Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*
 * Copyright (c) 2021 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */
#include <ztest.h>
#include <sys/ring_buffer.h>
#include <sys/mutex.h>
#include <random/rand32.h>

/**
 * @defgroup lib_ringbuffer_tests Ringbuffer
 * @ingroup all_tests
 * @{
 * @}
 */

#define STACKSIZE (512 + CONFIG_TEST_EXTRA_STACKSIZE)

#define RINGBUFFER			256
#define LENGTH				64
#define VALUE				0xb
#define TYPE				0xc

#define RINGBUFFER_API_ITEM  0
#define RINGBUFFER_API_CPY   1
#define RINGBUFFER_API_NOCPY 2

static K_THREAD_STACK_DEFINE(thread_low_stack, STACKSIZE);
static struct k_thread thread_low_data;
static K_THREAD_STACK_DEFINE(thread_high_stack, STACKSIZE);
static struct k_thread thread_high_data;

static ZTEST_BMEM SYS_MUTEX_DEFINE(mutex);
RING_BUF_ITEM_DECLARE_SIZE(ringbuf, RINGBUFFER);
static uint32_t output[LENGTH];
static uint32_t databuffer1[LENGTH];
static uint32_t databuffer2[LENGTH];

static volatile int preempt_cnt;
static volatile bool in_task;

typedef void (*test_ringbuf_action_t)(struct ring_buf *rbuf, bool reset);
static test_ringbuf_action_t produce_fn;
static test_ringbuf_action_t consume_fn;
volatile int test_microdelay_cnt;

static void data_write(uint32_t *input)
{
	sys_mutex_lock(&mutex, K_FOREVER);
	int ret = ring_buf_item_put(&ringbuf, TYPE, VALUE,
				   input, LENGTH);
	zassert_equal(ret, 0, NULL);
	sys_mutex_unlock(&mutex);
}

static void data_read(uint32_t *output)
{
	uint16_t type;
	uint8_t value, size32 = LENGTH;
	int ret;

	sys_mutex_lock(&mutex, K_FOREVER);
	ret = ring_buf_item_get(&ringbuf, &type, &value, output, &size32);
	sys_mutex_unlock(&mutex);

	zassert_equal(ret, 0, NULL);
	zassert_equal(type, TYPE, NULL);
	zassert_equal(value, VALUE, NULL);
	zassert_equal(size32, LENGTH, NULL);
	if (output[0] == 1) {
		zassert_equal(memcmp(output, databuffer1, size32), 0, NULL);
	} else {
		zassert_equal(memcmp(output, databuffer2, size32), 0, NULL);
	}
}

static void thread_entry_t1(void *p1, void *p2, void *p3)
{
	for (int i = 0; i < LENGTH; i++) {
		databuffer1[i] = 1;
	}

	/* Try to write data into the ringbuffer */
	data_write(databuffer1);
	/* Try to get data from the ringbuffer and check */
	data_read(output);
}

static void thread_entry_t2(void *p1, void *p2, void *p3)
{
	for (int i = 0; i < LENGTH; i++) {
		databuffer2[i] = 2;
	}
	/* Try to write data into the ringbuffer */
	data_write(databuffer2);
	/* Try to get data from the ringbuffer and check */
	data_read(output);
}

/**
 * @brief Test that prevent concurrent writing
 * operations by using a mutex
 *
 * @details Define a ring buffer and a mutex,
 * and then spawn two threads to read and
 * write the same buffer at the same time to
 * check the integrity of data reading and writing.
 *
 * @ingroup lib_ringbuffer_tests
 */
void test_ringbuffer_concurrent(void)
{
	int old_prio = k_thread_priority_get(k_current_get());
	int prio = 10;

	k_thread_priority_set(k_current_get(), prio);

	k_thread_create(&thread_high_data, thread_high_stack, STACKSIZE,
			thread_entry_t1,
			NULL, NULL, NULL,
			prio + 2, 0, K_NO_WAIT);
	k_thread_create(&thread_low_data, thread_low_stack, STACKSIZE,
			thread_entry_t2,
			NULL, NULL, NULL,
			prio + 2, 0, K_NO_WAIT);
	k_sleep(K_MSEC(10));

	/* Wait for thread exiting */
	k_thread_join(&thread_low_data, K_FOREVER);
	k_thread_join(&thread_high_data, K_FOREVER);


	/* Revert priority of the main thread */
	k_thread_priority_set(k_current_get(), old_prio);
}

static void produce_cpy(struct ring_buf *rbuf, bool reset)
{
	static int cnt;
	uint8_t buf[3];
	uint32_t len;

	if (reset) {
		cnt = 0;
		return;
	}

	for (int i = 0; i < sizeof(buf); i++) {
		buf[i] = (uint8_t)cnt++;
	}

	len = ring_buf_put(rbuf, buf, sizeof(buf));
	cnt -= (sizeof(buf) - len);
}

static void consume_cpy(struct ring_buf *rbuf, bool reset)
{
	static int cnt;
	uint8_t buf[3];
	uint32_t len;

	if (reset) {
		cnt = 0;
		return;
	}

	len = ring_buf_get(rbuf, buf, sizeof(buf));
	for (int i = 0; i < len; i++) {
		zassert_equal(buf[i], (uint8_t)cnt, NULL);
		cnt++;
	}
}

static void produce_item(struct ring_buf *rbuf, bool reset)
{
	int err;
	static uint16_t cnt;
	uint32_t buf[2];

	if (reset) {
		cnt = 0;
		return;
	}

	err = ring_buf_item_put(rbuf, cnt++, VALUE, buf, 2);
	(void)err;
}

static void consume_item(struct ring_buf *rbuf, bool reset)
{
	int err;
	static uint16_t cnt;
	uint32_t data[2];
	uint16_t type;
	uint8_t value;
	uint8_t size32 = ARRAY_SIZE(data);

	if (reset) {
		cnt = 0;
		return;
	}

	err = ring_buf_item_get(rbuf, &type, &value, data, &size32);
	if (err == 0) {
		zassert_equal(type, cnt++, NULL);
		zassert_equal(value, VALUE, NULL);
	} else if (err == -EMSGSIZE) {
		zassert_true(false, NULL);
	}
}

static void produce(struct ring_buf *rbuf, bool reset)
{
	static int cnt;
	static int wr = 8;
	uint32_t len;
	uint8_t *data;

	if (reset) {
		cnt = 0;
		return;
	}

	len = ring_buf_put_claim(rbuf, &data, wr);
	if (len == 0) {
		len = ring_buf_put_claim(rbuf, &data, wr);
	}

	if (len == 0) {
		return;
	}

	for (uint32_t i = 0; i < len; i++) {
		data[i] = cnt++;
	}

	wr++;
	if (wr == 15) {
		wr = 8;
	}

	int err = ring_buf_put_finish(rbuf, len);

	zassert_equal(err, 0, "cnt: %d", cnt);
}

static void consume(struct ring_buf *rbuf, bool reset)
{
	static int rd = 8;
	static int cnt;
	uint32_t len;
	uint8_t *data;

	if (reset) {
		cnt = 0;
		return;
	}

	len = ring_buf_get_claim(rbuf, &data, rd);
	if (len == 0) {
		len = ring_buf_get_claim(rbuf, &data, rd);
	}

	if (len == 0) {
		return;
	}

	for (uint32_t i = 0; i < len; i++) {
		zassert_equal(data[i], (uint8_t)cnt,
			      "Got %02x, exp: %02x", data[i], (uint8_t)cnt);
		cnt++;
	}

	rd++;
	if (rd == 15) {
		rd = 8;
	}

	int err = ring_buf_get_finish(rbuf, len);

	zassert_equal(err, 0, NULL);
}


static void produce_timeout(struct k_timer *timer)
{
	struct ring_buf *rbuf = k_timer_user_data_get(timer);

	if (in_task) {
		preempt_cnt++;
	}

	produce_fn(rbuf, false);
}

static void consume_timeout(struct k_timer *timer)
{
	struct ring_buf *rbuf = k_timer_user_data_get(timer);

	if (in_task) {
		preempt_cnt++;
	}

	consume_fn(rbuf, false);
}

static void microdelay(int delay)
{
	for (int i = 0; i < delay; i++) {
		test_microdelay_cnt++;
	}
}

/* Test is running 2 parts of ring buffer operations (producing, consuming) in
 * two different contexts. One is the thread context and second is k_timer
 * timeout interrupt which can preempt thread. The goal of this test is to
 * provoke cases when one operation is preempted by another at multiple locations.
 * It is achieved by starting a timer and then busywaiting for similar time
 * before starting an operation in the thread context. Number of thread context
 * preemptions is counted and test is considered valid if certain amount of
 * preemptions occurred.
 *
 * Ring buffer claims that it is thread safe and requires no additional locking
 * in single producer, single consumer case and this test aims to prove that.
 *
 * Depending on input parameter @p p2 thread context is used for producing or
 * consuming.
 */
static void thread_entry_spsc(void *p1, void *p2, void *p3)
{
	struct ring_buf *rbuf = p1;
	uint32_t timeout = 6000;
	bool high_producer = (bool)p2;
	uint32_t start = k_uptime_get_32();
	struct k_timer timer;
	int i = 0;
	int backoff_us = MAX(100, 3 * (1000000 / CONFIG_SYS_CLOCK_TICKS_PER_SEC));
	k_timeout_t t = K_USEC(backoff_us);

	k_timer_init(&timer,
		     high_producer ? produce_timeout : consume_timeout,
		     NULL);
	k_timer_user_data_set(&timer, rbuf);

	preempt_cnt = 0;
	consume_fn(rbuf, true);
	produce_fn(rbuf, true);

	while (k_uptime_get_32() < (start + timeout)) {
		int r = sys_rand32_get() % 200;

		k_timer_start(&timer, t, K_NO_WAIT);
		k_busy_wait(backoff_us - 50 + i);
		microdelay(r);

		in_task = true;
		if (high_producer) {
			consume_fn(rbuf, false);
		} else {
			produce_fn(rbuf, false);
		}
		in_task = false;

		i++;
		if (i > 60) {
			i = 0;
		}

		k_timer_status_sync(&timer);
	}

	PRINT("preempted: %d\n", preempt_cnt);
	/* Test is tailored for qemu_x86 to generate enough number of preemptions
	 * to validate that ring buffer is safe to be used without any locks in
	 * single producer single consumer scenario.
	 */
	if (IS_ENABLED(CONFIG_BOARD_QEMU_X86)) {
		zassert_true(preempt_cnt > 1500, "If thread operation was not preempted "
			"multiple times then we cannot have confidance that it "
			"validated the module properly. Platform should not be "
			"used in that case");
	}
}

extern uint32_t test_rewind_threshold;

/* Single producer, single consumer test */
static void test_ringbuffer_spsc(bool higher_producer, int api_type)
{
	int old_prio = k_thread_priority_get(k_current_get());
	int prio = 10;
	uint32_t old_rewind_threshold = test_rewind_threshold;
	uint8_t buf[32];
	uint32_t buf32[32];

	if (CONFIG_SYS_CLOCK_TICKS_PER_SEC < 100000) {
		ztest_test_skip();
	}

	test_rewind_threshold = 64;

	switch (api_type) {
	case RINGBUFFER_API_ITEM:
		ring_buf_init(&ringbuf, ARRAY_SIZE(buf32), buf32);
		consume_fn = consume_item;
		produce_fn = produce_item;
		break;
	case RINGBUFFER_API_NOCPY:
		ring_buf_init(&ringbuf, ARRAY_SIZE(buf), buf);
		consume_fn = consume;
		produce_fn = produce;
		break;
	case RINGBUFFER_API_CPY:
		ring_buf_init(&ringbuf, ARRAY_SIZE(buf), buf);
		consume_fn = consume_cpy;
		produce_fn = produce_cpy;
		break;
	default:
		zassert_true(false, NULL);
	}

	k_thread_priority_set(k_current_get(), prio);

	k_thread_create(&thread_high_data, thread_high_stack, STACKSIZE,
			thread_entry_spsc,
			&ringbuf, (void *)higher_producer, NULL,
			prio + 1, 0, K_NO_WAIT);
	k_sleep(K_MSEC(10));

	/* Wait for thread exiting */
	k_thread_join(&thread_high_data, K_FOREVER);


	/* Revert priority of the main thread */
	k_thread_priority_set(k_current_get(), old_prio);
	test_rewind_threshold = old_rewind_threshold;
}

/* Zero-copy API. Test is validating single producer, single consumer where
 * producer has higher priority context which can preempt consumer.
 */
void test_ringbuffer_shpsc(void)
{
	test_ringbuffer_spsc(true, RINGBUFFER_API_NOCPY);
}

/* Zero-copy API. Test is validating single producer, single consumer where
 * consumer has higher priority context which can preempt producer.
 */
void test_ringbuffer_spshc(void)
{
	test_ringbuffer_spsc(false, RINGBUFFER_API_NOCPY);
}

/* Copy API. Test is validating single producer, single consumer where
 * producer has higher priority context which can preempt consumer.
 */
void test_ringbuffer_cpy_shpsc(void)
{
	test_ringbuffer_spsc(true, RINGBUFFER_API_CPY);
}

/* Copy API. Test is validating single producer, single consumer where
 * consumer has higher priority context which can preempt producer.
 */
void test_ringbuffer_cpy_spshc(void)
{
	test_ringbuffer_spsc(false, RINGBUFFER_API_CPY);
}
/* Item API. Test is validating single producer, single consumer where producer
 * has higher priority context which can preempt consumer.
 */
void test_ringbuffer_item_shpsc(void)
{
	test_ringbuffer_spsc(true, RINGBUFFER_API_ITEM);
}

/* Item API. Test is validating single producer, single consumer where consumer
 * has higher priority context which can preempt producer.
 */
void test_ringbuffer_item_spshc(void)
{
	test_ringbuffer_spsc(false, RINGBUFFER_API_ITEM);
}