr = (uint32_t *)(cc1200->mac_addr + 4); UNALIGNED_PUT(sys_rand32_get(), ptr); cc1200->mac_addr[7] = (cc1200->mac_addr[7] & ~0x01) | 0x02; #else cc1200->mac_addr[4] = CONFIG_IEEE802154_CC1200_MAC4; cc1200->mac_addr[5] = CONFIG_IEEE802154_CC1200_MAC5; cc1200->mac_addr[6] = CONFIG_IEEE802154_CC1200_MAC6; cc1200->mac_addr[7] = CONFIG_IEEE802154_CC1200_MAC7; #endif cc1200->mac_addr[0] = 0x00; cc1200->mac_addr[1] = 0x12; cc1200->mac_addr[2] = 0x4b; cc1200->mac_addr[3] = 0x00; return cc1200->mac_addr; } static uint8_t get_status(const struct device *dev) { uint8_t val; if (z_cc1200_access_reg(dev, true, CC1200_INS_SNOP, &val, 1, false, false)) { /* See Section 3.1.2 */ return val & CC1200_STATUS_MASK; } /* We cannot get the status, so let's assume about readiness */ return CC1200_STATUS_CHIP_NOT_READY; } /****************** * GPIO functions * *****************/ static inline void gpio0_int_handler(const struct device *port, struct gpio_callback *cb, uint32_t pins) { struct cc1200_context *cc1200 = CONTAINER_OF(cb, struct cc1200_context, rx_tx_cb); if (atomic_get(&cc1200->tx) == 1) { if (atomic_get(&cc1200->tx_start) == 0) { atomic_set(&cc1200->tx_start, 1); } else { atomic_set(&cc1200->tx, 0); } k_sem_give(&cc1200->tx_sync); } else { if (atomic_get(&cc1200->rx) == 1) { k_sem_give(&cc1200->rx_lock); atomic_set(&cc1200->rx, 0); } else { atomic_set(&cc1200->rx, 1); } } } static void enable_gpio0_interrupt(const struct device *dev, bool enable) { const struct cc1200_config *cfg = dev->config; gpio_flags_t mode = enable ? GPIO_INT_EDGE_TO_ACTIVE : GPIO_INT_DISABLE; gpio_pin_interrupt_configure_dt(&cfg->interrupt, mode); } static int setup_gpio_callback(const struct device *dev) { const struct cc1200_config *cfg = dev->config; struct cc1200_context *cc1200 = dev->data; gpio_init_callback(&cc1200->rx_tx_cb, gpio0_int_handler, BIT(cfg->interrupt.pin)); if (gpio_add_callback(cfg->interrupt.port, &cc1200->rx_tx_cb) != 0) { return -EIO; } return 0; } /**************** * RF functions * ***************/ static uint8_t get_lo_divider(const struct device *dev) { /* See Table 34 */ return FSD_BANDSELECT(read_reg_fs_cfg(dev)) << 1; } static bool write_reg_freq(const struct device *dev, uint32_t freq) { uint8_t freq_data[3]; freq_data[0] = (uint8_t)((freq & 0x00FF0000) >> 16); freq_data[1] = (uint8_t)((freq & 0x0000FF00) >> 8); freq_data[2] = (uint8_t)(freq & 0x000000FF); return z_cc1200_access_reg(dev, false, CC1200_REG_FREQ2, freq_data, 3, true, true); } /* See Section 9.12 - RF programming * * The given formula in datasheet cannot be simply applied here, where CPU * limits us to unsigned integers of 32 bits. Instead, "slicing" it to * parts that fits in such limit is a solution which is applied below. * * The original formula being (freqoff is neglected): * Freq = ( RF * Lo_Div * 2^16 ) / Xtal * * RF and Xtal are, from here, expressed in KHz. * * It first calculates the targeted RF with given ChanCenterFreq0, channel * spacing and the channel number. * * The calculation will slice the targeted RF by multiple of 10: * 10^n where n is in [5, 3]. The rest, below 1000, is taken at once. * Let's take the 434000 KHz RF for instance: * it will be "sliced" in 3 parts: 400000, 30000, 4000. * Or the 169406 KHz RF, 4 parts: 100000, 60000, 9000, 406. * * This permits also to play with Xtal to keep the result big enough to avoid * losing precision. A factor - growing as much as Xtal decrease - is then * applied to get to the proper result. Which one is rounded to the nearest * integer, again to get a bit better precision. * * In the end, this algorithm below works for all the supported bands by CC1200. * User does not need to pass anything extra besides the nominal settings: no * pre-computed part or else. */ static uint32_t rf_evaluate_freq_setting(const struct device *dev, uint32_t chan) { struct cc1200_context *ctx = dev->data; uint32_t xtal = CONFIG_IEEE802154_CC1200_XOSC; uint32_t mult_10 = 100000U; uint32_t factor = 1U; uint32_t freq = 0U; uint32_t rf, lo_div; rf = ctx->rf_settings->chan_center_freq0 + ((chan * (uint32_t)ctx->rf_settings->channel_spacing) / 10U); lo_div = get_lo_divider(dev); LOG_DBG("Calculating freq for %u KHz RF (%u)", rf, lo_div); while (rf > 0) { uint32_t hz, freq_tmp, rst; if (rf < 1000) { hz = rf; } else { hz = rf / mult_10; hz *= mult_10; } if (hz < 1000) { freq_tmp = (hz * lo_div * 65536U) / xtal; } else { freq_tmp = ((hz * lo_div) / xtal) * 65536U; } rst = freq_tmp % factor; freq_tmp /= factor; if (factor > 1 && (rst/(factor/10U)) > 5) { freq_tmp++; } freq += freq_tmp; factor *= 10U; mult_10 /= 10U; xtal /= 10U; rf -= hz; } LOG_DBG("FREQ is 0x%06X", freq); return freq; } static bool rf_install_settings(const struct device *dev, const struct cc1200_rf_registers_set *rf_settings) { struct cc1200_context *cc1200 = dev->data; if (!z_cc1200_access_reg(dev, false, CC1200_REG_SYNC3, (void *)rf_settings->registers, CC1200_RF_NON_EXT_SPACE_REGS, false, true) || !z_cc1200_access_reg(dev, false, CC1200_REG_IF_MIX_CFG, (uint8_t *)rf_settings->registers + CC1200_RF_NON_EXT_SPACE_REGS, CC1200_RF_EXT_SPACE_REGS, true, true) || !write_reg_pkt_len(dev, 0xFF)) { LOG_ERR("Could not install RF settings"); return false; } cc1200->rf_settings = rf_settings; return true; } static int rf_calibrate(const struct device *dev) { if (!instruct_scal(dev)) { LOG_ERR("Could not calibrate RF"); return -EIO; } k_busy_wait(USEC_PER_MSEC * 5U); /* We need to re-enable RX as SCAL shuts off the freq synth */ if (!instruct_sidle(dev) || !instruct_sfrx(dev) || !instruct_srx(dev)) { LOG_ERR("Could not switch to RX"); return -EIO; } k_busy_wait(USEC_PER_MSEC * 10U); cc1200_print_status(get_status(dev)); return 0; } /**************** * TX functions * ***************/ static inline bool write_txfifo(const struct device *dev, void *data, size_t length) { return z_cc1200_access_reg(dev, false, CC1200_REG_TXFIFO, data, length, false, true); } /**************** * RX functions * ***************/ static inline bool read_rxfifo(const struct device *dev, void *data, size_t length) { return z_cc1200_access_reg(dev, true, CC1200_REG_RXFIFO, data, length, false, true); } static inline uint8_t get_packet_length(const struct device *dev) { uint8_t len; if (z_cc1200_access_reg(dev, true, CC1200_REG_RXFIFO, &len, 1, false, true)) { return len; } return 0; } static inline bool verify_rxfifo_validity(const struct device *dev, uint8_t pkt_len) { /* packet should be at least 3 bytes as a ACK */ if (pkt_len < 3 || read_reg_num_rxbytes(dev) > (pkt_len + CC1200_FCS_LEN)) { return false; } return true; } static inline bool read_rxfifo_content(const struct device *dev, struct net_buf *buf, uint8_t len) { if (!read_rxfifo(dev, buf->data, len) || (get_status(dev) == CC1200_STATUS_RX_FIFO_ERROR)) { return false; } net_buf_add(buf, len); return true; } static inline bool verify_crc(const struct device *dev, struct net_pkt *pkt) { uint8_t fcs[2]; if (!read_rxfifo(dev, fcs, 2)) { return false; } if (!(fcs[1] & CC1200_FCS_CRC_OK)) { return false; } net_pkt_set_ieee802154_rssi(pkt, fcs[0]); net_pkt_set_ieee802154_lqi(pkt, fcs[1] & CC1200_FCS_LQI_MASK); return true; } static void cc1200_rx(void *arg) { const struct device *dev = arg; struct cc1200_context *cc1200 = dev->data; struct net_pkt *pkt; uint8_t pkt_len; while (1) { pkt = NULL; k_sem_take(&cc1200->rx_lock, K_FOREVER); if (get_status(dev) == CC1200_STATUS_RX_FIFO_ERROR) { LOG_ERR("Fifo error"); goto flush; } pkt_len = get_packet_length(dev); if (!verify_rxfifo_validity(dev, pkt_len)) { LOG_ERR("Invalid frame"); goto flush; } pkt = net_pkt_alloc_with_buffer(cc1200->iface, pkt_len, AF_UNSPEC, 0, K_NO_WAIT); if (!pkt) { LOG_ERR("No free pkt available"); goto flush; } if (!read_rxfifo_content(dev, pkt->buffer, pkt_len)) { LOG_ERR("No content read"); goto flush; } if (!verify_crc(dev, pkt)) { LOG_ERR("Bad packet CRC"); goto out; } if (ieee802154_radio_handle_ack(cc1200->iface, pkt) == NET_OK) { LOG_DBG("ACK packet handled"); goto out; } LOG_DBG("Caught a packet (%u)", pkt_len); if (net_recv_data(cc1200->iface, pkt) < 0) { LOG_DBG("Packet dropped by NET stack"); goto out; } log_stack_usage(&cc1200->rx_thread); continue; flush: LOG_DBG("Flushing RX"); instruct_sidle(dev); instruct_sfrx(dev); instruct_srx(dev); out: if (pkt) { net_pkt_unref(pkt); } } } /******************** * Radio device API * *******************/ static enum ieee802154_hw_caps cc1200_get_capabilities(const struct device *dev) { return IEEE802154_HW_FCS | IEEE802154_HW_SUB_GHZ; } static int cc1200_cca(const struct device *dev) { struct cc1200_context *cc1200 = dev->data; if (atomic_get(&cc1200->rx) == 0) { uint8_t status = read_reg_rssi0(dev); if (!(status & CARRIER_SENSE) && (status & CARRIER_SENSE_VALID)) { return 0; } } LOG_WRN("Busy"); return -EBUSY; } static int cc1200_set_channel(const struct device *dev, uint16_t channel) { struct cc1200_context *cc1200 = dev->data; /* Unlike usual 15.4 chips, cc1200 is closer to a bare metal radio modem * and thus does not provide any means to select a channel directly, but * requires instead that one calculates and configures the actual * targeted frequency for the requested channel. * * See rf_evaluate_freq_setting() above. */ if (atomic_get(&cc1200->rx) == 0) { uint32_t freq = rf_evaluate_freq_setting(dev, channel); if (!write_reg_freq(dev, freq) || rf_calibrate(dev)) { LOG_ERR("Could not set channel %u", channel); return -EIO; } } return 0; } static int cc1200_set_txpower(const struct device *dev, int16_t dbm) { uint8_t pa_power_ramp; LOG_DBG("%d dbm", dbm); /* See Section 7.1 */ dbm = ((dbm + 18) * 2) - 1; if ((dbm <= 3) || (dbm >= 64)) { LOG_ERR("Unhandled value"); return -EINVAL; } pa_power_ramp = read_reg_pa_cfg1(dev) & ~PA_POWER_RAMP_MASK; pa_power_ramp |= ((uint8_t) dbm) & PA_POWER_RAMP_MASK; if (!write_reg_pa_cfg1(dev, pa_power_ramp)) { LOG_ERR("Could not proceed"); return -EIO; } return 0; } static int cc1200_tx(const struct device *dev, enum ieee802154_tx_mode mode, struct net_pkt *pkt, struct net_buf *frag) { struct cc1200_context *cc1200 = dev->data; uint8_t *frame = frag->data; uint8_t len = frag->len; bool status = false; if (mode != IEEE802154_TX_MODE_DIRECT) { NET_ERR("TX mode %d not supported", mode); return -ENOTSUP; } LOG_DBG("%p (%u)", frag, len); /* ToDo: * Supporting 802.15.4g will require to loop in pkt's frags * depending on len value, this will also take more time. */ if (!instruct_sidle(dev) || !instruct_sfrx(dev) || !instruct_sftx(dev) || !instruct_sfstxon(dev)) { LOG_ERR("Cannot switch to TX mode"); goto out; } if (!write_txfifo(dev, &len, CC1200_PHY_HDR_LEN) || !write_txfifo(dev, frame, len) || read_reg_num_txbytes(dev) != (len + CC1200_PHY_HDR_LEN)) { LOG_ERR("Cannot fill-in TX fifo"); goto out; } atomic_set(&cc1200->tx, 1); atomic_set(&cc1200->tx_start, 0); if (!instruct_stx(dev)) { LOG_ERR("Cannot start transmission"); goto out; } /* Wait for SYNC to be sent */ k_sem_take(&cc1200->tx_sync, K_MSEC(100)); if (atomic_get(&cc1200->tx_start) == 1) { /* Now wait for the packet to be fully sent */ k_sem_take(&cc1200->tx_sync, K_MSEC(100)); } out: cc1200_print_status(get_status(dev)); if (atomic_get(&cc1200->tx) == 1 && read_reg_num_txbytes(dev) != 0) { LOG_ERR("TX Failed"); atomic_set(&cc1200->tx_start, 0); instruct_sftx(dev); status = false; } else { status = true; } atomic_set(&cc1200->tx, 0); /* Get back to RX */ instruct_srx(dev); return status ? 0 : -EIO; } static int cc1200_start(const struct device *dev) { if (!instruct_sidle(dev) || !instruct_sftx(dev) || !instruct_sfrx(dev) || rf_calibrate(dev)) { LOG_ERR("Could not proceed"); return -EIO; } enable_gpio0_interrupt(dev, true); cc1200_print_status(get_status(dev)); return 0; } static int cc1200_stop(const struct device *dev) { enable_gpio0_interrupt(dev, false); if (!instruct_spwd(dev)) { LOG_ERR("Could not proceed"); return -EIO; } return 0; } static uint16_t cc1200_get_channel_count(const struct device *dev) { struct cc1200_context *cc1200 = dev->data; return cc1200->rf_settings->channel_limit; } /****************** * Initialization * *****************/ static int power_on_and_setup(const struct device *dev) { if (!instruct_sres(dev)) { LOG_ERR("Cannot reset"); return -EIO; } if (!rf_install_settings(dev, &cc1200_rf_settings)) { return -EIO; } if (!write_reg_iocfg3(dev, CC1200_IOCFG3) || !write_reg_iocfg2(dev, CC1200_IOCFG2) || !write_reg_iocfg0(dev, CC1200_IOCFG0)) { LOG_ERR("Cannot configure GPIOs"); return -EIO; } if (setup_gpio_callback(dev) != 0) { return -EIO; } return rf_calibrate(dev); } static int cc1200_init(const struct device *dev) { const struct cc1200_config *config = dev->config; struct cc1200_context *cc1200 = dev->data; atomic_set(&cc1200->tx, 0); atomic_set(&cc1200->tx_start, 0); atomic_set(&cc1200->rx, 0); k_sem_init(&cc1200->rx_lock, 0, 1); k_sem_init(&cc1200->tx_sync, 0, 1); /* Configure GPIOs */ if (!device_is_ready(config->interrupt.port)) { LOG_ERR("GPIO port %s is not ready", config->interrupt.port->name); return -ENODEV; } gpio_pin_configure_dt(&config->interrupt, GPIO_INPUT); if (!spi_is_ready(&config->bus)) { LOG_ERR("SPI bus %s is not ready", config->bus.bus->name); return -ENODEV; } LOG_DBG("GPIO and SPI configured"); if (power_on_and_setup(dev) != 0) { LOG_ERR("Configuring CC1200 failed"); return -EIO; } k_thread_create(&cc1200->rx_thread, cc1200->rx_stack, CONFIG_IEEE802154_CC1200_RX_STACK_SIZE, (k_thread_entry_t)cc1200_rx, (void *)dev, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT); k_thread_name_set(&cc1200->rx_thread, "cc1200_rx"); LOG_INF("CC1200 initialized"); return 0; } static void cc1200_iface_init(struct net_if *iface) { const struct device *dev = net_if_get_device(iface); struct cc1200_context *cc1200 = dev->data; uint8_t *mac = get_mac(dev); LOG_DBG(""); net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154); cc1200->iface = iface; ieee802154_init(iface); } static const struct cc1200_config cc1200_config = { .bus = SPI_DT_SPEC_INST_GET(0, SPI_WORD_SET(8), 0), .interrupt = GPIO_DT_SPEC_INST_GET(0, int_gpios) }; static struct cc1200_context cc1200_context_data; static struct ieee802154_radio_api cc1200_radio_api = { .iface_api.init = cc1200_iface_init, .get_capabilities = cc1200_get_capabilities, .cca = cc1200_cca, .set_channel = cc1200_set_channel, .set_txpower = cc1200_set_txpower, .tx = cc1200_tx, .start = cc1200_start, .stop = cc1200_stop, .get_subg_channel_count = cc1200_get_channel_count, }; NET_DEVICE_INIT(cc1200, CONFIG_IEEE802154_CC1200_DRV_NAME, cc1200_init, NULL, &cc1200_context_data, &cc1200_config, CONFIG_IEEE802154_CC1200_INIT_PRIO, &cc1200_radio_api, IEEE802154_L2, NET_L2_GET_CTX_TYPE(IEEE802154_L2), 125); |