Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
/*
 * Copyright (c) 2018 Karsten Koenig
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT microchip_mcp2515

#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/drivers/can/transceiver.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/logging/log.h>

LOG_MODULE_REGISTER(can_mcp2515, CONFIG_CAN_LOG_LEVEL);

#include "can_mcp2515.h"
#include "can_utils.h"

#define SP_IS_SET(inst) DT_INST_NODE_HAS_PROP(inst, sample_point) ||

/* Macro to exclude the sample point algorithm from compilation if not used
 * Without the macro, the algorithm would always waste ROM
 */
#define USE_SP_ALGO (DT_INST_FOREACH_STATUS_OKAY(SP_IS_SET) 0)

#define SP_AND_TIMING_NOT_SET(inst) \
	(!DT_INST_NODE_HAS_PROP(inst, sample_point) && \
	!(DT_INST_NODE_HAS_PROP(inst, prop_seg) && \
	DT_INST_NODE_HAS_PROP(inst, phase_seg1) && \
	DT_INST_NODE_HAS_PROP(inst, phase_seg2))) ||

#if DT_INST_FOREACH_STATUS_OKAY(SP_AND_TIMING_NOT_SET) 0
#error You must either set a sampling-point or timings (phase-seg* and prop-seg)
#endif

static int mcp2515_cmd_soft_reset(const struct device *dev)
{
	const struct mcp2515_config *dev_cfg = dev->config;

	uint8_t cmd_buf[] = { MCP2515_OPCODE_RESET };

	const struct spi_buf tx_buf = {
		.buf = cmd_buf, .len = sizeof(cmd_buf),
	};
	const struct spi_buf_set tx = {
		.buffers = &tx_buf, .count = 1U
	};

	return spi_write_dt(&dev_cfg->bus, &tx);
}

static int mcp2515_cmd_bit_modify(const struct device *dev, uint8_t reg_addr,
				  uint8_t mask,
				  uint8_t data)
{
	const struct mcp2515_config *dev_cfg = dev->config;

	uint8_t cmd_buf[] = { MCP2515_OPCODE_BIT_MODIFY, reg_addr, mask, data };

	const struct spi_buf tx_buf = {
		.buf = cmd_buf, .len = sizeof(cmd_buf),
	};
	const struct spi_buf_set tx = {
		.buffers = &tx_buf, .count = 1U
	};

	return spi_write_dt(&dev_cfg->bus, &tx);
}

static int mcp2515_cmd_write_reg(const struct device *dev, uint8_t reg_addr,
				 uint8_t *buf_data, uint8_t buf_len)
{
	const struct mcp2515_config *dev_cfg = dev->config;

	uint8_t cmd_buf[] = { MCP2515_OPCODE_WRITE, reg_addr };

	struct spi_buf tx_buf[] = {
		{ .buf = cmd_buf, .len = sizeof(cmd_buf) },
		{ .buf = buf_data, .len = buf_len }
	};
	const struct spi_buf_set tx = {
		.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
	};

	return spi_write_dt(&dev_cfg->bus, &tx);
}

/*
 * Load TX buffer instruction
 *
 * When loading a transmit buffer, reduces the overhead of a normal WRITE
 * command by placing the Address Pointer at one of six locations, as
 * selected by parameter abc.
 *
 *   0: TX Buffer 0, Start at TXB0SIDH (0x31)
 *   1: TX Buffer 0, Start at TXB0D0 (0x36)
 *   2: TX Buffer 1, Start at TXB1SIDH (0x41)
 *   3: TX Buffer 1, Start at TXB1D0 (0x46)
 *   4: TX Buffer 2, Start at TXB2SIDH (0x51)
 *   5: TX Buffer 2, Start at TXB2D0 (0x56)
 */
static int mcp2515_cmd_load_tx_buffer(const struct device *dev, uint8_t abc,
				      uint8_t *buf_data, uint8_t buf_len)
{
	const struct mcp2515_config *dev_cfg = dev->config;

	__ASSERT(abc <= 5, "abc <= 5");

	uint8_t cmd_buf[] = { MCP2515_OPCODE_LOAD_TX_BUFFER | abc };

	struct spi_buf tx_buf[] = {
		{ .buf = cmd_buf, .len = sizeof(cmd_buf) },
		{ .buf = buf_data, .len = buf_len }
	};
	const struct spi_buf_set tx = {
		.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
	};

	return spi_write_dt(&dev_cfg->bus, &tx);
}

/*
 * Request-to-Send Instruction
 *
 * Parameter nnn is the combination of bits at positions 0, 1 and 2 in the RTS
 * opcode that respectively initiate transmission for buffers TXB0, TXB1 and
 * TXB2.
 */
static int mcp2515_cmd_rts(const struct device *dev, uint8_t nnn)
{
	const struct mcp2515_config *dev_cfg = dev->config;

	__ASSERT(nnn < BIT(MCP2515_TX_CNT), "nnn < BIT(MCP2515_TX_CNT)");

	uint8_t cmd_buf[] = { MCP2515_OPCODE_RTS | nnn };

	struct spi_buf tx_buf[] = {
		{ .buf = cmd_buf, .len = sizeof(cmd_buf) }
	};
	const struct spi_buf_set tx = {
		.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
	};

	return spi_write_dt(&dev_cfg->bus, &tx);
}

static int mcp2515_cmd_read_reg(const struct device *dev, uint8_t reg_addr,
				uint8_t *buf_data, uint8_t buf_len)
{
	const struct mcp2515_config *dev_cfg = dev->config;

	uint8_t cmd_buf[] = { MCP2515_OPCODE_READ, reg_addr };

	struct spi_buf tx_buf[] = {
		{ .buf = cmd_buf, .len = sizeof(cmd_buf) },
		{ .buf = NULL, .len = buf_len }
	};
	const struct spi_buf_set tx = {
		.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
	};
	struct spi_buf rx_buf[] = {
		{ .buf = NULL, .len = sizeof(cmd_buf) },
		{ .buf = buf_data, .len = buf_len }
	};
	const struct spi_buf_set rx = {
		.buffers = rx_buf, .count = ARRAY_SIZE(rx_buf)
	};

	return spi_transceive_dt(&dev_cfg->bus, &tx, &rx);
}

/*
 * Read RX Buffer instruction
 *
 * When reading a receive buffer, reduces the overhead of a normal READ
 * command by placing the Address Pointer at one of four locations selected by
 * parameter nm:
 *   0: Receive Buffer 0, Start at RXB0SIDH (0x61)
 *   1: Receive Buffer 0, Start at RXB0D0 (0x66)
 *   2: Receive Buffer 1, Start at RXB1SIDH (0x71)
 *   3: Receive Buffer 1, Start at RXB1D0 (0x76)
 */
static int mcp2515_cmd_read_rx_buffer(const struct device *dev, uint8_t nm,
				      uint8_t *buf_data, uint8_t buf_len)
{
	const struct mcp2515_config *dev_cfg = dev->config;

	__ASSERT(nm <= 0x03, "nm <= 0x03");

	uint8_t cmd_buf[] = { MCP2515_OPCODE_READ_RX_BUFFER | (nm << 1) };

	struct spi_buf tx_buf[] = {
		{ .buf = cmd_buf, .len = sizeof(cmd_buf) },
		{ .buf = NULL, .len = buf_len }
	};
	const struct spi_buf_set tx = {
		.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
	};
	struct spi_buf rx_buf[] = {
		{ .buf = NULL, .len = sizeof(cmd_buf) },
		{ .buf = buf_data, .len = buf_len }
	};
	const struct spi_buf_set rx = {
		.buffers = rx_buf, .count = ARRAY_SIZE(rx_buf)
	};

	return spi_transceive_dt(&dev_cfg->bus, &tx, &rx);
}

static void mcp2515_convert_zcanframe_to_mcp2515frame(const struct zcan_frame
						      *source, uint8_t *target)
{
	uint8_t rtr;
	uint8_t dlc;
	uint8_t data_idx = 0U;

	if (source->id_type == CAN_STANDARD_IDENTIFIER) {
		target[MCP2515_FRAME_OFFSET_SIDH] = source->id >> 3;
		target[MCP2515_FRAME_OFFSET_SIDL] =
			(source->id & 0x07) << 5;
	} else {
		target[MCP2515_FRAME_OFFSET_SIDH] = source->id >> 21;
		target[MCP2515_FRAME_OFFSET_SIDL] =
			(((source->id >> 18) & 0x07) << 5) | (BIT(3)) |
			((source->id >> 16) & 0x03);
		target[MCP2515_FRAME_OFFSET_EID8] = source->id >> 8;
		target[MCP2515_FRAME_OFFSET_EID0] = source->id;
	}

	rtr = (source->rtr == CAN_REMOTEREQUEST) ? BIT(6) : 0;
	dlc = (source->dlc) & 0x0F;

	target[MCP2515_FRAME_OFFSET_DLC] = rtr | dlc;

	for (; data_idx < CAN_MAX_DLC; data_idx++) {
		target[MCP2515_FRAME_OFFSET_D0 + data_idx] =
			source->data[data_idx];
	}
}

static void mcp2515_convert_mcp2515frame_to_zcanframe(const uint8_t *source,
						      struct zcan_frame *target)
{
	uint8_t data_idx = 0U;

	if (source[MCP2515_FRAME_OFFSET_SIDL] & BIT(3)) {
		target->id_type = CAN_EXTENDED_IDENTIFIER;
		target->id =
			(source[MCP2515_FRAME_OFFSET_SIDH] << 21) |
			((source[MCP2515_FRAME_OFFSET_SIDL] >> 5) << 18) |
			((source[MCP2515_FRAME_OFFSET_SIDL] & 0x03) << 16) |
			(source[MCP2515_FRAME_OFFSET_EID8] << 8) |
			source[MCP2515_FRAME_OFFSET_EID0];
	} else {
		target->id_type = CAN_STANDARD_IDENTIFIER;
		target->id = (source[MCP2515_FRAME_OFFSET_SIDH] << 3) |
				 (source[MCP2515_FRAME_OFFSET_SIDL] >> 5);
	}

	target->dlc = source[MCP2515_FRAME_OFFSET_DLC] & 0x0F;
	target->rtr = source[MCP2515_FRAME_OFFSET_DLC] & BIT(6) ?
		      CAN_REMOTEREQUEST : CAN_DATAFRAME;

	for (; data_idx < CAN_MAX_DLC; data_idx++) {
		target->data[data_idx] = source[MCP2515_FRAME_OFFSET_D0 +
						data_idx];
	}
}

const int mcp2515_set_mode_int(const struct device *dev, uint8_t mcp2515_mode)
{
	uint8_t canstat;

	mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_CANCTRL,
			       MCP2515_CANCTRL_MODE_MASK,
			       mcp2515_mode << MCP2515_CANCTRL_MODE_POS);
	mcp2515_cmd_read_reg(dev, MCP2515_ADDR_CANSTAT, &canstat, 1);

	if (((canstat & MCP2515_CANSTAT_MODE_MASK) >> MCP2515_CANSTAT_MODE_POS)
	    != mcp2515_mode) {
		LOG_ERR("Failed to set MCP2515 operation mode");
		return -EIO;
	}

	return 0;
}

static int mcp2515_get_mode(const struct device *dev, uint8_t *mode)
{
	uint8_t canstat;

	if (mode == NULL) {
		return -EINVAL;
	}

	if (mcp2515_cmd_read_reg(dev, MCP2515_ADDR_CANSTAT, &canstat, 1)) {
		return -EIO;
	}

	*mode = (canstat & MCP2515_CANSTAT_MODE_MASK)
		>> MCP2515_CANSTAT_MODE_POS;

	return 0;
}

static int mcp2515_get_core_clock(const struct device *dev, uint32_t *rate)
{
	const struct mcp2515_config *dev_cfg = dev->config;

	*rate = dev_cfg->osc_freq / 2;
	return 0;
}

static int mcp2515_get_max_filters(const struct device *dev, enum can_ide id_type)
{
	ARG_UNUSED(id_type);

	return CONFIG_CAN_MAX_FILTER;
}

static int mcp2515_get_max_bitrate(const struct device *dev, uint32_t *max_bitrate)
{
	const struct mcp2515_config *dev_cfg = dev->config;

	*max_bitrate = dev_cfg->max_bitrate;

	return 0;
}

static int mcp2515_set_timing(const struct device *dev,
			      const struct can_timing *timing)
{
	struct mcp2515_data *dev_data = dev->data;
	int ret;

	if (!timing) {
		return -EINVAL;
	}

	/* CNF3, CNF2, CNF1, CANINTE */
	uint8_t config_buf[4];
	uint8_t mode;

	/* CNF1; SJW<7:6> | BRP<5:0> */
	__ASSERT(timing->prescaler > 0, "Prescaler should be bigger than zero");
	uint8_t brp = timing->prescaler - 1;
	if (timing->sjw != CAN_SJW_NO_CHANGE) {
		dev_data->sjw = (timing->sjw - 1) << 6;
	}

	uint8_t cnf1 = dev_data->sjw | brp;

	/* CNF2; BTLMODE<7>|SAM<6>|PHSEG1<5:3>|PRSEG<2:0> */
	const uint8_t btlmode = 1 << 7;
	const uint8_t sam = 0 << 6;
	const uint8_t phseg1 = (timing->phase_seg1 - 1) << 3;
	const uint8_t prseg = (timing->prop_seg - 1);

	const uint8_t cnf2 = btlmode | sam | phseg1 | prseg;

	/* CNF3; SOF<7>|WAKFIL<6>|UND<5:3>|PHSEG2<2:0> */
	const uint8_t sof = 0 << 7;
	const uint8_t wakfil = 0 << 6;
	const uint8_t und = 0 << 3;
	const uint8_t phseg2 = (timing->phase_seg2 - 1);

	const uint8_t cnf3 = sof | wakfil | und | phseg2;

	const uint8_t caninte = MCP2515_INTE_RX0IE | MCP2515_INTE_RX1IE |
			     MCP2515_INTE_TX0IE | MCP2515_INTE_TX1IE |
			     MCP2515_INTE_TX2IE | MCP2515_INTE_ERRIE;

	/* Receive everything, filtering done in driver, RXB0 roll over into
	 * RXB1 */
	const uint8_t rx0_ctrl = BIT(6) | BIT(5) | BIT(2);
	const uint8_t rx1_ctrl = BIT(6) | BIT(5);

	__ASSERT(timing->sjw <= 4, "1 <= SJW <= 4");
	__ASSERT((timing->prop_seg >= 1) && (timing->prop_seg <= 8),
		 "1 <= PROP <= 8");
	__ASSERT((timing->phase_seg1 >= 1) && (timing->phase_seg1 <= 8),
		 "1 <= BS1 <= 8");
	__ASSERT((timing->phase_seg2 >= 2) && (timing->phase_seg2 <= 8),
		 "2 <= BS2 <= 8");
	__ASSERT(timing->prop_seg + timing->phase_seg1 >= timing->phase_seg2,
		 "PROP + BS1 >= BS2");
	__ASSERT(timing->phase_seg2 > timing->sjw, "BS2 > SJW");

	config_buf[0] = cnf3;
	config_buf[1] = cnf2;
	config_buf[2] = cnf1;
	config_buf[3] = caninte;

	k_mutex_lock(&dev_data->mutex, K_FOREVER);

	ret = mcp2515_get_mode(dev, &mode);
	if (ret < 0) {
		LOG_ERR("Failed to read device mode [%d]", ret);
		goto done;
	}

	ret = mcp2515_set_mode_int(dev, MCP2515_MODE_CONFIGURATION);
	if (ret < 0) {
		LOG_ERR("Failed to enter configuration mode [%d]", ret);
		goto done;
	}

	ret = mcp2515_cmd_write_reg(dev, MCP2515_ADDR_CNF3, config_buf,
				    sizeof(config_buf));
	if (ret < 0) {
		LOG_ERR("Failed to write the configuration [%d]", ret);
		goto done;
	}

	ret = mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_RXB0CTRL, rx0_ctrl,
				     rx0_ctrl);
	if (ret < 0) {
		LOG_ERR("Failed to write RXB0CTRL [%d]", ret);
		goto done;
	}

	ret = mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_RXB1CTRL, rx1_ctrl,
				     rx1_ctrl);
	if (ret < 0) {
		LOG_ERR("Failed to write RXB1CTRL [%d]", ret);
		goto done;
	}

	/* Restore previous mode */
	ret = mcp2515_set_mode_int(dev, mode);
	if (ret < 0) {
		LOG_ERR("Failed to restore mode [%d]", ret);
		goto done;
	}

done:
	k_mutex_unlock(&dev_data->mutex);
	return ret;
}

static int mcp2515_set_mode(const struct device *dev, can_mode_t mode)
{
	const struct mcp2515_config *dev_cfg = dev->config;
	struct mcp2515_data *dev_data = dev->data;
	uint8_t mcp2515_mode;
	int ret;

	switch (mode) {
	case CAN_MODE_NORMAL:
		mcp2515_mode = MCP2515_MODE_NORMAL;
		break;
	case CAN_MODE_LISTENONLY:
		mcp2515_mode = MCP2515_MODE_SILENT;
		break;
	case CAN_MODE_LOOPBACK:
		mcp2515_mode = MCP2515_MODE_LOOPBACK;
		break;
	default:
		LOG_ERR("Unsupported CAN Mode %u", mode);
		return -ENOTSUP;
	}

	k_mutex_lock(&dev_data->mutex, K_FOREVER);

	if (dev_cfg->phy != NULL) {
		ret = can_transceiver_enable(dev_cfg->phy);
		if (ret != 0) {
			LOG_ERR("failed to enable CAN transceiver (err %d)", ret);
			goto done;
		}
	}

	k_usleep(MCP2515_OSC_STARTUP_US);

	ret = mcp2515_set_mode_int(dev, mcp2515_mode);
	if (ret < 0) {
		LOG_ERR("Failed to set the mode [%d]", ret);

		if (dev_cfg->phy != NULL) {
			/* Attempt to disable the CAN transceiver in case of error */
			(void)can_transceiver_disable(dev_cfg->phy);
		}
	}

done:
	k_mutex_unlock(&dev_data->mutex);
	return ret;
}

static int mcp2515_send(const struct device *dev,
			const struct zcan_frame *frame,
			k_timeout_t timeout, can_tx_callback_t callback,
			void *user_data)
{
	struct mcp2515_data *dev_data = dev->data;
	uint8_t tx_idx = 0U;
	uint8_t abc;
	uint8_t nnn;
	uint8_t len;
	uint8_t tx_frame[MCP2515_FRAME_LEN];

	if (frame->dlc > CAN_MAX_DLC) {
		LOG_ERR("DLC of %d exceeds maximum (%d)",
			frame->dlc, CAN_MAX_DLC);
		return -EINVAL;
	}

	if (k_sem_take(&dev_data->tx_sem, timeout) != 0) {
		return -EAGAIN;
	}

	k_mutex_lock(&dev_data->mutex, K_FOREVER);

	/* find a free tx slot */
	for (; tx_idx < MCP2515_TX_CNT; tx_idx++) {
		if ((BIT(tx_idx) & dev_data->tx_busy_map) == 0) {
			dev_data->tx_busy_map |= BIT(tx_idx);
			break;
		}
	}

	k_mutex_unlock(&dev_data->mutex);

	if (tx_idx == MCP2515_TX_CNT) {
		LOG_WRN("no free tx slot available");
		return -EIO;
	}

	dev_data->tx_cb[tx_idx].cb = callback;
	dev_data->tx_cb[tx_idx].cb_arg = user_data;

	mcp2515_convert_zcanframe_to_mcp2515frame(frame, tx_frame);

	/* Address Pointer selection */
	abc = 2 * tx_idx;

	/* Calculate minimum length to transfer */
	len = sizeof(tx_frame) - CAN_MAX_DLC + frame->dlc;

	mcp2515_cmd_load_tx_buffer(dev, abc, tx_frame, len);

	/* request tx slot transmission */
	nnn = BIT(tx_idx);
	mcp2515_cmd_rts(dev, nnn);

	if (callback == NULL) {
		k_sem_take(&dev_data->tx_cb[tx_idx].sem, K_FOREVER);
	}

	return 0;
}

static int mcp2515_add_rx_filter(const struct device *dev,
				 can_rx_callback_t rx_cb,
				 void *cb_arg,
				 const struct zcan_filter *filter)
{
	struct mcp2515_data *dev_data = dev->data;
	int filter_id = 0;

	__ASSERT(rx_cb != NULL, "response_ptr can not be null");

	k_mutex_lock(&dev_data->mutex, K_FOREVER);

	/* find free filter */
	while ((BIT(filter_id) & dev_data->filter_usage)
	       && (filter_id < CONFIG_CAN_MAX_FILTER)) {
		filter_id++;
	}

	/* setup filter */
	if (filter_id < CONFIG_CAN_MAX_FILTER) {
		dev_data->filter_usage |= BIT(filter_id);

		dev_data->filter[filter_id] = *filter;
		dev_data->rx_cb[filter_id] = rx_cb;
		dev_data->cb_arg[filter_id] = cb_arg;

	} else {
		filter_id = -ENOSPC;
	}

	k_mutex_unlock(&dev_data->mutex);

	return filter_id;
}

static void mcp2515_remove_rx_filter(const struct device *dev, int filter_id)
{
	struct mcp2515_data *dev_data = dev->data;

	k_mutex_lock(&dev_data->mutex, K_FOREVER);
	dev_data->filter_usage &= ~BIT(filter_id);
	k_mutex_unlock(&dev_data->mutex);
}

static void mcp2515_set_state_change_callback(const struct device *dev,
					      can_state_change_callback_t cb,
					      void *user_data)
{
	struct mcp2515_data *dev_data = dev->data;

	dev_data->state_change_cb = cb;
	dev_data->state_change_cb_data = user_data;
}

static void mcp2515_rx_filter(const struct device *dev,
			      struct zcan_frame *frame)
{
	struct mcp2515_data *dev_data = dev->data;
	uint8_t filter_id = 0U;
	can_rx_callback_t callback;
	struct zcan_frame tmp_frame;

	k_mutex_lock(&dev_data->mutex, K_FOREVER);

	for (; filter_id < CONFIG_CAN_MAX_FILTER; filter_id++) {
		if (!(BIT(filter_id) & dev_data->filter_usage)) {
			continue; /* filter slot empty */
		}

		if (!can_utils_filter_match(frame,
					    &dev_data->filter[filter_id])) {
			continue; /* filter did not match */
		}

		callback = dev_data->rx_cb[filter_id];
		/*Make a temporary copy in case the user modifies the message*/
		tmp_frame = *frame;

		callback(dev, &tmp_frame, dev_data->cb_arg[filter_id]);
	}

	k_mutex_unlock(&dev_data->mutex);
}

static void mcp2515_rx(const struct device *dev, uint8_t rx_idx)
{
	__ASSERT(rx_idx < MCP2515_RX_CNT, "rx_idx < MCP2515_RX_CNT");

	struct zcan_frame frame;
	uint8_t rx_frame[MCP2515_FRAME_LEN];
	uint8_t nm;

	/* Address Pointer selection */
	nm = 2 * rx_idx;

	/* Fetch rx buffer */
	mcp2515_cmd_read_rx_buffer(dev, nm, rx_frame, sizeof(rx_frame));
	mcp2515_convert_mcp2515frame_to_zcanframe(rx_frame, &frame);
	mcp2515_rx_filter(dev, &frame);
}

static void mcp2515_tx_done(const struct device *dev, uint8_t tx_idx)
{
	struct mcp2515_data *dev_data = dev->data;

	if (dev_data->tx_cb[tx_idx].cb == NULL) {
		k_sem_give(&dev_data->tx_cb[tx_idx].sem);
	} else {
		dev_data->tx_cb[tx_idx].cb(dev, 0, dev_data->tx_cb[tx_idx].cb_arg);
	}

	k_mutex_lock(&dev_data->mutex, K_FOREVER);
	dev_data->tx_busy_map &= ~BIT(tx_idx);
	k_mutex_unlock(&dev_data->mutex);
	k_sem_give(&dev_data->tx_sem);
}

static int mcp2515_get_state(const struct device *dev, enum can_state *state,
			     struct can_bus_err_cnt *err_cnt)
{
	uint8_t eflg;
	uint8_t err_cnt_buf[2];
	int ret;

	ret = mcp2515_cmd_read_reg(dev, MCP2515_ADDR_EFLG, &eflg, sizeof(eflg));
	if (ret < 0) {
		LOG_ERR("Failed to read error register [%d]", ret);
		return -EIO;
	}

	if (state != NULL) {
		if (eflg & MCP2515_EFLG_TXBO) {
			*state = CAN_BUS_OFF;
		} else if ((eflg & MCP2515_EFLG_RXEP) || (eflg & MCP2515_EFLG_TXEP)) {
			*state = CAN_ERROR_PASSIVE;
		} else if (eflg & MCP2515_EFLG_EWARN) {
			*state = CAN_ERROR_WARNING;
		} else {
			*state = CAN_ERROR_ACTIVE;
		}
	}

	if (err_cnt != NULL) {
		ret = mcp2515_cmd_read_reg(dev, MCP2515_ADDR_TEC, err_cnt_buf,
					   sizeof(err_cnt_buf));
		if (ret < 0) {
			LOG_ERR("Failed to read error counters [%d]", ret);
			return -EIO;
		}

		err_cnt->tx_err_cnt = err_cnt_buf[0];
		err_cnt->rx_err_cnt = err_cnt_buf[1];
	}

	return 0;
}

static void mcp2515_handle_errors(const struct device *dev)
{
	struct mcp2515_data *dev_data = dev->data;
	can_state_change_callback_t state_change_cb = dev_data->state_change_cb;
	void *state_change_cb_data = dev_data->state_change_cb_data;
	enum can_state state;
	struct can_bus_err_cnt err_cnt;
	int err;

	err = mcp2515_get_state(dev, &state, state_change_cb ? &err_cnt : NULL);
	if (err != 0) {
		LOG_ERR("Failed to get CAN controller state [%d]", err);
		return;
	}

	if (state_change_cb && dev_data->old_state != state) {
		dev_data->old_state = state;
		state_change_cb(dev, state, err_cnt, state_change_cb_data);
	}
}

#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
static int mcp2515_recover(const struct device *dev, k_timeout_t timeout)
{
	ARG_UNUSED(dev);
	ARG_UNUSED(timeout);

	return -ENOTSUP;
}
#endif

static void mcp2515_handle_interrupts(const struct device *dev)
{
	const struct mcp2515_config *dev_cfg = dev->config;
	int ret;
	uint8_t canintf;

	/* Loop until INT pin is inactive (all interrupt flags handled) */
	while (1) {
		ret = mcp2515_cmd_read_reg(dev, MCP2515_ADDR_CANINTF,
				&canintf, 1);
		if (ret != 0) {
			LOG_ERR("Couldn't read INTF register %d", ret);
			continue;
		}

		if (canintf == 0) {
			/* No interrupt flags set */
			break;
		}

		if (canintf & MCP2515_CANINTF_RX0IF) {
			mcp2515_rx(dev, 0);

			/* RX0IF flag cleared automatically during read */
			canintf &= ~MCP2515_CANINTF_RX0IF;
		}

		if (canintf & MCP2515_CANINTF_RX1IF) {
			mcp2515_rx(dev, 1);

			/* RX1IF flag cleared automatically during read */
			canintf &= ~MCP2515_CANINTF_RX1IF;
		}

		if (canintf & MCP2515_CANINTF_TX0IF) {
			mcp2515_tx_done(dev, 0);
		}

		if (canintf & MCP2515_CANINTF_TX1IF) {
			mcp2515_tx_done(dev, 1);
		}

		if (canintf & MCP2515_CANINTF_TX2IF) {
			mcp2515_tx_done(dev, 2);
		}

		if (canintf & MCP2515_CANINTF_ERRIF) {
			mcp2515_handle_errors(dev);
		}

		if (canintf != 0) {
			/* Clear remaining flags */
			mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_CANINTF,
					canintf, ~canintf);
		}

		/* Break from loop if INT pin is inactive */
		ret = gpio_pin_get_dt(&dev_cfg->int_gpio);
		if (ret < 0) {
			LOG_ERR("Couldn't read INT pin");
		} else if (ret == 0) {
			/* All interrupt flags handled */
			break;
		}
	}
}

static void mcp2515_int_thread(const struct device *dev)
{
	struct mcp2515_data *dev_data = dev->data;

	while (1) {
		k_sem_take(&dev_data->int_sem, K_FOREVER);
		mcp2515_handle_interrupts(dev);
	}
}

static void mcp2515_int_gpio_callback(const struct device *dev,
				      struct gpio_callback *cb, uint32_t pins)
{
	struct mcp2515_data *dev_data =
		CONTAINER_OF(cb, struct mcp2515_data, int_gpio_cb);

	k_sem_give(&dev_data->int_sem);
}

static const struct can_driver_api can_api_funcs = {
	.set_timing = mcp2515_set_timing,
	.set_mode = mcp2515_set_mode,
	.send = mcp2515_send,
	.add_rx_filter = mcp2515_add_rx_filter,
	.remove_rx_filter = mcp2515_remove_rx_filter,
	.get_state = mcp2515_get_state,
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
	.recover = mcp2515_recover,
#endif
	.set_state_change_callback = mcp2515_set_state_change_callback,
	.get_core_clock = mcp2515_get_core_clock,
	.get_max_filters = mcp2515_get_max_filters,
	.get_max_bitrate = mcp2515_get_max_bitrate,
	.timing_min = {
		.sjw = 0x1,
		.prop_seg = 0x01,
		.phase_seg1 = 0x01,
		.phase_seg2 = 0x02,
		.prescaler = 0x01
	},
	.timing_max = {
		.sjw = 0x04,
		.prop_seg = 0x08,
		.phase_seg1 = 0x08,
		.phase_seg2 = 0x08,
		.prescaler = 0x40
	}
};


static int mcp2515_init(const struct device *dev)
{
	const struct mcp2515_config *dev_cfg = dev->config;
	struct mcp2515_data *dev_data = dev->data;
	struct can_timing timing;
	int ret;
	int i;

	k_sem_init(&dev_data->int_sem, 0, 1);
	k_mutex_init(&dev_data->mutex);
	k_sem_init(&dev_data->tx_sem, MCP2515_TX_CNT, MCP2515_TX_CNT);

	for (i = 0; i < MCP2515_TX_CNT; i++) {
		k_sem_init(&dev_data->tx_cb[i].sem, 0, 1);
		dev_data->tx_cb[i].cb = NULL;
	}

	if (dev_cfg->phy != NULL) {
		if (!device_is_ready(dev_cfg->phy)) {
			LOG_ERR("CAN transceiver not ready");
			return -ENODEV;
		}
	}

	if (!spi_is_ready(&dev_cfg->bus)) {
		LOG_ERR("SPI bus %s not ready", dev_cfg->bus.bus->name);
		return -ENODEV;
	}

	/* Reset MCP2515 */
	if (mcp2515_cmd_soft_reset(dev)) {
		LOG_ERR("Soft-reset failed");
		return -EIO;
	}

	/* Initialize interrupt handling  */
	if (!device_is_ready(dev_cfg->int_gpio.port)) {
		LOG_ERR("Interrupt GPIO port not ready");
		return -ENODEV;
	}

	if (gpio_pin_configure_dt(&dev_cfg->int_gpio, GPIO_INPUT)) {
		LOG_ERR("Unable to configure interrupt GPIO");
		return -EINVAL;
	}

	gpio_init_callback(&(dev_data->int_gpio_cb), mcp2515_int_gpio_callback,
			   BIT(dev_cfg->int_gpio.pin));

	if (gpio_add_callback(dev_cfg->int_gpio.port,
			      &(dev_data->int_gpio_cb))) {
		return -EINVAL;
	}

	if (gpio_pin_interrupt_configure_dt(&dev_cfg->int_gpio,
					    GPIO_INT_EDGE_TO_ACTIVE)) {
		return -EINVAL;
	}

	k_thread_create(&dev_data->int_thread, dev_data->int_thread_stack,
			dev_cfg->int_thread_stack_size,
			(k_thread_entry_t) mcp2515_int_thread, (void *)dev,
			NULL, NULL, K_PRIO_COOP(dev_cfg->int_thread_priority),
			0, K_NO_WAIT);

	(void)memset(dev_data->rx_cb, 0, sizeof(dev_data->rx_cb));
	(void)memset(dev_data->filter, 0, sizeof(dev_data->filter));
	dev_data->old_state = CAN_ERROR_ACTIVE;

	timing.sjw = dev_cfg->tq_sjw;
	if (dev_cfg->sample_point && USE_SP_ALGO) {
		ret = can_calc_timing(dev, &timing, dev_cfg->bus_speed,
				      dev_cfg->sample_point);
		if (ret == -EINVAL) {
			LOG_ERR("Can't find timing for given param");
			return -EIO;
		}
		LOG_DBG("Presc: %d, BS1: %d, BS2: %d",
			timing.prescaler, timing.phase_seg1, timing.phase_seg2);
		LOG_DBG("Sample-point err : %d", ret);
	} else {
		timing.prop_seg = dev_cfg->tq_prop;
		timing.phase_seg1 = dev_cfg->tq_bs1;
		timing.phase_seg2 = dev_cfg->tq_bs2;
		ret = can_calc_prescaler(dev, &timing, dev_cfg->bus_speed);
		if (ret) {
			LOG_WRN("Bitrate error: %d", ret);
		}
	}

	ret = can_set_timing(dev, &timing);
	if (ret) {
		return ret;
	}

	ret = can_set_mode(dev, CAN_MODE_NORMAL);

	return ret;
}

#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)

static K_KERNEL_STACK_DEFINE(mcp2515_int_thread_stack,
			     CONFIG_CAN_MCP2515_INT_THREAD_STACK_SIZE);

static struct mcp2515_data mcp2515_data_1 = {
	.int_thread_stack = mcp2515_int_thread_stack,
	.tx_busy_map = 0U,
	.filter_usage = 0U,
};

static const struct mcp2515_config mcp2515_config_1 = {
	.bus = SPI_DT_SPEC_INST_GET(0, SPI_WORD_SET(8), 0),
	.int_gpio = GPIO_DT_SPEC_INST_GET(0, int_gpios),
	.int_thread_stack_size = CONFIG_CAN_MCP2515_INT_THREAD_STACK_SIZE,
	.int_thread_priority = CONFIG_CAN_MCP2515_INT_THREAD_PRIO,
	.tq_sjw = DT_INST_PROP(0, sjw),
	.tq_prop = DT_INST_PROP_OR(0, prop_seg, 0),
	.tq_bs1 = DT_INST_PROP_OR(0, phase_seg1, 0),
	.tq_bs2 = DT_INST_PROP_OR(0, phase_seg2, 0),
	.bus_speed = DT_INST_PROP(0, bus_speed),
	.osc_freq = DT_INST_PROP(0, osc_freq),
	.sample_point = DT_INST_PROP_OR(0, sample_point, 0),
	.phy = DEVICE_DT_GET_OR_NULL(DT_INST_PHANDLE(0, phys)),
	.max_bitrate = DT_INST_CAN_TRANSCEIVER_MAX_BITRATE(0, 1000000),
};

DEVICE_DT_INST_DEFINE(0, &mcp2515_init, NULL,
		    &mcp2515_data_1, &mcp2515_config_1, POST_KERNEL,
		    CONFIG_CAN_INIT_PRIORITY, &can_api_funcs);

#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */