Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | /* * Copyright (c) 2017 Linaro Limited * Copyright (c) 2016 Nordic Semiconductor ASA * Copyright (c) 2015-2016 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <errno.h> #include <stddef.h> #include <stdio.h> #include <zephyr.h> #include <sys/byteorder.h> #include <logging/log.h> #include <debug/stack.h> #include <device.h> #include <init.h> #include <drivers/gpio.h> #include <drivers/spi.h> #include <net/buf.h> #include <bluetooth/bluetooth.h> #include <bluetooth/l2cap.h> #include <bluetooth/hci.h> #include <bluetooth/buf.h> #include <bluetooth/hci_raw.h> #define LOG_MODULE_NAME hci_spi LOG_MODULE_REGISTER(LOG_MODULE_NAME); #define HCI_CMD 0x01 #define HCI_ACL 0x02 #define HCI_SCO 0x03 #define HCI_EVT 0x04 /* Special Values */ #define SPI_WRITE 0x0A #define SPI_READ 0x0B #define READY_NOW 0x02 #define SANITY_CHECK 0x02 /* Offsets */ #define STATUS_HEADER_READY 0 #define STATUS_HEADER_TOREAD 3 #define PACKET_TYPE 0 #define EVT_BLUE_INITIALIZED 0x01 /* Needs to be aligned with the SPI master buffer size */ #define SPI_MAX_MSG_LEN 255 static uint8_t rxmsg[SPI_MAX_MSG_LEN]; static struct spi_buf rx; const static struct spi_buf_set rx_bufs = { .buffers = &rx, .count = 1, }; static uint8_t txmsg[SPI_MAX_MSG_LEN]; static struct spi_buf tx; const static struct spi_buf_set tx_bufs = { .buffers = &tx, .count = 1, }; /* HCI buffer pools */ #define CMD_BUF_SIZE BT_BUF_RX_SIZE /* * This finds an arbitrary node with compatible * "zephyr,bt-hci-spi-slave". There should just be one in the * devicetree. * * If for some reason you have more than one of these in your * devicetree, replace this macro definition to pick one, e.g. using * DT_NODELABEL(). */ #define HCI_SPI_NODE DT_COMPAT_GET_ANY_STATUS_OKAY(zephyr_bt_hci_spi_slave) /* * This is the SPI bus controller device used to exchange data with * the SPI-based BT controller. */ static const struct device *spi_hci_dev = DEVICE_DT_GET(DT_BUS(HCI_SPI_NODE)); static struct spi_config spi_cfg = { .operation = SPI_WORD_SET(8) | SPI_OP_MODE_SLAVE, }; /* * The GPIO used to send interrupts to the host, * configured in the 'irq-gpios' property in HCI_SPI_NODE. */ static const struct gpio_dt_spec irq = GPIO_DT_SPEC_GET(HCI_SPI_NODE, irq_gpios); static K_THREAD_STACK_DEFINE(bt_tx_thread_stack, CONFIG_BT_HCI_TX_STACK_SIZE); static struct k_thread bt_tx_thread_data; static K_SEM_DEFINE(sem_spi_rx, 0, 1); static K_SEM_DEFINE(sem_spi_tx, 0, 1); static inline int spi_send(struct net_buf *buf) { uint8_t header_master[5] = { 0 }; uint8_t header_slave[5] = { READY_NOW, SANITY_CHECK, 0x00, 0x00, 0x00 }; int ret; LOG_DBG("buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len); switch (bt_buf_get_type(buf)) { case BT_BUF_ACL_IN: net_buf_push_u8(buf, HCI_ACL); break; case BT_BUF_EVT: net_buf_push_u8(buf, HCI_EVT); break; default: LOG_ERR("Unknown type %u", bt_buf_get_type(buf)); net_buf_unref(buf); return -EINVAL; } if (buf->len > SPI_MAX_MSG_LEN) { LOG_ERR("TX message too long"); net_buf_unref(buf); return -EINVAL; } header_slave[STATUS_HEADER_TOREAD] = buf->len; gpio_pin_set(irq.port, irq.pin, 1); /* Coordinate transfer lock with the spi rx thread */ k_sem_take(&sem_spi_tx, K_FOREVER); tx.buf = header_slave; tx.len = 5; rx.buf = header_master; rx.len = 5; do { ret = spi_transceive(spi_hci_dev, &spi_cfg, &tx_bufs, &rx_bufs); if (ret < 0) { LOG_ERR("SPI transceive error: %d", ret); } } while (header_master[STATUS_HEADER_READY] != SPI_READ); tx.buf = buf->data; tx.len = buf->len; ret = spi_write(spi_hci_dev, &spi_cfg, &tx_bufs); if (ret < 0) { LOG_ERR("SPI transceive error: %d", ret); } net_buf_unref(buf); gpio_pin_set(irq.port, irq.pin, 0); k_sem_give(&sem_spi_rx); return 0; } static void bt_tx_thread(void *p1, void *p2, void *p3) { uint8_t header_master[5]; uint8_t header_slave[5] = { READY_NOW, SANITY_CHECK, 0x00, 0x00, 0x00 }; struct net_buf *buf = NULL; union { struct bt_hci_cmd_hdr *cmd_hdr; struct bt_hci_acl_hdr *acl_hdr; } hci_hdr; hci_hdr.cmd_hdr = (struct bt_hci_cmd_hdr *)&rxmsg[1]; int ret; ARG_UNUSED(p1); ARG_UNUSED(p2); ARG_UNUSED(p3); (void)memset(txmsg, 0xFF, SPI_MAX_MSG_LEN); while (1) { tx.buf = header_slave; tx.len = 5; rx.buf = header_master; rx.len = 5; do { ret = spi_transceive(spi_hci_dev, &spi_cfg, &tx_bufs, &rx_bufs); if (ret < 0) { LOG_ERR("SPI transceive error: %d", ret); } } while ((header_master[STATUS_HEADER_READY] != SPI_READ) && (header_master[STATUS_HEADER_READY] != SPI_WRITE)); if (header_master[STATUS_HEADER_READY] == SPI_READ) { /* Unblock the spi tx thread and wait for it */ k_sem_give(&sem_spi_tx); k_sem_take(&sem_spi_rx, K_FOREVER); continue; } tx.buf = txmsg; tx.len = SPI_MAX_MSG_LEN; rx.buf = rxmsg; rx.len = SPI_MAX_MSG_LEN; /* Receiving data from the SPI Host */ ret = spi_transceive(spi_hci_dev, &spi_cfg, &tx_bufs, &rx_bufs); if (ret < 0) { LOG_ERR("SPI transceive error: %d", ret); continue; } switch (rxmsg[PACKET_TYPE]) { case HCI_CMD: buf = bt_buf_get_tx(BT_BUF_CMD, K_NO_WAIT, hci_hdr.cmd_hdr, sizeof(*hci_hdr.cmd_hdr)); if (buf) { net_buf_add_mem(buf, &rxmsg[4], hci_hdr.cmd_hdr->param_len); } else { LOG_ERR("No available command buffers!"); continue; } break; case HCI_ACL: buf = bt_buf_get_tx(BT_BUF_ACL_OUT, K_NO_WAIT, hci_hdr.acl_hdr, sizeof(*hci_hdr.acl_hdr)); if (buf) { net_buf_add_mem(buf, &rxmsg[5], sys_le16_to_cpu(hci_hdr.acl_hdr->len)); } else { LOG_ERR("No available ACL buffers!"); continue; } break; default: LOG_ERR("Unknown BT HCI buf type"); continue; } LOG_DBG("buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len); ret = bt_send(buf); if (ret) { LOG_ERR("Unable to send (ret %d)", ret); net_buf_unref(buf); } /* Make sure other threads get a chance to run */ k_yield(); } } static int hci_spi_init(const struct device *unused) { ARG_UNUSED(unused); LOG_DBG(""); if (!device_is_ready(spi_hci_dev)) { LOG_ERR("SPI bus %s is not ready", spi_hci_dev->name); return -EINVAL; } if (!device_is_ready(irq.port)) { LOG_ERR("IRQ GPIO port %s is not ready", irq.port->name); return -EINVAL; } gpio_pin_configure_dt(&irq, GPIO_OUTPUT_INACTIVE); return 0; } SYS_DEVICE_DEFINE("hci_spi", hci_spi_init, NULL, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEVICE); void main(void) { static K_FIFO_DEFINE(rx_queue); struct bt_hci_evt_hdr *evt_hdr; struct net_buf *buf; k_tid_t tx_id; int err; LOG_DBG("Start"); err = bt_enable_raw(&rx_queue); if (err) { LOG_ERR("bt_enable_raw: %d; aborting", err); return; } /* Spawn the TX thread, which feeds cmds and data to the controller */ tx_id = k_thread_create(&bt_tx_thread_data, bt_tx_thread_stack, K_THREAD_STACK_SIZEOF(bt_tx_thread_stack), bt_tx_thread, NULL, NULL, NULL, K_PRIO_COOP(7), 0, K_NO_WAIT); k_thread_name_set(&bt_tx_thread_data, "bt_tx_thread"); /* Send a vendor event to announce that the slave is initialized */ buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER); evt_hdr = net_buf_add(buf, sizeof(*evt_hdr)); evt_hdr->evt = BT_HCI_EVT_VENDOR; evt_hdr->len = 2U; net_buf_add_le16(buf, EVT_BLUE_INITIALIZED); err = spi_send(buf); if (err) { LOG_ERR("can't send initialization event; aborting"); k_thread_abort(tx_id); return; } while (1) { buf = net_buf_get(&rx_queue, K_FOREVER); err = spi_send(buf); if (err) { LOG_ERR("Failed to send"); } } } |