Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 | /* * Copyright (c) 2014-2015 Wind River Systems, Inc. * Copyright (c) 2018 Synopsys Inc, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include <drivers/timer/system_timer.h> #include <sys_clock.h> #include <spinlock.h> #include <arch/arc/v2/aux_regs.h> #include <soc.h> /* * note: This implementation assumes Timer0 is present. Be sure * to build the ARC CPU with Timer0. * * If secureshield is present and secure firmware is configured, * use secure Timer 0 */ #ifdef CONFIG_ARC_SECURE_FIRMWARE #undef _ARC_V2_TMR0_COUNT #undef _ARC_V2_TMR0_CONTROL #undef _ARC_V2_TMR0_LIMIT #undef IRQ_TIMER0 #define _ARC_V2_TMR0_COUNT _ARC_V2_S_TMR0_COUNT #define _ARC_V2_TMR0_CONTROL _ARC_V2_S_TMR0_CONTROL #define _ARC_V2_TMR0_LIMIT _ARC_V2_S_TMR0_LIMIT #define IRQ_TIMER0 IRQ_SEC_TIMER0 #endif #define _ARC_V2_TMR_CTRL_IE 0x1 /* interrupt enable */ #define _ARC_V2_TMR_CTRL_NH 0x2 /* count only while not halted */ #define _ARC_V2_TMR_CTRL_W 0x4 /* watchdog mode enable */ #define _ARC_V2_TMR_CTRL_IP 0x8 /* interrupt pending flag */ /* Minimum cycles in the future to try to program. */ #define MIN_DELAY 1024 /* arc timer has 32 bit, here use 31 bit to avoid the possible * overflow,e.g, 0xffffffff + any value will cause overflow */ #define COUNTER_MAX 0x7fffffff #define TIMER_STOPPED 0x0 #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1) #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK) #define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) #define SMP_TIMER_DRIVER (CONFIG_SMP && CONFIG_MP_NUM_CPUS > 1) static struct k_spinlock lock; #if SMP_TIMER_DRIVER volatile static uint64_t last_time; volatile static uint64_t start_time; #else static uint32_t last_load; /* * This local variable holds the amount of timer cycles elapsed * and it is updated in timer_int_handler and sys_clock_set_timeout(). * * Note: * At an arbitrary point in time the "current" value of the * HW timer is calculated as: * * t = cycle_counter + elapsed(); */ static uint32_t cycle_count; /* * This local variable holds the amount of elapsed HW cycles * that have been announced to the kernel. */ static uint32_t announced_cycles; /* * This local variable holds the amount of elapsed HW cycles due to * timer wraps ('overflows') and is used in the calculation * in elapsed() function, as well as in the updates to cycle_count. * * Note: * Each time cycle_count is updated with the value from overflow_cycles, * the overflow_cycles must be reset to zero. */ static volatile uint32_t overflow_cycles; #endif /** * * @brief Get contents of Timer0 count register * * @return Current Timer0 count */ static ALWAYS_INLINE uint32_t timer0_count_register_get(void) { return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_COUNT); } /** * * @brief Set Timer0 count register to the specified value * * @return N/A */ static ALWAYS_INLINE void timer0_count_register_set(uint32_t value) { z_arc_v2_aux_reg_write(_ARC_V2_TMR0_COUNT, value); } /** * * @brief Get contents of Timer0 control register * * @return N/A */ static ALWAYS_INLINE uint32_t timer0_control_register_get(void) { return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_CONTROL); } /** * * @brief Set Timer0 control register to the specified value * * @return N/A */ static ALWAYS_INLINE void timer0_control_register_set(uint32_t value) { z_arc_v2_aux_reg_write(_ARC_V2_TMR0_CONTROL, value); } /** * * @brief Get contents of Timer0 limit register * * @return N/A */ static ALWAYS_INLINE uint32_t timer0_limit_register_get(void) { return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_LIMIT); } /** * * @brief Set Timer0 limit register to the specified value * * @return N/A */ static ALWAYS_INLINE void timer0_limit_register_set(uint32_t count) { z_arc_v2_aux_reg_write(_ARC_V2_TMR0_LIMIT, count); } #if !SMP_TIMER_DRIVER /* This internal function calculates the amount of HW cycles that have * elapsed since the last time the absolute HW cycles counter has been * updated. 'cycle_count' may be updated either by the ISR, or * in sys_clock_set_timeout(). * * Additionally, the function updates the 'overflow_cycles' counter, that * holds the amount of elapsed HW cycles due to (possibly) multiple * timer wraps (overflows). * * Prerequisites: * - reprogramming of LIMIT must be clearing the COUNT * - ISR must be clearing the 'overflow_cycles' counter. * - no more than one counter-wrap has occurred between * - the timer reset or the last time the function was called * - and until the current call of the function is completed. * - the function is invoked with interrupts disabled. */ static uint32_t elapsed(void) { uint32_t val, ctrl; do { val = timer0_count_register_get(); ctrl = timer0_control_register_get(); } while (timer0_count_register_get() < val); if (ctrl & _ARC_V2_TMR_CTRL_IP) { overflow_cycles += last_load; /* clear the IP bit of the control register */ timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); /* use sw triggered irq to remember the timer irq request * which may be cleared by the above operation. when elapsed () * is called in timer_int_handler, no need to do this. */ if (!z_arc_v2_irq_unit_is_in_isr() || z_arc_v2_aux_reg_read(_ARC_V2_ICAUSE) != IRQ_TIMER0) { z_arc_v2_aux_reg_write(_ARC_V2_AUX_IRQ_HINT, IRQ_TIMER0); } } return val + overflow_cycles; } #endif /** * * @brief System clock periodic tick handler * * This routine handles the system clock tick interrupt. It always * announces one tick when TICKLESS is not enabled, or multiple ticks * when TICKLESS is enabled. * * @return N/A */ static void timer_int_handler(const void *unused) { ARG_UNUSED(unused); uint32_t dticks; #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 1 uint64_t curr_time; k_spinlock_key_t key; /* clear the IP bit of the control register */ timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); key = k_spin_lock(&lock); /* gfrc is the wall clock */ curr_time = z_arc_connect_gfrc_read(); dticks = (curr_time - last_time) / CYC_PER_TICK; /* last_time should be aligned to ticks */ last_time += dticks * CYC_PER_TICK; k_spin_unlock(&lock, key); sys_clock_announce(dticks); #else /* timer_int_handler may be triggered by timer irq or * software helper irq */ /* irq with higher priority may call sys_clock_set_timeout * so need a lock here */ uint32_t key; key = arch_irq_lock(); elapsed(); cycle_count += overflow_cycles; overflow_cycles = 0; arch_irq_unlock(key); dticks = (cycle_count - announced_cycles) / CYC_PER_TICK; announced_cycles += dticks * CYC_PER_TICK; sys_clock_announce(TICKLESS ? dticks : 1); #endif } /** * * @brief Initialize and enable the system clock * * This routine is used to program the ARCv2 timer to deliver interrupts at the * rate specified via the CYC_PER_TICK. * * @return 0 */ int sys_clock_driver_init(const struct device *dev) { ARG_UNUSED(dev); /* ensure that the timer will not generate interrupts */ timer0_control_register_set(0); #if SMP_TIMER_DRIVER IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, timer_int_handler, NULL, 0); timer0_limit_register_set(CYC_PER_TICK - 1); last_time = z_arc_connect_gfrc_read(); start_time = last_time; #else last_load = CYC_PER_TICK; overflow_cycles = 0; announced_cycles = 0; IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, timer_int_handler, NULL, 0); timer0_limit_register_set(last_load - 1); #endif timer0_count_register_set(0); timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); /* everything has been configured: safe to enable the interrupt */ irq_enable(IRQ_TIMER0); return 0; } void sys_clock_set_timeout(int32_t ticks, bool idle) { /* If the kernel allows us to miss tick announcements in idle, * then shut off the counter. (Note: we can assume if idle==true * that interrupts are already disabled) */ #if SMP_TIMER_DRIVER /* as 64-bits GFRC is used as wall clock, it's ok to ignore idle * systick will not be missed. * However for single core using 32-bits arc timer, idle cannot * be ignored, as 32-bits timer will overflow in a not-long time. */ if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && ticks == K_TICKS_FOREVER) { timer0_control_register_set(0); timer0_count_register_set(0); timer0_limit_register_set(0); return; } #if defined(CONFIG_TICKLESS_KERNEL) uint32_t delay; uint32_t key; ticks = MIN(MAX_TICKS, ticks); /* Desired delay in the future * use MIN_DEALY here can trigger the timer * irq more soon, no need to go to CYC_PER_TICK * later. */ delay = MAX(ticks * CYC_PER_TICK, MIN_DELAY); key = arch_irq_lock(); timer0_limit_register_set(delay - 1); timer0_count_register_set(0); timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); arch_irq_unlock(key); #endif #else if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && idle && ticks == K_TICKS_FOREVER) { timer0_control_register_set(0); timer0_count_register_set(0); timer0_limit_register_set(0); last_load = TIMER_STOPPED; return; } #if defined(CONFIG_TICKLESS_KERNEL) uint32_t delay; uint32_t unannounced; ticks = MIN(MAX_TICKS, (uint32_t)(MAX((int32_t)(ticks - 1), 0))); k_spinlock_key_t key = k_spin_lock(&lock); cycle_count += elapsed(); /* clear counter early to avoid cycle loss as few as possible, * between cycle_count and clearing 0, few cycles are possible * to loss */ timer0_count_register_set(0); overflow_cycles = 0U; /* normal case */ unannounced = cycle_count - announced_cycles; if ((int32_t)unannounced < 0) { /* We haven't announced for more than half the 32-bit * wrap duration, because new timeouts keep being set * before the existing one fires. Force an announce * to avoid loss of a wrap event, making sure the * delay is at least the minimum delay possible. */ last_load = MIN_DELAY; } else { /* Desired delay in the future */ delay = ticks * CYC_PER_TICK; /* Round delay up to next tick boundary */ delay += unannounced; delay = ((delay + CYC_PER_TICK - 1) / CYC_PER_TICK) * CYC_PER_TICK; delay -= unannounced; delay = MAX(delay, MIN_DELAY); last_load = MIN(delay, MAX_CYCLES); } timer0_limit_register_set(last_load - 1); timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); k_spin_unlock(&lock, key); #endif #endif } uint32_t sys_clock_elapsed(void) { if (!TICKLESS) { return 0; } uint32_t cyc; k_spinlock_key_t key = k_spin_lock(&lock); #if SMP_TIMER_DRIVER cyc = (z_arc_connect_gfrc_read() - last_time); #else cyc = elapsed() + cycle_count - announced_cycles; #endif k_spin_unlock(&lock, key); return cyc / CYC_PER_TICK; } uint32_t sys_clock_cycle_get_32(void) { #if SMP_TIMER_DRIVER return z_arc_connect_gfrc_read() - start_time; #else k_spinlock_key_t key = k_spin_lock(&lock); uint32_t ret = elapsed() + cycle_count; k_spin_unlock(&lock, key); return ret; #endif } #if SMP_TIMER_DRIVER void smp_timer_init(void) { /* set the initial status of timer0 of each slave core */ timer0_control_register_set(0); timer0_count_register_set(0); timer0_limit_register_set(0); z_irq_priority_set(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, 0); irq_enable(IRQ_TIMER0); } #endif |