Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
/*
 * Copyright (c) 2015, Intel Corporation.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <arch/cpu.h>
#include <errno.h>
#include <stdio.h>
#include <malloc.h>
#include <sys/__assert.h>
#include <sys/stat.h>
#include <linker/linker-defs.h>
#include <sys/util.h>
#include <sys/errno_private.h>
#include <sys/libc-hooks.h>
#include <syscall_handler.h>
#include <app_memory/app_memdomain.h>
#include <init.h>
#include <sys/sem.h>
#include <sys/mutex.h>
#include <sys/mem_manage.h>
#include <sys/time.h>

#define LIBC_BSS	K_APP_BMEM(z_libc_partition)
#define LIBC_DATA	K_APP_DMEM(z_libc_partition)

/*
 * End result of this thorny set of ifdefs is to define:
 *
 * - HEAP_BASE base address of the heap arena
 * - MAX_HEAP_SIZE size of the heap arena
 */

#ifdef CONFIG_MMU
	#ifdef CONFIG_USERSPACE
		struct k_mem_partition z_malloc_partition;
	#endif

	LIBC_BSS static unsigned char *heap_base;
	LIBC_BSS static size_t max_heap_size;

	#define HEAP_BASE		heap_base
	#define MAX_HEAP_SIZE		max_heap_size
	#define USE_MALLOC_PREPARE	1
#elif CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE
	/* Arena size expressed in Kconfig, due to power-of-two size/align
	 * requirements of certain MPUs.
	 *
	 * We use an automatic memory partition instead of setting this up
	 * in malloc_prepare().
	 */
	K_APPMEM_PARTITION_DEFINE(z_malloc_partition);
	#define MALLOC_BSS	K_APP_BMEM(z_malloc_partition)

	/* Compiler will throw an error if the provided value isn't a
	 * power of two
	 */
	MALLOC_BSS static unsigned char
		__aligned(CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE)
		heap_base[CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE];
	#define MAX_HEAP_SIZE CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE
	#define HEAP_BASE heap_base
#else /* Not MMU or CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE */
	#define USED_RAM_END_ADDR   POINTER_TO_UINT(&_end)

	#ifdef Z_MALLOC_PARTITION_EXISTS
		/* Start of malloc arena needs to be aligned per MPU
		 * requirements
		 */
		struct k_mem_partition z_malloc_partition;

		#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
			#define HEAP_BASE	ROUND_UP(USED_RAM_END_ADDR, \
				 CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE)
		#elif defined(CONFIG_ARC)
			#define HEAP_BASE	ROUND_UP(USED_RAM_END_ADDR, \
							  Z_ARC_MPU_ALIGN)
		#else
			#error "Unsupported platform"
		#endif /* CONFIG_<arch> */
		#define USE_MALLOC_PREPARE	1
	#else
		/* End of kernel image */
		#define HEAP_BASE		USED_RAM_END_ADDR
	#endif

	/* End of the malloc arena is the end of physical memory */
	#if defined(CONFIG_XTENSA)
		/* TODO: Why is xtensa a special case? */
		extern void *_heap_sentry;
		#define MAX_HEAP_SIZE	(POINTER_TO_UINT(&_heap_sentry) - \
					 HEAP_BASE)
	#else
		#define MAX_HEAP_SIZE	(KB(CONFIG_SRAM_SIZE) - (HEAP_BASE - \
					 CONFIG_SRAM_BASE_ADDRESS))
	#endif /* CONFIG_XTENSA */
#endif

static int malloc_prepare(const struct device *unused)
{
	ARG_UNUSED(unused);

#ifdef USE_MALLOC_PREPARE
#ifdef CONFIG_MMU
	max_heap_size = MIN(CONFIG_NEWLIB_LIBC_MAX_MAPPED_REGION_SIZE,
			    k_mem_free_get());

	if (max_heap_size != 0) {
		heap_base = k_mem_map(max_heap_size, K_MEM_PERM_RW);
		__ASSERT(heap_base != NULL,
			 "failed to allocate heap of size %zu", max_heap_size);

	}
#endif /* CONFIG_MMU */

#ifdef Z_MALLOC_PARTITION_EXISTS
	z_malloc_partition.start = (uintptr_t)HEAP_BASE;
	z_malloc_partition.size = (size_t)MAX_HEAP_SIZE;
	z_malloc_partition.attr = K_MEM_PARTITION_P_RW_U_RW;
#endif /* Z_MALLOC_PARTITION_EXISTS */
#endif /* USE_MALLOC_PREPARE */

	/*
	 * Validate that the memory space available for the newlib heap is
	 * greater than the minimum required size.
	 */
	__ASSERT(MAX_HEAP_SIZE >= CONFIG_NEWLIB_LIBC_MIN_REQUIRED_HEAP_SIZE,
		 "memory space available for newlib heap is less than the "
		 "minimum required size specified by "
		 "CONFIG_NEWLIB_LIBC_MIN_REQUIRED_HEAP_SIZE");

	return 0;
}

SYS_INIT(malloc_prepare, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);

/* Current offset from HEAP_BASE of unused memory */
LIBC_BSS static size_t heap_sz;

static int _stdout_hook_default(int c)
{
	(void)(c);  /* Prevent warning about unused argument */

	return EOF;
}

static int (*_stdout_hook)(int) = _stdout_hook_default;

void __stdout_hook_install(int (*hook)(int))
{
	_stdout_hook = hook;
}

static unsigned char _stdin_hook_default(void)
{
	return 0;
}

static unsigned char (*_stdin_hook)(void) = _stdin_hook_default;

void __stdin_hook_install(unsigned char (*hook)(void))
{
	_stdin_hook = hook;
}

int z_impl_zephyr_read_stdin(char *buf, int nbytes)
{
	int i = 0;

	for (i = 0; i < nbytes; i++) {
		*(buf + i) = _stdin_hook();
		if ((*(buf + i) == '\n') || (*(buf + i) == '\r')) {
			i++;
			break;
		}
	}
	return i;
}

#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zephyr_read_stdin(char *buf, int nbytes)
{
	Z_OOPS(Z_SYSCALL_MEMORY_WRITE(buf, nbytes));
	return z_impl_zephyr_read_stdin((char *)buf, nbytes);
}
#include <syscalls/zephyr_read_stdin_mrsh.c>
#endif

int z_impl_zephyr_write_stdout(const void *buffer, int nbytes)
{
	const char *buf = buffer;
	int i;

	for (i = 0; i < nbytes; i++) {
		if (*(buf + i) == '\n') {
			_stdout_hook('\r');
		}
		_stdout_hook(*(buf + i));
	}
	return nbytes;
}

#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zephyr_write_stdout(const void *buf, int nbytes)
{
	Z_OOPS(Z_SYSCALL_MEMORY_READ(buf, nbytes));
	return z_impl_zephyr_write_stdout((const void *)buf, nbytes);
}
#include <syscalls/zephyr_write_stdout_mrsh.c>
#endif

#ifndef CONFIG_POSIX_API
int _read(int fd, char *buf, int nbytes)
{
	ARG_UNUSED(fd);

	return zephyr_read_stdin(buf, nbytes);
}
__weak FUNC_ALIAS(_read, read, int);

int _write(int fd, const void *buf, int nbytes)
{
	ARG_UNUSED(fd);

	return zephyr_write_stdout(buf, nbytes);
}
__weak FUNC_ALIAS(_write, write, int);

int _open(const char *name, int mode)
{
	return -1;
}
__weak FUNC_ALIAS(_open, open, int);

int _close(int file)
{
	return -1;
}
__weak FUNC_ALIAS(_close, close, int);

int _lseek(int file, int ptr, int dir)
{
	return 0;
}
__weak FUNC_ALIAS(_lseek, lseek, int);
#else
extern ssize_t write(int file, const char *buffer, size_t count);
#define _write	write
#endif

int _isatty(int file)
{
	return file <= 2;
}
__weak FUNC_ALIAS(_isatty, isatty, int);

int _kill(int i, int j)
{
	return 0;
}
__weak FUNC_ALIAS(_kill, kill, int);

int _getpid(void)
{
	return 0;
}
__weak FUNC_ALIAS(_getpid, getpid, int);

int _fstat(int file, struct stat *st)
{
	st->st_mode = S_IFCHR;
	return 0;
}
__weak FUNC_ALIAS(_fstat, fstat, int);

__weak void _exit(int status)
{
	_write(1, "exit\n", 5);
	while (1) {
		;
	}
}

void *_sbrk(intptr_t count)
{
	void *ret, *ptr;

	ptr = ((char *)HEAP_BASE) + heap_sz;

	if ((heap_sz + count) < MAX_HEAP_SIZE) {
		heap_sz += count;
		ret = ptr;
	} else {
		ret = (void *)-1;
	}

	return ret;
}
__weak FUNC_ALIAS(_sbrk, sbrk, void *);

#ifdef CONFIG_MULTITHREADING
/*
 * Newlib Retargetable Locking Interface Implementation
 *
 * When multithreading is enabled, the newlib retargetable locking interface is
 * defined below to override the default void implementation and provide the
 * Zephyr-side locks.
 *
 * NOTE: `k_mutex` and `k_sem` are used instead of `sys_mutex` and `sys_sem`
 *	 because the latter do not support dynamic allocation for now.
 */

/* Static locks */
K_MUTEX_DEFINE(__lock___sinit_recursive_mutex);
K_MUTEX_DEFINE(__lock___sfp_recursive_mutex);
K_MUTEX_DEFINE(__lock___atexit_recursive_mutex);
K_MUTEX_DEFINE(__lock___malloc_recursive_mutex);
K_MUTEX_DEFINE(__lock___env_recursive_mutex);
K_SEM_DEFINE(__lock___at_quick_exit_mutex, 1, 1);
K_SEM_DEFINE(__lock___tz_mutex, 1, 1);
K_SEM_DEFINE(__lock___dd_hash_mutex, 1, 1);
K_SEM_DEFINE(__lock___arc4random_mutex, 1, 1);

#ifdef CONFIG_USERSPACE
/* Grant public access to all static locks after boot */
static int newlib_locks_prepare(const struct device *unused)
{
	ARG_UNUSED(unused);

	/* Initialise recursive locks */
	k_object_access_all_grant(&__lock___sinit_recursive_mutex);
	k_object_access_all_grant(&__lock___sfp_recursive_mutex);
	k_object_access_all_grant(&__lock___atexit_recursive_mutex);
	k_object_access_all_grant(&__lock___malloc_recursive_mutex);
	k_object_access_all_grant(&__lock___env_recursive_mutex);

	/* Initialise non-recursive locks */
	k_object_access_all_grant(&__lock___at_quick_exit_mutex);
	k_object_access_all_grant(&__lock___tz_mutex);
	k_object_access_all_grant(&__lock___dd_hash_mutex);
	k_object_access_all_grant(&__lock___arc4random_mutex);

	return 0;
}

SYS_INIT(newlib_locks_prepare, POST_KERNEL,
	 CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif /* CONFIG_USERSPACE */

/* Create a new dynamic non-recursive lock */
void __retarget_lock_init(_LOCK_T *lock)
{
	__ASSERT_NO_MSG(lock != NULL);

	/* Allocate semaphore object */
#ifndef CONFIG_USERSPACE
	*lock = malloc(sizeof(struct k_sem));
#else
	*lock = k_object_alloc(K_OBJ_SEM);
#endif /* !CONFIG_USERSPACE */
	__ASSERT(*lock != NULL, "non-recursive lock allocation failed");

	k_sem_init((struct k_sem *)*lock, 1, 1);
}

/* Create a new dynamic recursive lock */
void __retarget_lock_init_recursive(_LOCK_T *lock)
{
	__ASSERT_NO_MSG(lock != NULL);

	/* Allocate mutex object */
#ifndef CONFIG_USERSPACE
	*lock = malloc(sizeof(struct k_mutex));
#else
	*lock = k_object_alloc(K_OBJ_MUTEX);
#endif /* !CONFIG_USERSPACE */
	__ASSERT(*lock != NULL, "recursive lock allocation failed");

	k_mutex_init((struct k_mutex *)*lock);
}

/* Close dynamic non-recursive lock */
void __retarget_lock_close(_LOCK_T lock)
{
	__ASSERT_NO_MSG(lock != NULL);
#ifndef CONFIG_USERSPACE
	free(lock);
#else
	k_object_release(lock);
#endif /* !CONFIG_USERSPACE */
}

/* Close dynamic recursive lock */
void __retarget_lock_close_recursive(_LOCK_T lock)
{
	__ASSERT_NO_MSG(lock != NULL);
#ifndef CONFIG_USERSPACE
	free(lock);
#else
	k_object_release(lock);
#endif /* !CONFIG_USERSPACE */
}

/* Acquiure non-recursive lock */
void __retarget_lock_acquire(_LOCK_T lock)
{
	__ASSERT_NO_MSG(lock != NULL);
	k_sem_take((struct k_sem *)lock, K_FOREVER);
}

/* Acquiure recursive lock */
void __retarget_lock_acquire_recursive(_LOCK_T lock)
{
	__ASSERT_NO_MSG(lock != NULL);
	k_mutex_lock((struct k_mutex *)lock, K_FOREVER);
}

/* Try acquiring non-recursive lock */
int __retarget_lock_try_acquire(_LOCK_T lock)
{
	__ASSERT_NO_MSG(lock != NULL);
	return !k_sem_take((struct k_sem *)lock, K_NO_WAIT);
}

/* Try acquiring recursive lock */
int __retarget_lock_try_acquire_recursive(_LOCK_T lock)
{
	__ASSERT_NO_MSG(lock != NULL);
	return !k_mutex_lock((struct k_mutex *)lock, K_NO_WAIT);
}

/* Release non-recursive lock */
void __retarget_lock_release(_LOCK_T lock)
{
	__ASSERT_NO_MSG(lock != NULL);
	k_sem_give((struct k_sem *)lock);
}

/* Release recursive lock */
void __retarget_lock_release_recursive(_LOCK_T lock)
{
	__ASSERT_NO_MSG(lock != NULL);
	k_mutex_unlock((struct k_mutex *)lock);
}
#endif /* CONFIG_MULTITHREADING */

__weak int *__errno(void)
{
	return z_errno();
}

/* This function gets called if static buffer overflow detection is enabled
 * on stdlib side (Newlib here), in case such an overflow is detected. Newlib
 * provides an implementation not suitable for us, so we override it here.
 */
__weak FUNC_NORETURN void __chk_fail(void)
{
	static const char chk_fail_msg[] = "* buffer overflow detected *\n";
	_write(2, chk_fail_msg, sizeof(chk_fail_msg) - 1);
	k_oops();
	CODE_UNREACHABLE;
}

#if CONFIG_XTENSA
extern int _read(int fd, char *buf, int nbytes);
extern int _open(const char *name, int mode);
extern int _close(int file);
extern int _lseek(int file, int ptr, int dir);

/* The Newlib in xtensa toolchain has a few missing functions for the
 * reentrant versions of the syscalls.
 */
_ssize_t _read_r(struct _reent *r, int fd, void *buf, size_t nbytes)
{
	ARG_UNUSED(r);

	return _read(fd, (char *)buf, nbytes);
}

_ssize_t _write_r(struct _reent *r, int fd, const void *buf, size_t nbytes)
{
	ARG_UNUSED(r);

	return _write(fd, buf, nbytes);
}

int _open_r(struct _reent *r, const char *name, int flags, int mode)
{
	ARG_UNUSED(r);
	ARG_UNUSED(flags);

	return _open(name, mode);
}

int _close_r(struct _reent *r, int file)
{
	ARG_UNUSED(r);

	return _close(file);
}

_off_t _lseek_r(struct _reent *r, int file, _off_t ptr, int dir)
{
	ARG_UNUSED(r);

	return _lseek(file, ptr, dir);
}

int _isatty_r(struct _reent *r, int file)
{
	ARG_UNUSED(r);

	return _isatty(file);
}

int _kill_r(struct _reent *r, int i, int j)
{
	ARG_UNUSED(r);

	return _kill(i, j);
}

int _getpid_r(struct _reent *r)
{
	ARG_UNUSED(r);

	return _getpid();
}

int _fstat_r(struct _reent *r, int file, struct stat *st)
{
	ARG_UNUSED(r);

	return _fstat(file, st);
}

void _exit_r(struct _reent *r, int status)
{
	ARG_UNUSED(r);

	_exit(status);
}

void *_sbrk_r(struct _reent *r, int count)
{
	ARG_UNUSED(r);

	return _sbrk(count);
}
#endif /* CONFIG_XTENSA */

int _gettimeofday(struct timeval *__tp, void *__tzp)
{
	return gettimeofday(__tp, __tzp);
}