Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
/*
 * Copyright (c) 2010-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Kernel thread support
 *
 * This module provides general purpose thread support.
 */

#include <kernel.h>
#include <spinlock.h>
#include <sys/math_extras.h>
#include <sys_clock.h>
#include <ksched.h>
#include <wait_q.h>
#include <syscall_handler.h>
#include <kernel_internal.h>
#include <kswap.h>
#include <init.h>
#include <tracing/tracing.h>
#include <string.h>
#include <stdbool.h>
#include <irq_offload.h>
#include <sys/check.h>
#include <random/rand32.h>
#include <sys/atomic.h>
#include <logging/log.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);

#ifdef CONFIG_THREAD_RUNTIME_STATS
k_thread_runtime_stats_t threads_runtime_stats;
#endif

#ifdef CONFIG_THREAD_MONITOR
/* This lock protects the linked list of active threads; i.e. the
 * initial _kernel.threads pointer and the linked list made up of
 * thread->next_thread (until NULL)
 */
static struct k_spinlock z_thread_monitor_lock;
#endif /* CONFIG_THREAD_MONITOR */

#define _FOREACH_STATIC_THREAD(thread_data)              \
	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data)

void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
{
#if defined(CONFIG_THREAD_MONITOR)
	struct k_thread *thread;
	k_spinlock_key_t key;

	__ASSERT(user_cb != NULL, "user_cb can not be NULL");

	/*
	 * Lock is needed to make sure that the _kernel.threads is not being
	 * modified by the user_cb either directly or indirectly.
	 * The indirect ways are through calling k_thread_create and
	 * k_thread_abort from user_cb.
	 */
	key = k_spin_lock(&z_thread_monitor_lock);

	SYS_PORT_TRACING_FUNC_ENTER(k_thread, foreach);

	for (thread = _kernel.threads; thread; thread = thread->next_thread) {
		user_cb(thread, user_data);
	}

	SYS_PORT_TRACING_FUNC_EXIT(k_thread, foreach);

	k_spin_unlock(&z_thread_monitor_lock, key);
#endif
}

void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
{
#if defined(CONFIG_THREAD_MONITOR)
	struct k_thread *thread;
	k_spinlock_key_t key;

	__ASSERT(user_cb != NULL, "user_cb can not be NULL");

	key = k_spin_lock(&z_thread_monitor_lock);

	SYS_PORT_TRACING_FUNC_ENTER(k_thread, foreach_unlocked);

	for (thread = _kernel.threads; thread; thread = thread->next_thread) {
		k_spin_unlock(&z_thread_monitor_lock, key);
		user_cb(thread, user_data);
		key = k_spin_lock(&z_thread_monitor_lock);
	}

	SYS_PORT_TRACING_FUNC_EXIT(k_thread, foreach_unlocked);

	k_spin_unlock(&z_thread_monitor_lock, key);
#endif
}

bool k_is_in_isr(void)
{
	return arch_is_in_isr();
}

/*
 * This function tags the current thread as essential to system operation.
 * Exceptions raised by this thread will be treated as a fatal system error.
 */
void z_thread_essential_set(void)
{
	_current->base.user_options |= K_ESSENTIAL;
}

/*
 * This function tags the current thread as not essential to system operation.
 * Exceptions raised by this thread may be recoverable.
 * (This is the default tag for a thread.)
 */
void z_thread_essential_clear(void)
{
	_current->base.user_options &= ~K_ESSENTIAL;
}

/*
 * This routine indicates if the current thread is an essential system thread.
 *
 * Returns true if current thread is essential, false if it is not.
 */
bool z_is_thread_essential(void)
{
	return (_current->base.user_options & K_ESSENTIAL) == K_ESSENTIAL;
}

#ifdef CONFIG_THREAD_CUSTOM_DATA
void z_impl_k_thread_custom_data_set(void *value)
{
	_current->custom_data = value;
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_custom_data_set(void *data)
{
	z_impl_k_thread_custom_data_set(data);
}
#include <syscalls/k_thread_custom_data_set_mrsh.c>
#endif

void *z_impl_k_thread_custom_data_get(void)
{
	return _current->custom_data;
}

#ifdef CONFIG_USERSPACE
static inline void *z_vrfy_k_thread_custom_data_get(void)
{
	return z_impl_k_thread_custom_data_get();
}
#include <syscalls/k_thread_custom_data_get_mrsh.c>

#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_THREAD_CUSTOM_DATA */

#if defined(CONFIG_THREAD_MONITOR)
/*
 * Remove a thread from the kernel's list of active threads.
 */
void z_thread_monitor_exit(struct k_thread *thread)
{
	k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);

	if (thread == _kernel.threads) {
		_kernel.threads = _kernel.threads->next_thread;
	} else {
		struct k_thread *prev_thread;

		prev_thread = _kernel.threads;
		while ((prev_thread != NULL) &&
			(thread != prev_thread->next_thread)) {
			prev_thread = prev_thread->next_thread;
		}
		if (prev_thread != NULL) {
			prev_thread->next_thread = thread->next_thread;
		}
	}

	k_spin_unlock(&z_thread_monitor_lock, key);
}
#endif

int z_impl_k_thread_name_set(struct k_thread *thread, const char *value)
{
#ifdef CONFIG_THREAD_NAME
	if (thread == NULL) {
		thread = _current;
	}

	strncpy(thread->name, value, CONFIG_THREAD_MAX_NAME_LEN);
	thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';

	SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, 0);

	return 0;
#else
	ARG_UNUSED(thread);
	ARG_UNUSED(value);

	SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, -ENOSYS);

	return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}

#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_name_set(struct k_thread *thread, const char *str)
{
#ifdef CONFIG_THREAD_NAME
	char name[CONFIG_THREAD_MAX_NAME_LEN];

	if (thread != NULL) {
		if (Z_SYSCALL_OBJ(thread, K_OBJ_THREAD) != 0) {
			return -EINVAL;
		}
	}

	/* In theory we could copy directly into thread->name, but
	 * the current z_vrfy / z_impl split does not provide a
	 * means of doing so.
	 */
	if (z_user_string_copy(name, (char *)str, sizeof(name)) != 0) {
		return -EFAULT;
	}

	return z_impl_k_thread_name_set(thread, name);
#else
	return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
#include <syscalls/k_thread_name_set_mrsh.c>
#endif /* CONFIG_USERSPACE */

const char *k_thread_name_get(struct k_thread *thread)
{
#ifdef CONFIG_THREAD_NAME
	return (const char *)thread->name;
#else
	ARG_UNUSED(thread);
	return NULL;
#endif /* CONFIG_THREAD_NAME */
}

int z_impl_k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
{
#ifdef CONFIG_THREAD_NAME
	strncpy(buf, thread->name, size);
	return 0;
#else
	ARG_UNUSED(thread);
	ARG_UNUSED(buf);
	ARG_UNUSED(size);
	return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}

const char *k_thread_state_str(k_tid_t thread_id)
{
	switch (thread_id->base.thread_state) {
	case 0:
		return "";
	case _THREAD_DUMMY:
		return "dummy";
	case _THREAD_PENDING:
		return "pending";
	case _THREAD_PRESTART:
		return "prestart";
	case _THREAD_DEAD:
		return "dead";
	case _THREAD_SUSPENDED:
		return "suspended";
	case _THREAD_ABORTING:
		return "aborting";
	case _THREAD_QUEUED:
		return "queued";
	default:
	/* Add a break, some day when another case gets added at the end,
	 * this bit of defensive programming will be useful
	 */
		break;
	}
	return "unknown";
}

#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_name_copy(k_tid_t thread,
					    char *buf, size_t size)
{
#ifdef CONFIG_THREAD_NAME
	size_t len;
	struct z_object *ko = z_object_find(thread);

	/* Special case: we allow reading the names of initialized threads
	 * even if we don't have permission on them
	 */
	if (thread == NULL || ko->type != K_OBJ_THREAD ||
	    (ko->flags & K_OBJ_FLAG_INITIALIZED) == 0) {
		return -EINVAL;
	}
	if (Z_SYSCALL_MEMORY_WRITE(buf, size) != 0) {
		return -EFAULT;
	}
	len = strlen(thread->name);
	if (len + 1 > size) {
		return -ENOSPC;
	}

	return z_user_to_copy((void *)buf, thread->name, len + 1);
#else
	ARG_UNUSED(thread);
	ARG_UNUSED(buf);
	ARG_UNUSED(size);
	return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
#include <syscalls/k_thread_name_copy_mrsh.c>
#endif /* CONFIG_USERSPACE */


#ifdef CONFIG_MULTITHREADING
#ifdef CONFIG_STACK_SENTINEL
/* Check that the stack sentinel is still present
 *
 * The stack sentinel feature writes a magic value to the lowest 4 bytes of
 * the thread's stack when the thread is initialized. This value gets checked
 * in a few places:
 *
 * 1) In k_yield() if the current thread is not swapped out
 * 2) After servicing a non-nested interrupt
 * 3) In z_swap(), check the sentinel in the outgoing thread
 *
 * Item 2 requires support in arch/ code.
 *
 * If the check fails, the thread will be terminated appropriately through
 * the system fatal error handler.
 */
void z_check_stack_sentinel(void)
{
	uint32_t *stack;

	if ((_current->base.thread_state & _THREAD_DUMMY) != 0) {
		return;
	}

	stack = (uint32_t *)_current->stack_info.start;
	if (*stack != STACK_SENTINEL) {
		/* Restore it so further checks don't trigger this same error */
		*stack = STACK_SENTINEL;
		z_except_reason(K_ERR_STACK_CHK_FAIL);
	}
}
#endif /* CONFIG_STACK_SENTINEL */

void z_impl_k_thread_start(struct k_thread *thread)
{
	SYS_PORT_TRACING_OBJ_FUNC(k_thread, start, thread);

	z_sched_start(thread);
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_start(struct k_thread *thread)
{
	Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	return z_impl_k_thread_start(thread);
}
#include <syscalls/k_thread_start_mrsh.c>
#endif
#endif

#ifdef CONFIG_MULTITHREADING
static void schedule_new_thread(struct k_thread *thread, k_timeout_t delay)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
	if (K_TIMEOUT_EQ(delay, K_NO_WAIT)) {
		k_thread_start(thread);
	} else {
		z_add_thread_timeout(thread, delay);
	}
#else
	ARG_UNUSED(delay);
	k_thread_start(thread);
#endif
}
#endif

#if CONFIG_STACK_POINTER_RANDOM
int z_stack_adjust_initialized;

static size_t random_offset(size_t stack_size)
{
	size_t random_val;

	if (!z_stack_adjust_initialized) {
		z_early_boot_rand_get((uint8_t *)&random_val, sizeof(random_val));
	} else {
		sys_rand_get((uint8_t *)&random_val, sizeof(random_val));
	}

	/* Don't need to worry about alignment of the size here,
	 * arch_new_thread() is required to do it.
	 *
	 * FIXME: Not the best way to get a random number in a range.
	 * See #6493
	 */
	const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM;

	if (unlikely(fuzz * 2 > stack_size)) {
		return 0;
	}

	return fuzz;
}
#if defined(CONFIG_STACK_GROWS_UP)
	/* This is so rare not bothering for now */
#error "Stack pointer randomization not implemented for upward growing stacks"
#endif /* CONFIG_STACK_GROWS_UP */
#endif /* CONFIG_STACK_POINTER_RANDOM */

static char *setup_thread_stack(struct k_thread *new_thread,
				k_thread_stack_t *stack, size_t stack_size)
{
	size_t stack_obj_size, stack_buf_size;
	char *stack_ptr, *stack_buf_start;
	size_t delta = 0;

#ifdef CONFIG_USERSPACE
	if (z_stack_is_user_capable(stack)) {
		stack_obj_size = Z_THREAD_STACK_SIZE_ADJUST(stack_size);
		stack_buf_start = Z_THREAD_STACK_BUFFER(stack);
		stack_buf_size = stack_obj_size - K_THREAD_STACK_RESERVED;
	} else
#endif
	{
		/* Object cannot host a user mode thread */
		stack_obj_size = Z_KERNEL_STACK_SIZE_ADJUST(stack_size);
		stack_buf_start = Z_KERNEL_STACK_BUFFER(stack);
		stack_buf_size = stack_obj_size - K_KERNEL_STACK_RESERVED;
	}

	/* Initial stack pointer at the high end of the stack object, may
	 * be reduced later in this function by TLS or random offset
	 */
	stack_ptr = (char *)stack + stack_obj_size;

	LOG_DBG("stack %p for thread %p: obj_size=%zu buf_start=%p "
		" buf_size %zu stack_ptr=%p",
		stack, new_thread, stack_obj_size, stack_buf_start,
		stack_buf_size, stack_ptr);

#ifdef CONFIG_INIT_STACKS
	memset(stack_buf_start, 0xaa, stack_buf_size);
#endif
#ifdef CONFIG_STACK_SENTINEL
	/* Put the stack sentinel at the lowest 4 bytes of the stack area.
	 * We periodically check that it's still present and kill the thread
	 * if it isn't.
	 */
	*((uint32_t *)stack_buf_start) = STACK_SENTINEL;
#endif /* CONFIG_STACK_SENTINEL */
#ifdef CONFIG_THREAD_LOCAL_STORAGE
	/* TLS is always last within the stack buffer */
	delta += arch_tls_stack_setup(new_thread, stack_ptr);
#endif /* CONFIG_THREAD_LOCAL_STORAGE */
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
	size_t tls_size = sizeof(struct _thread_userspace_local_data);

	/* reserve space on highest memory of stack buffer for local data */
	delta += tls_size;
	new_thread->userspace_local_data =
		(struct _thread_userspace_local_data *)(stack_ptr - delta);
#endif
#if CONFIG_STACK_POINTER_RANDOM
	delta += random_offset(stack_buf_size);
#endif
	delta = ROUND_UP(delta, ARCH_STACK_PTR_ALIGN);
#ifdef CONFIG_THREAD_STACK_INFO
	/* Initial values. Arches which implement MPU guards that "borrow"
	 * memory from the stack buffer (not tracked in K_THREAD_STACK_RESERVED)
	 * will need to appropriately update this.
	 *
	 * The bounds tracked here correspond to the area of the stack object
	 * that the thread can access, which includes TLS.
	 */
	new_thread->stack_info.start = (uintptr_t)stack_buf_start;
	new_thread->stack_info.size = stack_buf_size;
	new_thread->stack_info.delta = delta;
#endif
	stack_ptr -= delta;

	return stack_ptr;
}

#define THREAD_COOKIE	0x1337C0D3

/*
 * The provided stack_size value is presumed to be either the result of
 * K_THREAD_STACK_SIZEOF(stack), or the size value passed to the instance
 * of K_THREAD_STACK_DEFINE() which defined 'stack'.
 */
char *z_setup_new_thread(struct k_thread *new_thread,
			 k_thread_stack_t *stack, size_t stack_size,
			 k_thread_entry_t entry,
			 void *p1, void *p2, void *p3,
			 int prio, uint32_t options, const char *name)
{
	char *stack_ptr;

	Z_ASSERT_VALID_PRIO(prio, entry);

#ifdef CONFIG_USERSPACE
	__ASSERT((options & K_USER) == 0U || z_stack_is_user_capable(stack),
		 "user thread %p with kernel-only stack %p",
		 new_thread, stack);
	z_object_init(new_thread);
	z_object_init(stack);
	new_thread->stack_obj = stack;
	new_thread->syscall_frame = NULL;

	/* Any given thread has access to itself */
	k_object_access_grant(new_thread, new_thread);
#endif
	z_waitq_init(&new_thread->join_queue);

	/* Initialize various struct k_thread members */
	z_init_thread_base(&new_thread->base, prio, _THREAD_PRESTART, options);
	stack_ptr = setup_thread_stack(new_thread, stack, stack_size);

#ifdef CONFIG_KERNEL_COHERENCE
	/* Check that the thread object is safe, but that the stack is
	 * still cached!
	 */
	__ASSERT_NO_MSG(arch_mem_coherent(new_thread));
	__ASSERT_NO_MSG(!arch_mem_coherent(stack));
#endif

	arch_new_thread(new_thread, stack, stack_ptr, entry, p1, p2, p3);

	/* static threads overwrite it afterwards with real value */
	new_thread->init_data = NULL;

#ifdef CONFIG_USE_SWITCH
	/* switch_handle must be non-null except when inside z_swap()
	 * for synchronization reasons.  Historically some notional
	 * USE_SWITCH architectures have actually ignored the field
	 */
	__ASSERT(new_thread->switch_handle != NULL,
		 "arch layer failed to initialize switch_handle");
#endif
#ifdef CONFIG_THREAD_CUSTOM_DATA
	/* Initialize custom data field (value is opaque to kernel) */
	new_thread->custom_data = NULL;
#endif
#ifdef CONFIG_THREAD_MONITOR
	new_thread->entry.pEntry = entry;
	new_thread->entry.parameter1 = p1;
	new_thread->entry.parameter2 = p2;
	new_thread->entry.parameter3 = p3;

	k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);

	new_thread->next_thread = _kernel.threads;
	_kernel.threads = new_thread;
	k_spin_unlock(&z_thread_monitor_lock, key);
#endif
#ifdef CONFIG_THREAD_NAME
	if (name != NULL) {
		strncpy(new_thread->name, name,
			CONFIG_THREAD_MAX_NAME_LEN - 1);
		/* Ensure NULL termination, truncate if longer */
		new_thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
	} else {
		new_thread->name[0] = '\0';
	}
#endif
#ifdef CONFIG_SCHED_CPU_MASK
	new_thread->base.cpu_mask = -1;
#endif
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
	/* _current may be null if the dummy thread is not used */
	if (!_current) {
		new_thread->resource_pool = NULL;
		return stack_ptr;
	}
#endif
#ifdef CONFIG_USERSPACE
	z_mem_domain_init_thread(new_thread);

	if ((options & K_INHERIT_PERMS) != 0U) {
		z_thread_perms_inherit(_current, new_thread);
	}
#endif
#ifdef CONFIG_SCHED_DEADLINE
	new_thread->base.prio_deadline = 0;
#endif
	new_thread->resource_pool = _current->resource_pool;

	SYS_PORT_TRACING_OBJ_FUNC(k_thread, create, new_thread);

#ifdef CONFIG_THREAD_RUNTIME_STATS
	memset(&new_thread->rt_stats, 0, sizeof(new_thread->rt_stats));
#endif

	return stack_ptr;
}

#ifdef CONFIG_MULTITHREADING
k_tid_t z_impl_k_thread_create(struct k_thread *new_thread,
			      k_thread_stack_t *stack,
			      size_t stack_size, k_thread_entry_t entry,
			      void *p1, void *p2, void *p3,
			      int prio, uint32_t options, k_timeout_t delay)
{
	__ASSERT(!arch_is_in_isr(), "Threads may not be created in ISRs");

	z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
			  prio, options, NULL);

	if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
		schedule_new_thread(new_thread, delay);
	}

	return new_thread;
}


#ifdef CONFIG_USERSPACE
bool z_stack_is_user_capable(k_thread_stack_t *stack)
{
	return z_object_find(stack) != NULL;
}

k_tid_t z_vrfy_k_thread_create(struct k_thread *new_thread,
			       k_thread_stack_t *stack,
			       size_t stack_size, k_thread_entry_t entry,
			       void *p1, void *p2, void *p3,
			       int prio, uint32_t options, k_timeout_t delay)
{
	size_t total_size, stack_obj_size;
	struct z_object *stack_object;

	/* The thread and stack objects *must* be in an uninitialized state */
	Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD));

	/* No need to check z_stack_is_user_capable(), it won't be in the
	 * object table if it isn't
	 */
	stack_object = z_object_find(stack);
	Z_OOPS(Z_SYSCALL_VERIFY_MSG(z_obj_validation_check(stack_object, stack,
						K_OBJ_THREAD_STACK_ELEMENT,
						_OBJ_INIT_FALSE) == 0,
				    "bad stack object"));

	/* Verify that the stack size passed in is OK by computing the total
	 * size and comparing it with the size value in the object metadata
	 */
	Z_OOPS(Z_SYSCALL_VERIFY_MSG(!size_add_overflow(K_THREAD_STACK_RESERVED,
						       stack_size, &total_size),
				    "stack size overflow (%zu+%zu)",
				    stack_size,
				    K_THREAD_STACK_RESERVED));

	/* Testing less-than-or-equal since additional room may have been
	 * allocated for alignment constraints
	 */
#ifdef CONFIG_GEN_PRIV_STACKS
	stack_obj_size = stack_object->data.stack_data->size;
#else
	stack_obj_size = stack_object->data.stack_size;
#endif
	Z_OOPS(Z_SYSCALL_VERIFY_MSG(total_size <= stack_obj_size,
				    "stack size %zu is too big, max is %zu",
				    total_size, stack_obj_size));

	/* User threads may only create other user threads and they can't
	 * be marked as essential
	 */
	Z_OOPS(Z_SYSCALL_VERIFY(options & K_USER));
	Z_OOPS(Z_SYSCALL_VERIFY(!(options & K_ESSENTIAL)));

	/* Check validity of prio argument; must be the same or worse priority
	 * than the caller
	 */
	Z_OOPS(Z_SYSCALL_VERIFY(_is_valid_prio(prio, NULL)));
	Z_OOPS(Z_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio,
							_current->base.prio)));

	z_setup_new_thread(new_thread, stack, stack_size,
			   entry, p1, p2, p3, prio, options, NULL);

	if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
		schedule_new_thread(new_thread, delay);
	}

	return new_thread;
}
#include <syscalls/k_thread_create_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_MULTITHREADING */

#ifdef CONFIG_MULTITHREADING
#ifdef CONFIG_USERSPACE

static void grant_static_access(void)
{
	STRUCT_SECTION_FOREACH(z_object_assignment, pos) {
		for (int i = 0; pos->objects[i] != NULL; i++) {
			k_object_access_grant(pos->objects[i],
					      pos->thread);
		}
	}
}
#endif /* CONFIG_USERSPACE */

void z_init_static_threads(void)
{
	_FOREACH_STATIC_THREAD(thread_data) {
		z_setup_new_thread(
			thread_data->init_thread,
			thread_data->init_stack,
			thread_data->init_stack_size,
			thread_data->init_entry,
			thread_data->init_p1,
			thread_data->init_p2,
			thread_data->init_p3,
			thread_data->init_prio,
			thread_data->init_options,
			thread_data->init_name);

		thread_data->init_thread->init_data = thread_data;
	}

#ifdef CONFIG_USERSPACE
	grant_static_access();
#endif

	/*
	 * Non-legacy static threads may be started immediately or
	 * after a previously specified delay. Even though the
	 * scheduler is locked, ticks can still be delivered and
	 * processed. Take a sched lock to prevent them from running
	 * until they are all started.
	 *
	 * Note that static threads defined using the legacy API have a
	 * delay of K_FOREVER.
	 */
	k_sched_lock();
	_FOREACH_STATIC_THREAD(thread_data) {
		if (thread_data->init_delay != K_TICKS_FOREVER) {
			schedule_new_thread(thread_data->init_thread,
					    K_MSEC(thread_data->init_delay));
		}
	}
	k_sched_unlock();
}
#endif

void z_init_thread_base(struct _thread_base *thread_base, int priority,
		       uint32_t initial_state, unsigned int options)
{
	/* k_q_node is initialized upon first insertion in a list */
	thread_base->pended_on = NULL;
	thread_base->user_options = (uint8_t)options;
	thread_base->thread_state = (uint8_t)initial_state;

	thread_base->prio = priority;

	thread_base->sched_locked = 0U;

#ifdef CONFIG_SMP
	thread_base->is_idle = 0;
#endif

	/* swap_data does not need to be initialized */

	z_init_thread_timeout(thread_base);
}

FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
					    void *p1, void *p2, void *p3)
{
	SYS_PORT_TRACING_FUNC(k_thread, user_mode_enter);

	_current->base.user_options |= K_USER;
	z_thread_essential_clear();
#ifdef CONFIG_THREAD_MONITOR
	_current->entry.pEntry = entry;
	_current->entry.parameter1 = p1;
	_current->entry.parameter2 = p2;
	_current->entry.parameter3 = p3;
#endif
#ifdef CONFIG_USERSPACE
	__ASSERT(z_stack_is_user_capable(_current->stack_obj),
		 "dropping to user mode with kernel-only stack object");
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
	memset(_current->userspace_local_data, 0,
	       sizeof(struct _thread_userspace_local_data));
#endif
#ifdef CONFIG_THREAD_LOCAL_STORAGE
	arch_tls_stack_setup(_current,
			     (char *)(_current->stack_info.start +
				      _current->stack_info.size));
#endif
	arch_user_mode_enter(entry, p1, p2, p3);
#else
	/* XXX In this case we do not reset the stack */
	z_thread_entry(entry, p1, p2, p3);
#endif
}

/* These spinlock assertion predicates are defined here because having
 * them in spinlock.h is a giant header ordering headache.
 */
#ifdef CONFIG_SPIN_VALIDATE
bool z_spin_lock_valid(struct k_spinlock *l)
{
	uintptr_t thread_cpu = l->thread_cpu;

	if (thread_cpu != 0U) {
		if ((thread_cpu & 3U) == _current_cpu->id) {
			return false;
		}
	}
	return true;
}

bool z_spin_unlock_valid(struct k_spinlock *l)
{
	if (l->thread_cpu != (_current_cpu->id | (uintptr_t)_current)) {
		return false;
	}
	l->thread_cpu = 0;
	return true;
}

void z_spin_lock_set_owner(struct k_spinlock *l)
{
	l->thread_cpu = _current_cpu->id | (uintptr_t)_current;
}

#ifdef CONFIG_KERNEL_COHERENCE
bool z_spin_lock_mem_coherent(struct k_spinlock *l)
{
	return arch_mem_coherent((void *)l);
}
#endif /* CONFIG_KERNEL_COHERENCE */

#endif /* CONFIG_SPIN_VALIDATE */

int z_impl_k_float_disable(struct k_thread *thread)
{
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
	return arch_float_disable(thread);
#else
	return -ENOTSUP;
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
}

int z_impl_k_float_enable(struct k_thread *thread, unsigned int options)
{
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
	return arch_float_enable(thread, options);
#else
	return -ENOTSUP;
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
}

#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_float_disable(struct k_thread *thread)
{
	Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	return z_impl_k_float_disable(thread);
}
#include <syscalls/k_float_disable_mrsh.c>
#endif /* CONFIG_USERSPACE */

#ifdef CONFIG_IRQ_OFFLOAD
/* Make offload_sem visible outside under testing, in order to release
 * it outside when error happened.
 */
K_SEM_DEFINE(offload_sem, 1, 1);

void irq_offload(irq_offload_routine_t routine, const void *parameter)
{
	k_sem_take(&offload_sem, K_FOREVER);
	arch_irq_offload(routine, parameter);
	k_sem_give(&offload_sem);
}
#endif

#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
#ifdef CONFIG_STACK_GROWS_UP
#error "Unsupported configuration for stack analysis"
#endif

int z_impl_k_thread_stack_space_get(const struct k_thread *thread,
				    size_t *unused_ptr)
{
	const uint8_t *start = (uint8_t *)thread->stack_info.start;
	size_t size = thread->stack_info.size;
	size_t unused = 0;
	const uint8_t *checked_stack = start;
	/* Take the address of any local variable as a shallow bound for the
	 * stack pointer.  Addresses above it are guaranteed to be
	 * accessible.
	 */
	const uint8_t *stack_pointer = (const uint8_t *)&start;

	/* If we are currently running on the stack being analyzed, some
	 * memory management hardware will generate an exception if we
	 * read unused stack memory.
	 *
	 * This never happens when invoked from user mode, as user mode
	 * will always run this function on the privilege elevation stack.
	 */
	if ((stack_pointer > start) && (stack_pointer <= (start + size)) &&
	    IS_ENABLED(CONFIG_NO_UNUSED_STACK_INSPECTION)) {
		/* TODO: We could add an arch_ API call to temporarily
		 * disable the stack checking in the CPU, but this would
		 * need to be properly managed wrt context switches/interrupts
		 */
		return -ENOTSUP;
	}

	if (IS_ENABLED(CONFIG_STACK_SENTINEL)) {
		/* First 4 bytes of the stack buffer reserved for the
		 * sentinel value, it won't be 0xAAAAAAAA for thread
		 * stacks.
		 *
		 * FIXME: thread->stack_info.start ought to reflect
		 * this!
		 */
		checked_stack += 4;
		size -= 4;
	}

	for (size_t i = 0; i < size; i++) {
		if ((checked_stack[i]) == 0xaaU) {
			unused++;
		} else {
			break;
		}
	}

	*unused_ptr = unused;

	return 0;
}

#ifdef CONFIG_USERSPACE
int z_vrfy_k_thread_stack_space_get(const struct k_thread *thread,
				    size_t *unused_ptr)
{
	size_t unused;
	int ret;

	ret = Z_SYSCALL_OBJ(thread, K_OBJ_THREAD);
	CHECKIF(ret != 0) {
		return ret;
	}

	ret = z_impl_k_thread_stack_space_get(thread, &unused);
	CHECKIF(ret != 0) {
		return ret;
	}

	ret = z_user_to_copy(unused_ptr, &unused, sizeof(size_t));
	CHECKIF(ret != 0) {
		return ret;
	}

	return 0;
}
#include <syscalls/k_thread_stack_space_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_INIT_STACKS && CONFIG_THREAD_STACK_INFO */

#ifdef CONFIG_USERSPACE
static inline k_ticks_t z_vrfy_k_thread_timeout_remaining_ticks(
						    const struct k_thread *t)
{
	Z_OOPS(Z_SYSCALL_OBJ(t, K_OBJ_THREAD));
	return z_impl_k_thread_timeout_remaining_ticks(t);
}
#include <syscalls/k_thread_timeout_remaining_ticks_mrsh.c>

static inline k_ticks_t z_vrfy_k_thread_timeout_expires_ticks(
						  const struct k_thread *t)
{
	Z_OOPS(Z_SYSCALL_OBJ(t, K_OBJ_THREAD));
	return z_impl_k_thread_timeout_expires_ticks(t);
}
#include <syscalls/k_thread_timeout_expires_ticks_mrsh.c>
#endif

#ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING
void z_thread_mark_switched_in(void)
{
#ifdef CONFIG_TRACING
	SYS_PORT_TRACING_FUNC(k_thread, switched_in);
#endif

#ifdef CONFIG_THREAD_RUNTIME_STATS
	struct k_thread *thread;

	thread = z_current_get();
#ifdef CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS
	thread->rt_stats.last_switched_in = timing_counter_get();
#else
	thread->rt_stats.last_switched_in = k_cycle_get_32();
#endif /* CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS */

#endif /* CONFIG_THREAD_RUNTIME_STATS */
}

void z_thread_mark_switched_out(void)
{
#ifdef CONFIG_THREAD_RUNTIME_STATS
#ifdef CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS
	timing_t now;
#else
	uint32_t now;
#endif /* CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS */

	uint64_t diff;
	struct k_thread *thread;

	thread = z_current_get();

	if (unlikely(thread->rt_stats.last_switched_in == 0)) {
		/* Has not run before */
		return;
	}

	if (unlikely(thread->base.thread_state == _THREAD_DUMMY)) {
		/* dummy thread has no stat struct */
		return;
	}

#ifdef CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS
	now = timing_counter_get();
	diff = timing_cycles_get(&thread->rt_stats.last_switched_in, &now);
#else
	now = k_cycle_get_32();
	diff = (uint64_t)(now - thread->rt_stats.last_switched_in);
	thread->rt_stats.last_switched_in = 0;
#endif /* CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS */

	thread->rt_stats.stats.execution_cycles += diff;

	threads_runtime_stats.execution_cycles += diff;
#endif /* CONFIG_THREAD_RUNTIME_STATS */

#ifdef CONFIG_TRACING
	SYS_PORT_TRACING_FUNC(k_thread, switched_out);
#endif
}

#ifdef CONFIG_THREAD_RUNTIME_STATS
int k_thread_runtime_stats_get(k_tid_t thread,
			       k_thread_runtime_stats_t *stats)
{
	if ((thread == NULL) || (stats == NULL)) {
		return -EINVAL;
	}

	(void)memcpy(stats, &thread->rt_stats.stats,
		     sizeof(thread->rt_stats.stats));

	return 0;
}

int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
{
	if (stats == NULL) {
		return -EINVAL;
	}

	(void)memcpy(stats, &threads_runtime_stats,
		     sizeof(threads_runtime_stats));

	return 0;
}
#endif /* CONFIG_THREAD_RUNTIME_STATS */

#endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */