Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 | /* * Copyright (c) 2019 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <zephyr.h> #include <ztest.h> #include <sys/sys_heap.h> #include <sys/heap_listener.h> #include <inttypes.h> /* Guess at a value for heap size based on available memory on the * platform, with workarounds. */ #if defined(CONFIG_SOC_MPS2_AN521) && defined(CONFIG_QEMU_TARGET) /* mps2_an521 blows up if allowed to link into large area, even though * the link is successful and it claims the memory is there. We get * hard faults on boot in qemu before entry to cstart() once MEMSZ is * allowed to get near 256kb. */ # define MEMSZ (192 * 1024) #elif defined(CONFIG_ARCH_POSIX) /* native_posix doesn't support CONFIG_SRAM_SIZE at all (because * it can link anything big enough to fit on the host), so just use a * reasonable value. */ # define MEMSZ (2 * 1024 * 1024) #elif defined(CONFIG_SOC_ARC_EMSDP) || defined(CONFIG_SOC_EMSK) /* Various ARC platforms set CONFIG_SRAM_SIZE to 16-128M, but have a * much lower limit of (32-64k) in their linker scripts. Pick a * conservative fallback. */ # define MEMSZ (16 * 1024) #else /* Otherwise just trust CONFIG_SRAM_SIZE */ # define MEMSZ (1024 * (size_t) CONFIG_SRAM_SIZE) #endif #define BIG_HEAP_SZ MIN(256 * 1024, MEMSZ / 3) #define SMALL_HEAP_SZ MIN(BIG_HEAP_SZ, 2048) /* With enabling SYS_HEAP_RUNTIME_STATS, the size of struct z_heap * will increase 16 bytes on 64 bit CPU. */ #ifdef CONFIG_SYS_HEAP_RUNTIME_STATS #define SOLO_FREE_HEADER_HEAP_SZ (80) #else #define SOLO_FREE_HEADER_HEAP_SZ (64) #endif #define SCRATCH_SZ (sizeof(heapmem) / 2) /* The test memory. Make them pointer arrays for robust alignment * behavior */ void *heapmem[BIG_HEAP_SZ / sizeof(void *)]; void *scratchmem[SCRATCH_SZ / sizeof(void *)]; /* How many alloc/free operations are tested on each heap. Two per * byte of heap sounds about right to get exhaustive coverage without * blowing too many cycles */ #define ITERATION_COUNT (2 * SMALL_HEAP_SZ) /* Simple dumb hash function of the size and address */ static size_t fill_token(void *p, size_t sz) { size_t pi = (size_t) p; return (pi * sz) ^ ((sz ^ 0xea6d) * ((pi << 11) | (pi >> 21))); } /* Puts markers at the start and end of a block to ensure that nothing * scribbled on it while it was allocated. The first word is the * block size. The second and last (if they fits) are a hashed "fill * token" */ static void fill_block(void *p, size_t sz) { if (p == NULL) { return; } size_t tok = fill_token(p, sz); ((size_t *)p)[0] = sz; if (sz >= 2 * sizeof(size_t)) { ((size_t *)p)[1] = tok; } if (sz > 3*sizeof(size_t)) { ((size_t *)p)[sz / sizeof(size_t) - 1] = tok; } } /* Checks markers just before freeing a block */ static void check_fill(void *p) { size_t sz = ((size_t *)p)[0]; size_t tok = fill_token(p, sz); zassert_true(sz > 0, ""); if (sz >= 2 * sizeof(size_t)) { zassert_true(((size_t *)p)[1] == tok, ""); } if (sz > 3 * sizeof(size_t)) { zassert_true(((size_t *)p)[sz / sizeof(size_t) - 1] == tok, ""); } } void *testalloc(void *arg, size_t bytes) { void *ret = sys_heap_alloc(arg, bytes); if (ret != NULL) { /* White box: the heap internals will allocate memory * in 8 chunk units, no more than needed, but with a * header prepended that is 4 or 8 bytes. Use this to * validate the block_size predicate. */ size_t blksz = sys_heap_usable_size(arg, ret); size_t addr = (size_t) ret; size_t chunk = ROUND_DOWN(addr - 1, 8); size_t hdr = addr - chunk; size_t expect = ROUND_UP(bytes + hdr, 8) - hdr; zassert_equal(blksz, expect, "wrong size block returned bytes = %ld ret = %ld", bytes, blksz); } fill_block(ret, bytes); sys_heap_validate(arg); return ret; } void testfree(void *arg, void *p) { check_fill(p); sys_heap_free(arg, p); sys_heap_validate(arg); } static void log_result(size_t sz, struct z_heap_stress_result *r) { uint32_t tot = r->total_allocs + r->total_frees; uint32_t avg = (uint32_t)((r->accumulated_in_use_bytes + tot/2) / tot); uint32_t avg_pct = (uint32_t)((100ULL * avg + sz / 2) / sz); uint32_t succ_pct = ((100ULL * r->successful_allocs + r->total_allocs / 2) / r->total_allocs); TC_PRINT("successful allocs: %d/%d (%d%%), frees: %d," " avg usage: %d/%d (%d%%)\n", r->successful_allocs, r->total_allocs, succ_pct, r->total_frees, avg, (int) sz, avg_pct); } /* Do a heavy test over a small heap, with many iterations that need * to reuse memory repeatedly. Target 50% fill, as that setting tends * to prevent runaway fragmentation and most allocations continue to * succeed in steady state. */ static void test_small_heap(void) { struct sys_heap heap; struct z_heap_stress_result result; TC_PRINT("Testing small (%d byte) heap\n", (int) SMALL_HEAP_SZ); sys_heap_init(&heap, heapmem, SMALL_HEAP_SZ); zassert_true(sys_heap_validate(&heap), ""); sys_heap_stress(testalloc, testfree, &heap, SMALL_HEAP_SZ, ITERATION_COUNT, scratchmem, sizeof(scratchmem), 50, &result); log_result(SMALL_HEAP_SZ, &result); } /* Very similar, but tests a fragmentation runaway scenario where we * target 100% fill and end up breaking memory up into maximally * fragmented blocks (i.e. small allocations always grab and split the * bigger chunks). Obviously success rates in alloc will be very low, * but consistency should still be maintained. Paradoxically, fill * level is not much better than the 50% target due to all the * fragmentation overhead (also the way we do accounting: we are * counting bytes requested, so if you ask for a 3 byte block and * receive a 8 byte minimal chunk, we still count that as 5 bytes of * waste). */ static void test_fragmentation(void) { struct sys_heap heap; struct z_heap_stress_result result; TC_PRINT("Testing maximally fragmented (%d byte) heap\n", (int) SMALL_HEAP_SZ); sys_heap_init(&heap, heapmem, SMALL_HEAP_SZ); zassert_true(sys_heap_validate(&heap), ""); sys_heap_stress(testalloc, testfree, &heap, SMALL_HEAP_SZ, ITERATION_COUNT, scratchmem, sizeof(scratchmem), 100, &result); log_result(SMALL_HEAP_SZ, &result); } /* The heap block format changes for heaps with more than 2^15 chunks, * so test that case too. This can be too large to iterate over * exhaustively with good performance, so the relative operation count * and fragmentation is going to be lower. */ static void test_big_heap(void) { struct sys_heap heap; struct z_heap_stress_result result; if (IS_ENABLED(CONFIG_SYS_HEAP_SMALL_ONLY)) { TC_PRINT("big heap support is disabled\n"); ztest_test_skip(); } TC_PRINT("Testing big (%d byte) heap\n", (int) BIG_HEAP_SZ); sys_heap_init(&heap, heapmem, BIG_HEAP_SZ); zassert_true(sys_heap_validate(&heap), ""); sys_heap_stress(testalloc, testfree, &heap, BIG_HEAP_SZ, ITERATION_COUNT, scratchmem, sizeof(scratchmem), 100, &result); log_result(BIG_HEAP_SZ, &result); } /* Test a heap with a solo free header. A solo free header can exist * only on a heap with 64 bit CPU (or chunk_header_bytes() == 8). * With 64 bytes heap and 1 byte allocation on a big heap, we get: * * 0 1 2 3 4 5 6 7 * | h | h | b | b | c | 1 | s | f | * * where * - h: chunk0 header * - b: buckets in chunk0 * - c: chunk header for the first allocation * - 1: chunk mem * - s: solo free header * - f: end marker / footer */ static void test_solo_free_header(void) { struct sys_heap heap; TC_PRINT("Testing solo free header in a heap\n"); sys_heap_init(&heap, heapmem, SOLO_FREE_HEADER_HEAP_SZ); if (sizeof(void *) > 4U) { sys_heap_alloc(&heap, 1); zassert_true(sys_heap_validate(&heap), ""); } else { ztest_test_skip(); } } /* Simple clobber detection */ void realloc_fill_block(uint8_t *p, size_t sz) { uint8_t val = (uint8_t)((uintptr_t)p >> 3); for (int i = 0; i < sz; i++) { p[i] = (uint8_t)(val + i); } } bool realloc_check_block(uint8_t *data, uint8_t *orig, size_t sz) { uint8_t val = (uint8_t)((uintptr_t)orig >> 3); for (int i = 0; i < sz; i++) { if (data[i] != (uint8_t)(val + i)) { return false; } } return true; } static void test_realloc(void) { struct sys_heap heap; void *p1, *p2, *p3; /* Note whitebox assumption: allocation goes from low address * to high in an empty heap. */ sys_heap_init(&heap, heapmem, SMALL_HEAP_SZ); /* Allocate from an empty heap, then expand, validate that it * happens in place. */ p1 = sys_heap_alloc(&heap, 64); realloc_fill_block(p1, 64); p2 = sys_heap_realloc(&heap, p1, 128); zassert_true(sys_heap_validate(&heap), "invalid heap"); zassert_true(p1 == p2, "Realloc should have expanded in place %p -> %p", p1, p2); zassert_true(realloc_check_block(p2, p1, 64), "data changed"); /* Allocate two blocks, then expand the first, validate that * it moves. */ p1 = sys_heap_alloc(&heap, 64); realloc_fill_block(p1, 64); p2 = sys_heap_alloc(&heap, 64); realloc_fill_block(p2, 64); p3 = sys_heap_realloc(&heap, p1, 128); zassert_true(sys_heap_validate(&heap), "invalid heap"); zassert_true(p1 != p2, "Realloc should have moved %p", p1); zassert_true(realloc_check_block(p2, p2, 64), "data changed"); zassert_true(realloc_check_block(p3, p1, 64), "data changed"); /* Allocate, then shrink. Validate that it does not move. */ p1 = sys_heap_alloc(&heap, 128); realloc_fill_block(p1, 128); p2 = sys_heap_realloc(&heap, p1, 64); zassert_true(sys_heap_validate(&heap), "invalid heap"); zassert_true(p1 == p2, "Realloc should have shrunk in place %p -> %p", p1, p2); zassert_true(realloc_check_block(p2, p1, 64), "data changed"); /* Allocate two blocks, then expand the first within a chunk. * validate that it doesn't move. We assume CHUNK_UNIT == 8. */ p1 = sys_heap_alloc(&heap, 61); realloc_fill_block(p1, 61); p2 = sys_heap_alloc(&heap, 80); realloc_fill_block(p2, 80); p3 = sys_heap_realloc(&heap, p1, 64); zassert_true(sys_heap_validate(&heap), "invalid heap"); zassert_true(p1 == p3, "Realloc should have expanded in place %p -> %p", p1, p3); zassert_true(realloc_check_block(p3, p1, 61), "data changed"); /* Corner case with sys_heap_aligned_realloc() on 32-bit targets * where actual memory doesn't match with given pointer * (align_gap != 0). */ p1 = sys_heap_aligned_alloc(&heap, 8, 32); realloc_fill_block(p1, 32); p2 = sys_heap_alloc(&heap, 32); realloc_fill_block(p2, 32); p3 = sys_heap_aligned_realloc(&heap, p1, 8, 36); zassert_true(sys_heap_validate(&heap), "invalid heap"); zassert_true(realloc_check_block(p3, p1, 32), "data changed"); zassert_true(realloc_check_block(p2, p2, 32), "data changed"); realloc_fill_block(p3, 36); zassert_true(sys_heap_validate(&heap), "invalid heap"); zassert_true(p1 != p3, "Realloc should have moved %p", p1); /* Test realloc with increasing alignment */ p1 = sys_heap_aligned_alloc(&heap, 32, 32); p2 = sys_heap_aligned_alloc(&heap, 8, 32); p3 = sys_heap_aligned_realloc(&heap, p2, 8, 16); zassert_true(sys_heap_validate(&heap), "invalid heap"); zassert_true(p2 == p3, "Realloc should have expanded in place %p -> %p", p2, p3); p3 = sys_heap_aligned_alloc(&heap, 32, 8); zassert_true(sys_heap_validate(&heap), "invalid heap"); zassert_true(p2 != p3, "Realloc should have moved %p", p2); } #ifdef CONFIG_SYS_HEAP_LISTENER static struct sys_heap listener_heap; static uintptr_t listener_heap_id; static void *listener_mem; static void heap_alloc_cb(uintptr_t heap_id, void *mem, size_t bytes) { listener_heap_id = heap_id; listener_mem = mem; TC_PRINT("Heap 0x%" PRIxPTR ", alloc %p, size %u\n", heap_id, mem, (uint32_t)bytes); } static void heap_free_cb(uintptr_t heap_id, void *mem, size_t bytes) { listener_heap_id = heap_id; listener_mem = mem; TC_PRINT("Heap 0x%" PRIxPTR ", free %p, size %u\n", heap_id, mem, (uint32_t)bytes); } #endif /* CONFIG_SYS_HEAP_LISTENER */ static void test_heap_listeners(void) { #ifdef CONFIG_SYS_HEAP_LISTENER void *mem; HEAP_LISTENER_ALLOC_DEFINE(heap_event_alloc, HEAP_ID_FROM_POINTER(&listener_heap), heap_alloc_cb); HEAP_LISTENER_FREE_DEFINE(heap_event_free, HEAP_ID_FROM_POINTER(&listener_heap), heap_free_cb); sys_heap_init(&listener_heap, heapmem, SMALL_HEAP_SZ); /* Register listeners */ heap_listener_register(&heap_event_alloc); heap_listener_register(&heap_event_free); /* * Note that sys_heap may allocate a bigger size than requested * due to how sys_heap works. So checking whether the allocated * size equals to the requested size does not work. */ /* Alloc/free operations without explicit alignment */ mem = sys_heap_alloc(&listener_heap, 32U); zassert_equal(listener_heap_id, HEAP_ID_FROM_POINTER(&listener_heap), "Heap ID mismatched: 0x%lx != %p", listener_heap_id, &listener_heap); zassert_equal(listener_mem, mem, "Heap allocated pointer mismatched: %p != %p", listener_mem, mem); sys_heap_free(&listener_heap, mem); zassert_equal(listener_heap_id, HEAP_ID_FROM_POINTER(&listener_heap), "Heap ID mismatched: 0x%lx != %p", listener_heap_id, &listener_heap); zassert_equal(listener_mem, mem, "Heap allocated pointer mismatched: %p != %p", listener_mem, mem); /* Alloc/free operations with explicit alignment */ mem = sys_heap_aligned_alloc(&listener_heap, 128U, 32U); zassert_equal(listener_heap_id, HEAP_ID_FROM_POINTER(&listener_heap), "Heap ID mismatched: 0x%lx != %p", listener_heap_id, &listener_heap); zassert_equal(listener_mem, mem, "Heap allocated pointer mismatched: %p != %p", listener_mem, mem); sys_heap_free(&listener_heap, mem); zassert_equal(listener_heap_id, HEAP_ID_FROM_POINTER(&listener_heap), "Heap ID mismatched: 0x%lx != %p", listener_heap_id, &listener_heap); zassert_equal(listener_mem, mem, "Heap allocated pointer mismatched: %p != %p", listener_mem, mem); /* Clean up */ heap_listener_unregister(&heap_event_alloc); heap_listener_unregister(&heap_event_free); #else /* CONFIG_SYS_HEAP_LISTENER */ ztest_test_skip(); #endif /* CONFIG_SYS_HEAP_LISTENER */ } void test_main(void) { ztest_test_suite(lib_heap_test, ztest_unit_test(test_realloc), ztest_unit_test(test_small_heap), ztest_unit_test(test_fragmentation), ztest_unit_test(test_big_heap), ztest_unit_test(test_solo_free_header), ztest_unit_test(test_heap_listeners) ); ztest_run_test_suite(lib_heap_test); } |