Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
/*
 * Copyright (c) 2012-2015 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/*
 * @brief test context and thread APIs
 *
 * @defgroup kernel_context_tests Context Tests
 *
 * @ingroup all_tests
 *
 * This module tests the following CPU and thread related routines:
 * k_thread_create(), k_yield(), k_is_in_isr(),
 * k_current_get(), k_cpu_idle(), k_cpu_atomic_idle(),
 * irq_lock(), irq_unlock(),
 * irq_offload(), irq_enable(), irq_disable(),
 * @{
 * @}
 */

#include <ztest.h>
#include <kernel_structs.h>
#include <arch/cpu.h>
#include <irq_offload.h>
#include <sys_clock.h>

/*
 * Include soc.h from platform to get IRQ number.
 * NOTE: Cortex-M does not need IRQ numbers
 */
#if !defined(CONFIG_CPU_CORTEX_M) && !defined(CONFIG_XTENSA)
#include <soc.h>
#endif

#define THREAD_STACKSIZE    (512 + CONFIG_TEST_EXTRA_STACKSIZE)
#define THREAD_STACKSIZE2   (384 + CONFIG_TEST_EXTRA_STACKSIZE)
#define THREAD_PRIORITY     4

#define THREAD_SELF_CMD    0
#define EXEC_CTX_TYPE_CMD  1

#define UNKNOWN_COMMAND    -1

/*
 * Get the timer type dependent IRQ number. If timer type
 * is not defined in platform, generate an error
 */
#if defined(CONFIG_HPET_TIMER)
#define TICK_IRQ DT_IRQN(DT_INST(0, intel_hpet))
#elif defined(CONFIG_ARM_ARCH_TIMER)
#define TICK_IRQ ARM_ARCH_TIMER_IRQ
#elif defined(CONFIG_APIC_TIMER)
#define TICK_IRQ CONFIG_APIC_TIMER_IRQ
#elif defined(CONFIG_APIC_TSC_DEADLINE_TIMER)
#define TICK_IRQ z_loapic_irq_base() /* first LVT interrupt */
#elif defined(CONFIG_XTENSA_TIMER)
#define TICK_IRQ UTIL_CAT(XCHAL_TIMER,		\
			  UTIL_CAT(CONFIG_XTENSA_TIMER_ID, _INTERRUPT))

#elif defined(CONFIG_CAVS_TIMER)
#define TICK_IRQ DSP_WCT_IRQ(0)
#elif defined(CONFIG_ALTERA_AVALON_TIMER)
#define TICK_IRQ TIMER_0_IRQ
#elif defined(CONFIG_ARCV2_TIMER)
#define TICK_IRQ IRQ_TIMER0
#elif defined(CONFIG_RISCV_MACHINE_TIMER)
#define TICK_IRQ RISCV_MACHINE_TIMER_IRQ
#elif defined(CONFIG_ITE_IT8XXX2_TIMER)
#define TICK_IRQ DT_IRQ_BY_IDX(DT_NODELABEL(timer), 5, irq)
#elif defined(CONFIG_LITEX_TIMER)
#define TICK_IRQ DT_IRQN(DT_NODELABEL(timer0))
#elif defined(CONFIG_RV32M1_LPTMR_TIMER)
#define TICK_IRQ DT_IRQN(DT_ALIAS(system_lptmr))
#elif defined(CONFIG_XLNX_PSTTC_TIMER)
#define TICK_IRQ DT_IRQN(DT_INST(0, xlnx_ttcps))
#elif defined(CONFIG_RCAR_CMT_TIMER)
#define TICK_IRQ DT_IRQN(DT_INST(0, renesas_rcar_cmt))
#elif defined(CONFIG_CPU_CORTEX_M)
/*
 * The Cortex-M use the SYSTICK exception for the system timer, which is
 * not considered an IRQ by the irq_enable/Disable APIs.
 */
#elif defined(CONFIG_SPARC)
#elif defined(CONFIG_ARCH_POSIX)
#if  defined(CONFIG_BOARD_NATIVE_POSIX)
#define TICK_IRQ TIMER_TICK_IRQ
#else
/*
 * Other POSIX arch boards will skip the irq_disable() and irq_enable() test
 * unless TICK_IRQ is defined here for them
 */
#endif /* defined(CONFIG_ARCH_POSIX) */
#else
/* generate an error */
#error Timer type is not defined for this platform
#endif

/* Cortex-M1, Nios II, and RISCV without CONFIG_RISCV_HAS_CPU_IDLE
 * do have a power saving instruction, so k_cpu_idle() returns immediately
 */
#if !defined(CONFIG_CPU_CORTEX_M1) && !defined(CONFIG_NIOS2) && \
	(!defined(CONFIG_RISCV) || defined(CONFIG_RISCV_HAS_CPU_IDLE))
#define HAS_POWERSAVE_INSTRUCTION
#endif



typedef struct {
	int command;            /* command to process   */
	int error;              /* error value (if any) */
	union {
		void *data;     /* pointer to data to use or return */
		int value;      /* value to be passed or returned   */
	};
} ISR_INFO;


typedef int (*disable_int_func) (int);
typedef void (*enable_int_func) (int);

static struct k_sem sem_thread;
static struct k_timer timer;
static struct k_sem reply_timeout;
struct k_fifo timeout_order_fifo;

static int thread_evidence;

static K_THREAD_STACK_DEFINE(thread_stack1, THREAD_STACKSIZE);
static K_THREAD_STACK_DEFINE(thread_stack2, THREAD_STACKSIZE);
static K_THREAD_STACK_DEFINE(thread_stack3, THREAD_STACKSIZE);
static struct k_thread thread_data1;
static struct k_thread thread_data2;
static struct k_thread thread_data3;

static ISR_INFO isr_info;

/**
 * @brief Test cpu idle function
 *
 * @details
 * Test Objectve:
 * - The kernel architecture provide an idle function to be run when the system
 *   has no work for the current CPU
 * - This routine tests the k_cpu_idle() routine
 *
 * Testing techniques
 * - Functional and black box testing
 * - Interface testing
 *
 * Prerequisite Condition:
 * - HAS_POWERSAVE_INSTRUCTION is set
 *
 * Input Specifications:
 * - N/A
 *
 * Test Procedure:
 * -# Record system time before cpu enters idle state
 * -# Enter cpu idle state by k_cpu_idle()
 * -# Record system time after cpu idle state is interrupted
 * -# Compare the two system time values.
 *
 * Expected Test Result:
 * - cpu enters idle state for a given time
 *
 * Pass/Fail criteria:
 * - Success if the cpu enters idle state, failure otherwise.
 *
 * Assumptions and Constraints
 * - N/A
 *
 * @see k_cpu_idle()
 * @ingroup kernel_context_tests
 */
static void test_kernel_cpu_idle(void);

/**
 * @brief Test cpu idle function
 *
 * @details
 * Test Objectve:
 * - The kernel architecture provide an idle function to be run when the system
 *   has no work for the current CPU
 * - This routine tests the k_cpu_atomic_idle() routine
 *
 * Testing techniques
 * - Functional and black box testing
 * - Interface testing
 *
 * Prerequisite Condition:
 * - HAS_POWERSAVE_INSTRUCTION is set
 *
 * Input Specifications:
 * - N/A
 *
 * Test Procedure:
 * -# Record system time befor cpu enters idle state
 * -# Enter cpu idle state by k_cpu_atomic_idle()
 * -# Record system time after cpu idle state is interrupted
 * -# Compare the two system time values.
 *
 * Expected Test Result:
 * - cpu enters idle state for a given time
 *
 * Pass/Fail criteria:
 * - Success if the cpu enters idle state, failure otherwise.
 *
 * Assumptions and Constraints
 * - N/A
 *
 * @see k_cpu_atomic_idle()
 * @ingroup kernel_context_tests
 */
static void test_kernel_cpu_idle_atomic(void);

/**
 * @brief Handler to perform various actions from within an ISR context
 *
 * This routine is the ISR handler for isr_handler_trigger(). It performs
 * the command requested in <isr_info.command>.
 *
 * @return N/A
 */
static void isr_handler(const void *data)
{
	ARG_UNUSED(data);

	switch (isr_info.command) {
	case THREAD_SELF_CMD:
		isr_info.data = (void *)k_current_get();
		break;

	case EXEC_CTX_TYPE_CMD:
		if (k_is_in_isr()) {
			isr_info.value = K_ISR;
			break;
		}

		if (_current->base.prio < 0) {
			isr_info.value = K_COOP_THREAD;
			break;
		}

		isr_info.value = K_PREEMPT_THREAD;

		break;

	default:
		isr_info.error = UNKNOWN_COMMAND;
		break;
	}
}

static void isr_handler_trigger(void)
{
	irq_offload(isr_handler, NULL);
}

/**
 *
 * @brief Initialize kernel objects
 *
 * This routine initializes the kernel objects used in this module's tests.
 *
 */
static void kernel_init_objects(void)
{
	k_sem_init(&reply_timeout, 0, UINT_MAX);
	k_timer_init(&timer, NULL, NULL);
	k_fifo_init(&timeout_order_fifo);
}

/**
 * @brief A wrapper for irq_lock()
 *
 * @return irq_lock() return value
 */
int irq_lock_wrapper(int unused)
{
	ARG_UNUSED(unused);

	return irq_lock();
}

/**
 * @brief A wrapper for irq_unlock()
 *
 * @return N/A
 */
void irq_unlock_wrapper(int imask)
{
	irq_unlock(imask);
}

/**
 * @brief A wrapper for irq_disable()
 *
 * @return @a irq
 */
int irq_disable_wrapper(int irq)
{
	irq_disable(irq);
	return irq;
}

/**
 * @brief A wrapper for irq_enable()
 *
 * @return N/A
 */
void irq_enable_wrapper(int irq)
{
	irq_enable(irq);
}

#if defined(HAS_POWERSAVE_INSTRUCTION)
#if defined(CONFIG_TICKLESS_KERNEL)
static struct k_timer idle_timer;

static void idle_timer_expiry_function(struct k_timer *timer_id)
{
	k_timer_stop(&idle_timer);
}

static void _test_kernel_cpu_idle(int atomic)
{
	int tms, tms2;
	int i;

	/* Align to ticks so the first iteration sleeps long enough
	 * (k_timer_start() rounds its duration argument down, not up,
	 * to a tick boundary)
	 */
	 k_usleep(1);

	/* Set up a time to trigger events to exit idle mode */
	k_timer_init(&idle_timer, idle_timer_expiry_function, NULL);

	for (i = 0; i < 5; i++) { /* Repeat the test five times */
		k_timer_start(&idle_timer, K_MSEC(1), K_NO_WAIT);
		tms = k_uptime_get_32();
		if (atomic) {
			unsigned int key = irq_lock();

			k_cpu_atomic_idle(key);
		} else {
			k_cpu_idle();
		}
		tms += 1;
		tms2 = k_uptime_get_32();
		zassert_false(tms2 < tms, "Bad ms value computed,"
	      "got %d which is less than %d\n",
	      tms2, tms);
	}
}

#else /* CONFIG_TICKLESS_KERNEL */
static void _test_kernel_cpu_idle(int atomic)
{
	int tms, tms2;
	int i;

	/* Align to a "ms boundary". */
	tms = k_uptime_get_32();
	while (tms == k_uptime_get_32()) {
#if defined(CONFIG_ARCH_POSIX)
		k_busy_wait(50);
#endif
	}

	tms = k_uptime_get_32();
	for (i = 0; i < 5; i++) { /* Repeat the test five times */
		if (atomic) {
			unsigned int key = irq_lock();

			k_cpu_atomic_idle(key);
		} else {
			k_cpu_idle();
		}
		/* calculating milliseconds per tick*/
		tms += k_ticks_to_ms_floor64(1);
		tms2 = k_uptime_get_32();
		zassert_false(tms2 < tms, "Bad ms per tick value computed,"
			      "got %d which is less than %d\n",
			      tms2, tms);
	}
}
#endif /* CONFIG_TICKLESS_KERNEL */

/**
 *
 * @brief Test the k_cpu_idle() routine
 *
 * @ingroup kernel_context_tests
 *
 * This tests the k_cpu_idle() routine. The first thing it does is align to
 * a tick boundary. The only source of interrupts while the test is running is
 * expected to be the tick clock timer which should wake the CPU. Thus after
 * each call to k_cpu_idle(), the tick count should be one higher.
 *
 * @see k_cpu_idle()
 */
#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
static void test_kernel_cpu_idle_atomic(void)
{
	ztest_test_skip();
}
#else
static void test_kernel_cpu_idle_atomic(void)
{
	_test_kernel_cpu_idle(1);
}
#endif

static void test_kernel_cpu_idle(void)
{
/*
 * Fixme: remove the skip code when sleep instruction in
 * nsim_hs_smp is fixed.
 */
#if defined(CONFIG_SOC_NSIM) && defined(CONFIG_SMP)
	ztest_test_skip();
#endif
	_test_kernel_cpu_idle(0);
}

#else /* HAS_POWERSAVE_INSTRUCTION */
static void test_kernel_cpu_idle(void)
{
	ztest_test_skip();
}
static void test_kernel_cpu_idle_atomic(void)
{
	ztest_test_skip();
}
#endif

static void _test_kernel_interrupts(disable_int_func disable_int,
				    enable_int_func enable_int, int irq)
{
	unsigned long long count = 0;
	unsigned long long i = 0;
	int tick;
	int tick2;
	int imask;

	/* Align to a "tick boundary" */
	tick = sys_clock_tick_get_32();
	while (sys_clock_tick_get_32() == tick) {
#if defined(CONFIG_ARCH_POSIX)
		k_busy_wait(1000);
#endif
	}

	tick++;
	while (sys_clock_tick_get_32() == tick) {
#if defined(CONFIG_ARCH_POSIX)
		k_busy_wait(1000);
#endif
		count++;
	}

	/*
	 * Inflate <count> so that when we loop later, many ticks should have
	 * elapsed during the loop. This later loop will not exactly match the
	 * previous loop, but it should be close enough in structure that when
	 * combined with the inflated count, many ticks will have passed.
	 */

	count <<= 4;

	imask = disable_int(irq);
	tick = sys_clock_tick_get_32();
	for (i = 0; i < count; i++) {
		sys_clock_tick_get_32();
#if defined(CONFIG_ARCH_POSIX)
		k_busy_wait(1000);
#endif
	}

	tick2 = sys_clock_tick_get_32();

	/*
	 * Re-enable interrupts before returning (for both success and failure
	 * cases).
	 */
	enable_int(imask);

	/* In TICKLESS, current time is retrieved from a hardware
	 * counter and ticks DO advance with interrupts locked!
	 */
	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		zassert_equal(tick2, tick,
			      "tick advanced with interrupts locked");
	}

	/* Now repeat with interrupts unlocked. */
	for (i = 0; i < count; i++) {
		sys_clock_tick_get_32();
#if defined(CONFIG_ARCH_POSIX)
		k_busy_wait(1000);
#endif
	}

	tick2 = sys_clock_tick_get_32();
	zassert_not_equal(tick, tick2,
			  "tick didn't advance as expected");
}

/**
 * @brief Test routines for disabling and enabling interrupts
 *
 * @ingroup kernel_context_tests
 *
 * @details
 * Test Objective:
 * - To verify kernel architecture layer shall provide a mechanism to
 *   selectively disable and enable specific numeric interrupts.
 * - This routine tests the routines for disabling and enabling interrupts.
 *   These include irq_lock() and irq_unlock().
 *
 * Testing techniques:
 * - Interface testing, function and black box testing,
 *   dynamic analysis and testing
 *
 * Prerequisite Conditions:
 * - CONFIG_TICKLESS_KERNEL is not set.
 *
 * Input Specifications:
 * - N/A
 *
 * Test Procedure:
 * -# Do action to align to a tick boundary.
 * -# Left shift 4 bits for the value of counts.
 * -# Call irq_lock() and restore its return value to imask.
 * -# Call sys_clock_tick_get_32() and store its return value to tick.
 * -# Repeat counts of calling sys_clock_tick_get_32().
 * -# Call sys_clock_tick_get_32() and store its return value to tick2.
 * -# Call irq_unlock() with parameter imask.
 * -# Check if tick is equal to tick2.
 * -# Repeat counts of calling sys_clock_tick_get_32().
 * -# Call sys_clock_tick_get_32() and store its return value to tick2.
 * -# Check if tick is NOT equal to tick2.
 *
 * Expected Test Result:
 * - The ticks shall not increase while interrupt locked.
 *
 * Pass/Fail Criteria:
 * - Successful if check points in test procedure are all passed, otherwise
 *   failure.
 *
 * Assumptions and Constraints:
 * - N/A
 *
 * @see irq_lock(), irq_unlock()
 */
static void test_kernel_interrupts(void)
{
	/* IRQ locks don't prevent ticks from advancing in tickless mode */
	if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		return;
	}

	_test_kernel_interrupts(irq_lock_wrapper, irq_unlock_wrapper, -1);
}

/**
 * @brief Test routines for disabling and enabling interrupts (disable timer)
 *
 * @ingroup kernel_context_tests
 *
 * @details
 * Test Objective:
 * - To verify the kernel architecture layer shall provide a mechanism to
 *   simultenously mask all local CPU interrupts and return the previous mask
 *   state for restoration.
 * - This routine tests the routines for disabling and enabling interrupts.
 *   These include irq_disable() and irq_enable().
 *
 * Testing techniques:
 * - Interface testing, function and black box testing,
 *   dynamic analysis and testing
 *
 * Prerequisite Conditions:
 * - TICK_IRQ is defined.
 *
 * Input Specifications:
 * - N/A
 *
 * Test Procedure:
 * -# Do action to align to a tick boundary.
 * -# Left shift 4 bit for the value of counts.
 * -# Call irq_disable() and restore its return value to imask.
 * -# Call sys_clock_tick_get_32() and store its return value to tick.
 * -# Repeat counts of calling sys_clock_tick_get_32().
 * -# Call sys_clock_tick_get_32() and store its return value to tick2.
 * -# Call irq_enable() with parameter imask.
 * -# Check if tick is equal to tick2.
 * -# Repeat counts of calling sys_clock_tick_get_32().
 * -# Call sys_clock_tick_get_32() and store its return value to tick2.
 * -# Check if tick is NOT equal to tick2.
 *
 * Expected Test Result:
 * - The ticks shall not increase while interrupt locked.
 *
 * Pass/Fail Criteria:
 * - Successful if check points in test procedure are all passed, otherwise
 *   failure.
 *
 * Assumptions and Constraints:
 * - Note that this test works by disabling the timer interrupt
 *   directly, without any interaction with the timer driver or
 *   timeout subsystem.  NOT ALL ARCHITECTURES will latch and deliver
 *   a timer interrupt that arrives while the interrupt is disabled,
 *   which means that the timeout list will become corrupted (because
 *   it contains items that should have expired in the past).  Any use
 *   of kernel timeouts after completion of this test is disallowed.
 *   RUN THIS TEST LAST IN THE SUITE.
 *
 * @see irq_disable(), irq_enable()
 */
static void test_kernel_timer_interrupts(void)
{
#ifdef TICK_IRQ
	/* Disable interrupts coming from the timer. */
	_test_kernel_interrupts(irq_disable_wrapper, irq_enable_wrapper, TICK_IRQ);
#else
	ztest_test_skip();
#endif
}

/**
 * @brief Test some context routines
 *
 * @details
 * Test Objectve:
 * - Thread context handles derived from context switches must be able to be
 *   restored upon interrupt exit
 *
 * Testing techniques
 * - Functional and black box testing
 * - Interface testing
 *
 * Prerequisite Condition:
 * - N/A
 *
 * Input Specifications:
 * - N/A
 *
 * Test Procedure:
 * -# Set priority of current thread to 0 as a preemptible thread
 * -# Trap to interrupt context, get thread id of the interrupted thread and
 *  pass back to that thread.
 * -# Return to thread context and make sure this context is interrupted by
 *  comparing its thread ID and the thread ID passed by isr.
 * -# Pass command to isr to check whether the isr is executed in interrupt
 *  context
 * -# When return to thread context, check the return value of command.
 *
 * Expected Test Result:
 * - Thread context restored upon interrupt exit
 *
 * Pass/Fail criteria:
 * - Success if context of thread restored correctly, failure otherwise.
 *
 * Assumptions and Constraints
 * - N/A
 *
 * @ingroup kernel_context_tests
 * @see k_current_get(), k_is_in_isr()
 */
static void test_kernel_ctx_thread(void)
{
	k_tid_t self_thread_id;

	k_thread_priority_set(k_current_get(), 0);

	TC_PRINT("Testing k_current_get() from an ISR and thread\n");

	self_thread_id = k_current_get();
	isr_info.command = THREAD_SELF_CMD;
	isr_info.error = 0;
	/* isr_info is modified by the isr_handler routine */
	isr_handler_trigger();

	zassert_false(isr_info.error, "ISR detected an error");

	zassert_equal(isr_info.data, (void *)self_thread_id,
		      "ISR context ID mismatch");

	TC_PRINT("Testing k_is_in_isr() from an ISR\n");
	isr_info.command = EXEC_CTX_TYPE_CMD;
	isr_info.error = 0;
	isr_handler_trigger();

	zassert_false(isr_info.error, "ISR detected an error");

	zassert_equal(isr_info.value, K_ISR,
		      "isr_info.value was not K_ISR");

	TC_PRINT("Testing k_is_in_isr() from a preemptible thread\n");
	zassert_false(k_is_in_isr(), "Should not be in ISR context");

	zassert_false(_current->base.prio < 0,
		      "Current thread should have preemptible priority: %d",
		      _current->base.prio);

}

/**
 * @brief Test the various context/thread routines from a cooperative thread
 *
 * This routines tests the k_current_get() and k_is_in_isr() routines from both
 * a thread and an ISR (that interrupted a cooperative thread). Checking those
 * routines with preemptible threads are done elsewhere.
 *
 * @see k_current_get(), k_is_in_isr()
 */
static void _test_kernel_thread(k_tid_t _thread_id)
{
	k_tid_t self_thread_id;

	self_thread_id = k_current_get();
	zassert_true((self_thread_id != _thread_id), "thread id matches parent thread");

	isr_info.command = THREAD_SELF_CMD;
	isr_info.error = 0;
	isr_handler_trigger();
	/*
	 * Either the ISR detected an error, or the ISR context ID
	 * does not match the interrupted thread's ID.
	 */
	zassert_false((isr_info.error || (isr_info.data != (void *)self_thread_id)),
		      "Thread ID taken during ISR != calling thread");

	isr_info.command = EXEC_CTX_TYPE_CMD;
	isr_info.error = 0;
	isr_handler_trigger();
	zassert_false((isr_info.error || (isr_info.value != K_ISR)),
		      "k_is_in_isr() when called from an ISR is false");

	zassert_false(k_is_in_isr(), "k_is_in_isr() when called from a thread is true");

	zassert_false((_current->base.prio >= 0),
		      "thread is not a cooperative thread");
}

/**
 *
 * @brief Entry point to the thread's helper
 *
 * This routine is the entry point to the thread's helper thread. It is used to
 * help test the behavior of the k_yield() routine.
 *
 * @param arg1    unused
 * @param arg2    unused
 * @param arg3    unused
 *
 * @return N/A
 */

static void thread_helper(void *arg1, void *arg2, void *arg3)
{
	k_tid_t self_thread_id;

	ARG_UNUSED(arg1);
	ARG_UNUSED(arg2);
	ARG_UNUSED(arg3);

	/*
	 * This thread starts off at a higher priority than thread_entry().
	 * Thus, it should execute immediately.
	 */
	thread_evidence++;

	/* Test that helper will yield to a thread of equal priority */
	self_thread_id = k_current_get();

	/* Lower priority to that of thread_entry() */
	k_thread_priority_set(self_thread_id, self_thread_id->base.prio + 1);

	k_yield();      /* Yield to thread of equal priority */

	thread_evidence++;
	/* thread_evidence should now be 2 */

}

/**
 * @brief Entry point to thread started by another thread
 *
 * This routine is the entry point to the thread started by the thread.
 */
static void k_yield_entry(void *arg0, void *arg1, void *arg2)
{
	k_tid_t self_thread_id;

	ARG_UNUSED(arg0);
	ARG_UNUSED(arg1);
	ARG_UNUSED(arg2);

	thread_evidence++;      /* Prove that the thread has run */
	k_sem_take(&sem_thread, K_FOREVER);

	/*
	 * Start a thread of higher priority. Note that since the new thread is
	 * being started from a thread, it will not automatically switch to the
	 * thread as it would if done from another thread.
	 */
	self_thread_id = k_current_get();
	thread_evidence = 0;

	k_thread_create(&thread_data2, thread_stack2, THREAD_STACKSIZE,
			thread_helper, NULL, NULL, NULL,
			K_PRIO_COOP(THREAD_PRIORITY - 1), 0, K_NO_WAIT);

	zassert_equal(thread_evidence, 0,
		      "Helper created at higher priority ran prematurely.");

	/*
	 * Test that the thread will yield to the higher priority helper.
	 * thread_evidence is still 0.
	 */
	k_yield();

	zassert_not_equal(thread_evidence, 0,
			  "k_yield() did not yield to a higher priority thread: %d",
			  thread_evidence);

	zassert_false((thread_evidence > 1),
		      "k_yield() did not yield to an equal priority thread: %d",
		      thread_evidence);

	/*
	 * Raise the priority of thread_entry(). Calling k_yield() should
	 * not result in switching to the helper.
	 */
	k_thread_priority_set(self_thread_id, self_thread_id->base.prio - 1);
	k_yield();

	zassert_equal(thread_evidence, 1,
		      "k_yield() yielded to a lower priority thread");

	/*
	 * Block on sem_thread. This will allow the helper thread to
	 * complete. The main thread will wake this thread.
	 */
	k_sem_take(&sem_thread, K_FOREVER);
}

static void kernel_thread_entry(void *_thread_id, void *arg1, void *arg2)
{
	ARG_UNUSED(arg1);
	ARG_UNUSED(arg2);

	thread_evidence++;      /* Prove that the thread has run */
	k_sem_take(&sem_thread, K_FOREVER);

	_test_kernel_thread((k_tid_t) _thread_id);

}

/*
 * @brief Timeout tests
 *
 * Test the k_sleep() API, as well as the k_thread_create() ones.
 */
struct timeout_order {
	void *link_in_fifo;
	int32_t timeout;
	int timeout_order;
	int q_order;
};

struct timeout_order timeouts[] = {
	{ 0, 1000, 2, 0 },
	{ 0, 1500, 4, 1 },
	{ 0, 500, 0, 2 },
	{ 0, 750, 1, 3 },
	{ 0, 1750, 5, 4 },
	{ 0, 2000, 6, 5 },
	{ 0, 1250, 3, 6 },
};

#define NUM_TIMEOUT_THREADS ARRAY_SIZE(timeouts)
static K_THREAD_STACK_ARRAY_DEFINE(timeout_stacks, NUM_TIMEOUT_THREADS,
				   THREAD_STACKSIZE2);
static struct k_thread timeout_threads[NUM_TIMEOUT_THREADS];

/* a thread busy waits */
static void busy_wait_thread(void *mseconds, void *arg2, void *arg3)
{
	uint32_t usecs;

	ARG_UNUSED(arg2);
	ARG_UNUSED(arg3);

	usecs = POINTER_TO_INT(mseconds) * 1000;

	TC_PRINT("Thread busy waiting for %d usecs\n", usecs);
	k_busy_wait(usecs);
	TC_PRINT("Thread busy waiting completed\n");

	/* FIXME: Broken on Nios II, see #22956 */
#ifndef CONFIG_NIOS2
	int key = arch_irq_lock();

	TC_PRINT("Thread busy waiting for %d usecs (irqs locked)\n", usecs);
	k_busy_wait(usecs);
	TC_PRINT("Thread busy waiting completed (irqs locked)\n");
	arch_irq_unlock(key);
#endif

	/*
	 * Ideally the test should verify that the correct number of ticks
	 * have elapsed. However, when running under QEMU, the tick interrupt
	 * may be processed on a very irregular basis, meaning that far
	 * fewer than the expected number of ticks may occur for a given
	 * number of clock cycles vs. what would ordinarily be expected.
	 *
	 * Consequently, the best we can do for now to test busy waiting is
	 * to invoke the API and verify that it returns. (If it takes way
	 * too long, or never returns, the main test thread may be able to
	 * time out and report an error.)
	 */

	k_sem_give(&reply_timeout);
}

/* a thread sleeps and times out, then reports through a fifo */
static void thread_sleep(void *delta, void *arg2, void *arg3)
{
	int64_t timestamp;
	int timeout = POINTER_TO_INT(delta);

	ARG_UNUSED(arg2);
	ARG_UNUSED(arg3);

	TC_PRINT(" thread sleeping for %d milliseconds\n", timeout);
	timestamp = k_uptime_get();
	k_msleep(timeout);
	timestamp = k_uptime_get() - timestamp;
	TC_PRINT(" thread back from sleep\n");

	int slop = MAX(k_ticks_to_ms_floor64(2), 1);

	if (timestamp < timeout || timestamp > timeout + slop) {
		TC_ERROR("timestamp out of range, got %d\n", (int)timestamp);
		return;
	}

	k_sem_give(&reply_timeout);
}

/* a thread is started with a delay, then it reports that it ran via a fifo */
static void delayed_thread(void *num, void *arg2, void *arg3)
{
	struct timeout_order *timeout = &timeouts[POINTER_TO_INT(num)];

	ARG_UNUSED(arg2);
	ARG_UNUSED(arg3);

	TC_PRINT(" thread (q order: %d, t/o: %d) is running\n",
		 timeout->q_order, timeout->timeout);

	k_fifo_put(&timeout_order_fifo, timeout);
}

/**
 * @brief Test timouts
 *
 * @ingroup kernel_context_tests
 *
 * @see k_busy_wait(), k_sleep()
 */
static void test_busy_wait(void)
{
	int32_t timeout;
	int rv;

	timeout = 20;           /* in ms */

	k_thread_create(&timeout_threads[0], timeout_stacks[0],
			THREAD_STACKSIZE2, busy_wait_thread,
			INT_TO_POINTER(timeout), NULL,
			NULL, K_PRIO_COOP(THREAD_PRIORITY), 0, K_NO_WAIT);

	rv = k_sem_take(&reply_timeout, K_MSEC(timeout * 2 * 2));

	zassert_false(rv, " *** thread timed out waiting for " "k_busy_wait()");
}

/**
 * @brief Test timouts
 *
 * @ingroup kernel_context_tests
 *
 * @see k_sleep()
 */
static void test_k_sleep(void)
{
	struct timeout_order *data;
	int32_t timeout;
	int rv;
	int i;


	timeout = 50;

	k_thread_create(&timeout_threads[0], timeout_stacks[0],
			THREAD_STACKSIZE2, thread_sleep,
			INT_TO_POINTER(timeout), NULL,
			NULL, K_PRIO_COOP(THREAD_PRIORITY), 0, K_NO_WAIT);

	rv = k_sem_take(&reply_timeout, K_MSEC(timeout * 2));
	zassert_equal(rv, 0, " *** thread timed out waiting for thread on "
		      "k_sleep().");

	/* test k_thread_create() without cancellation */
	TC_PRINT("Testing k_thread_create() without cancellation\n");

	for (i = 0; i < NUM_TIMEOUT_THREADS; i++) {
		k_thread_create(&timeout_threads[i], timeout_stacks[i],
				THREAD_STACKSIZE2,
				delayed_thread,
				INT_TO_POINTER(i), NULL, NULL,
				K_PRIO_COOP(5), 0,
				K_MSEC(timeouts[i].timeout));
	}
	for (i = 0; i < NUM_TIMEOUT_THREADS; i++) {
		data = k_fifo_get(&timeout_order_fifo, K_MSEC(750));
		zassert_not_null(data, " *** timeout while waiting for"
				 " delayed thread");

		zassert_equal(data->timeout_order, i,
			      " *** wrong delayed thread ran (got %d, "
			      "expected %d)\n", data->timeout_order, i);

		TC_PRINT(" got thread (q order: %d, t/o: %d) as expected\n",
			 data->q_order, data->timeout);
	}

	/* ensure no more thread fire */
	data = k_fifo_get(&timeout_order_fifo, K_MSEC(750));

	zassert_false(data, " *** got something unexpected in the fifo");

	/* test k_thread_create() with cancellation */
	TC_PRINT("Testing k_thread_create() with cancellations\n");

	int cancellations[] = { 0, 3, 4, 6 };
	int num_cancellations = ARRAY_SIZE(cancellations);
	int next_cancellation = 0;

	k_tid_t delayed_threads[NUM_TIMEOUT_THREADS];

	for (i = 0; i < NUM_TIMEOUT_THREADS; i++) {
		k_tid_t id;

		id = k_thread_create(&timeout_threads[i], timeout_stacks[i],
				     THREAD_STACKSIZE2, delayed_thread,
				     INT_TO_POINTER(i), NULL, NULL,
				     K_PRIO_COOP(5), 0,
				     K_MSEC(timeouts[i].timeout));

		delayed_threads[i] = id;
	}

	for (i = 0; i < NUM_TIMEOUT_THREADS; i++) {
		int j;

		if (i == cancellations[next_cancellation]) {
			TC_PRINT(" cancelling "
				 "[q order: %d, t/o: %d, t/o order: %d]\n",
				 timeouts[i].q_order, timeouts[i].timeout, i);

			for (j = 0; j < NUM_TIMEOUT_THREADS; j++) {
				if (timeouts[j].timeout_order == i) {
					break;
				}
			}

			if (j < NUM_TIMEOUT_THREADS) {
				k_thread_abort(delayed_threads[j]);
				++next_cancellation;
				continue;
			}
		}

		data = k_fifo_get(&timeout_order_fifo, K_MSEC(2750));

		zassert_not_null(data, " *** timeout while waiting for"
				 " delayed thread");

		zassert_equal(data->timeout_order, i,
			      " *** wrong delayed thread ran (got %d, "
			      "expected %d)\n", data->timeout_order, i);

		TC_PRINT(" got (q order: %d, t/o: %d, t/o order %d) "
			 "as expected\n", data->q_order, data->timeout,
			 data->timeout_order);
	}

	zassert_equal(num_cancellations, next_cancellation,
		      " *** wrong number of cancellations (expected %d, "
		      "got %d\n", num_cancellations, next_cancellation);

	/* ensure no more thread fire */
	data = k_fifo_get(&timeout_order_fifo, K_MSEC(750));
	zassert_false(data, " *** got something unexpected in the fifo");

}

/**
 *
 * @brief Test the k_yield() routine
 *
 * @ingroup kernel_context_tests
 *
 * Tests the k_yield() routine. It starts another thread
 * (thus also testing k_thread_create()) and checks that behavior of
 * k_yield() against the a higher priority thread,
 * a lower priority thread, and another thread of equal priority.
 *
 * @see k_yield()
 */
void test_k_yield(void)
{
	thread_evidence = 0;
	k_thread_priority_set(k_current_get(), 0);

	k_sem_init(&sem_thread, 0, UINT_MAX);

	k_thread_create(&thread_data1, thread_stack1, THREAD_STACKSIZE,
			k_yield_entry, NULL, NULL,
			NULL, K_PRIO_COOP(THREAD_PRIORITY), 0, K_NO_WAIT);

	zassert_equal(thread_evidence, 1,
		      "Thread did not execute as expected!: %d", thread_evidence);

	k_sem_give(&sem_thread);
	k_sem_give(&sem_thread);
	k_sem_give(&sem_thread);
}

/**
 * @brief Test kernel thread creation
 *
 * @ingroup kernel_context_tests
 *
 * @see k_thread_create
 */

void test_kernel_thread(void)
{

	k_thread_create(&thread_data3, thread_stack3, THREAD_STACKSIZE,
			kernel_thread_entry, NULL, NULL,
			NULL, K_PRIO_COOP(THREAD_PRIORITY), 0, K_NO_WAIT);

}

/*test case main entry*/
void test_main(void)
{
	(void)test_k_sleep;

	kernel_init_objects();

	/* The timer_interrupts test MUST BE LAST, see note above */
	ztest_test_suite(context,
			 ztest_unit_test(test_kernel_interrupts),
			 ztest_unit_test(test_kernel_ctx_thread),
			 ztest_1cpu_unit_test(test_busy_wait),
			 ztest_1cpu_unit_test(test_k_sleep),
			 ztest_unit_test(test_kernel_cpu_idle_atomic),
			 ztest_unit_test(test_kernel_cpu_idle),
			 ztest_1cpu_unit_test(test_k_yield),
			 ztest_1cpu_unit_test(test_kernel_thread),
			 ztest_1cpu_unit_test(test_kernel_timer_interrupts)
			 );
	ztest_run_test_suite(context);
}