Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/*
 * Copyright (c) 2020 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <logging/log.h>
LOG_MODULE_REGISTER(uart_mux, CONFIG_UART_MUX_LOG_LEVEL);

#include <sys/__assert.h>
#include <kernel.h>
#include <init.h>
#include <syscall_handler.h>
#include <device.h>
#include <drivers/uart.h>
#include <drivers/console/uart_mux.h>
#include <sys/ring_buffer.h>
#include <sys/util.h>
#include <sys/atomic.h>

#include "gsm_mux.h"

#if CONFIG_UART_MUX_DEVICE_COUNT == 0
#error "CONFIG_UART_MUX_DEVICE_COUNT tells number of DLCIs to create " \
	"and must be >0"
#endif

#define UART_MUX_WORKQ_PRIORITY CONFIG_UART_MUX_RX_PRIORITY
#define UART_MUX_WORKQ_STACK_SIZE CONFIG_UART_MUX_RX_STACK_SIZE

/* All the RX/TX data is passed via own workqueue. This is done like this
 * as the GSM modem uses global workqueue which causes difficulties if we do
 * the same here. This workqueue is shared between all the DLCI channels.
 */
K_KERNEL_STACK_DEFINE(uart_mux_stack, UART_MUX_WORKQ_STACK_SIZE);
static struct k_work_q uart_mux_workq;

/* The UART mux contains information about the real UART. It will synchronize
 * the access to the real UART and pass data between it and GSM muxing API.
 * Usually there is only one instance of these in the system, if we have only
 * one UART connected to modem device.
 */
struct uart_mux {
	/* The real UART device that is shared between muxed UARTs */
	const struct device *uart;

	/* GSM mux related to this UART */
	struct gsm_mux *mux;

	/* Received data is routed from ISR to MUX API via ring buffer */
	struct ring_buf *rx_ringbuf;

	/* RX worker that passes data from RX ISR to GSM mux API */
	struct k_work rx_work;

	/* Mutex for accessing the real UART */
	struct k_mutex lock;

	/* Flag that tells whether this instance is initialized or not */
	atomic_t init_done;

	/* Temporary buffer when reading data in ISR */
	uint8_t rx_buf[CONFIG_UART_MUX_TEMP_BUF_SIZE];
};

#define DEFINE_UART_MUX(x, _)						\
	RING_BUF_DECLARE(uart_rx_ringbuf_##x,				\
			 CONFIG_UART_MUX_RINGBUF_SIZE);			\
	static struct uart_mux uart_mux_##x __used			\
		__attribute__((__section__(".uart_mux.data"))) = {	\
			.rx_ringbuf = &uart_rx_ringbuf_##x,		\
	};

UTIL_LISTIFY(CONFIG_UART_MUX_REAL_DEVICE_COUNT, DEFINE_UART_MUX, _)

extern struct uart_mux __uart_mux_start[];
extern struct uart_mux __uart_mux_end[];

/* UART Mux Driver Status Codes */
enum uart_mux_status_code {
	UART_MUX_UNKNOWN,      /* Initial connection status   */
	UART_MUX_CONFIGURED,   /* UART mux configuration done */
	UART_MUX_CONNECTED,    /* UART mux connected          */
	UART_MUX_DISCONNECTED, /* UART mux connection lost    */
};

struct uart_mux_config {
};

#define DEV_DATA(dev) \
	((struct uart_mux_dev_data *)(dev)->data)

struct uart_mux_dev_data {
	sys_snode_t node;

	/* Configuration data */
	struct uart_mux_config cfg;

	/* This UART mux device */
	const struct device *dev;

	/* The UART device where we are running on top of */
	struct uart_mux *real_uart;

	/* TX worker that will mux the transmitted data */
	struct k_work tx_work;

	/* ISR function callback worker */
	struct k_work cb_work;

	/* ISR function callback */
	uart_irq_callback_user_data_t cb;
	void *cb_user_data;

	/* Attach callback */
	uart_mux_attach_cb_t attach_cb;
	void *attach_user_data;

	/* TX data from application is handled via ring buffer */
	struct ring_buf *tx_ringbuf;

	/* Received data is routed from RX worker to application via ring
	 * buffer.
	 */
	struct ring_buf *rx_ringbuf;

	/* Muxing status */
	enum uart_mux_status_code status;

	/* DLCI (muxing virtual channel) linked to this muxed UART */
	struct gsm_dlci *dlci;

	/* Status (enabled / disabled) for RX and TX */
	bool rx_enabled : 1;
	bool tx_enabled : 1;
	bool rx_ready : 1;
	bool tx_ready : 1;
	bool in_use : 1;
};

struct uart_mux_cfg_data {
};

static sys_slist_t uart_mux_data_devlist;

static void uart_mux_cb_work(struct k_work *work)
{
	struct uart_mux_dev_data *dev_data =
		CONTAINER_OF(work, struct uart_mux_dev_data, cb_work);

	dev_data->cb(dev_data->dev, dev_data->cb_user_data);
}

static int uart_mux_consume_ringbuf(struct uart_mux *uart_mux)
{
	uint8_t *data;
	size_t len;
	int ret;

	len = ring_buf_get_claim(uart_mux->rx_ringbuf, &data,
				 CONFIG_UART_MUX_RINGBUF_SIZE);
	if (len == 0) {
		LOG_DBG("Ringbuf %p is empty!", uart_mux->rx_ringbuf);
		return 0;
	}

	/* We have now received muxed data. Push that through GSM mux API which
	 * will parse it and call proper functions to get the data to the user.
	 */

	if (IS_ENABLED(CONFIG_UART_MUX_VERBOSE_DEBUG)) {
		char tmp[sizeof("RECV muxed ") + 10];

		snprintk(tmp, sizeof(tmp), "RECV muxed %s",
			 uart_mux->uart->name);
		LOG_HEXDUMP_DBG(data, len, log_strdup(tmp));
	}

	gsm_mux_recv_buf(uart_mux->mux, data, len);

	ret = ring_buf_get_finish(uart_mux->rx_ringbuf, len);
	if (ret < 0) {
		LOG_DBG("Cannot flush ring buffer (%d)", ret);
	}

	return -EAGAIN;
}

static void uart_mux_rx_work(struct k_work *work)
{
	struct uart_mux *uart_mux =
		CONTAINER_OF(work, struct uart_mux, rx_work);;
	int ret;

	do {
		ret = uart_mux_consume_ringbuf(uart_mux);
	} while (ret == -EAGAIN);
}

static void uart_mux_tx_work(struct k_work *work)
{
	struct uart_mux_dev_data *dev_data =
		CONTAINER_OF(work, struct uart_mux_dev_data, tx_work);
	uint8_t *data;
	size_t len;

	len = ring_buf_get_claim(dev_data->tx_ringbuf, &data,
				 CONFIG_UART_MUX_RINGBUF_SIZE);
	if (!len) {
		LOG_DBG("Ringbuf %p empty!", dev_data->tx_ringbuf);
		return;
	}

	LOG_DBG("Got %d bytes from ringbuffer send to uart %p", len,
		dev_data->dev);

	if (IS_ENABLED(CONFIG_UART_MUX_VERBOSE_DEBUG)) {
		char tmp[sizeof("SEND _x") +
			 sizeof(CONFIG_UART_MUX_DEVICE_NAME)];

		snprintk(tmp, sizeof(tmp), "SEND %s",
			 dev_data->dev->name);
		LOG_HEXDUMP_DBG(data, len, log_strdup(tmp));
	}

	(void)gsm_dlci_send(dev_data->dlci, data, len);

	ring_buf_get_finish(dev_data->tx_ringbuf, len);
}

static int uart_mux_init(const struct device *dev)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);

	gsm_mux_init();

	dev_data->dev = dev;
	dev_data->real_uart = NULL; /* will be set when user attach to it */

	sys_slist_find_and_remove(&uart_mux_data_devlist, &dev_data->node);
	sys_slist_prepend(&uart_mux_data_devlist, &dev_data->node);

	k_work_init(&dev_data->tx_work, uart_mux_tx_work);
	k_work_init(&dev_data->cb_work, uart_mux_cb_work);

	LOG_DBG("Device %s dev %p dev_data %p cfg %p created",
		dev->name, dev, dev_data, dev->config);

	return 0;
}

/* This IRQ handler is shared between muxing UARTs. After we have received
 * data from it in uart_mux_rx_work(), we push the data to GSM mux API which
 * will call proper callbacks to pass data to correct recipient.
 */
static void uart_mux_isr(const struct device *uart, void *user_data)
{
	struct uart_mux *real_uart = user_data;
	int rx = 0;
	size_t wrote = 0;

	/* Read all data off UART, and send to RX worker for unmuxing */
	while (uart_irq_update(uart) &&
	       uart_irq_rx_ready(uart)) {
		rx = uart_fifo_read(uart, real_uart->rx_buf,
				    sizeof(real_uart->rx_buf));
		if (rx <= 0) {
			continue;
		}

		wrote = ring_buf_put(real_uart->rx_ringbuf,
				     real_uart->rx_buf, rx);
		if (wrote < rx) {
			LOG_ERR("Ring buffer full, drop %d bytes",
				rx - wrote);
		}

		k_work_submit_to_queue(&uart_mux_workq, &real_uart->rx_work);
	}
}

static void uart_mux_flush_isr(const struct device *dev)
{
	uint8_t c;

	while (uart_fifo_read(dev, &c, 1) > 0) {
		continue;
	}
}

void uart_mux_disable(const struct device *dev)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);
	const struct device *uart = dev_data->real_uart->uart;

	uart_irq_rx_disable(uart);
	uart_irq_tx_disable(uart);
	uart_mux_flush_isr(uart);

	gsm_mux_detach(dev_data->real_uart->mux);
}

void uart_mux_enable(const struct device *dev)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);
	struct uart_mux *real_uart = dev_data->real_uart;

	LOG_DBG("Claiming uart for uart_mux");

	uart_irq_rx_disable(real_uart->uart);
	uart_irq_tx_disable(real_uart->uart);
	uart_mux_flush_isr(real_uart->uart);
	uart_irq_callback_user_data_set(
		real_uart->uart, uart_mux_isr,
		real_uart);

	uart_irq_rx_enable(real_uart->uart);
}

static void dlci_created_cb(struct gsm_dlci *dlci, bool connected,
			    void *user_data)
{
	struct uart_mux_dev_data *dev_data = user_data;

	if (connected) {
		dev_data->status = UART_MUX_CONNECTED;
	} else {
		dev_data->status = UART_MUX_DISCONNECTED;
	}

	LOG_DBG("%s %s", dev_data->dev->name,
		dev_data->status == UART_MUX_CONNECTED ? "connected" :
							 "disconnected");

	if (dev_data->attach_cb) {
		dev_data->attach_cb(dev_data->dev,
				    dlci ? gsm_dlci_id(dlci) : -1,
				    connected,
				    dev_data->attach_user_data);
	}
}

static int init_real_uart(const struct device *mux, const struct device *uart,
			  struct uart_mux **mux_uart)
{
	bool found = false;
	struct uart_mux *real_uart;

	for (real_uart = __uart_mux_start; real_uart != __uart_mux_end;
	     real_uart++) {
		if (real_uart->uart == uart) {
			found = true;
			break;
		}
	}

	if (found == false) {
		for (real_uart = __uart_mux_start; real_uart != __uart_mux_end;
		     real_uart++) {
			if (real_uart->uart == NULL) {
				real_uart->uart = uart;
				found = true;
				break;
			}
		}

		if (found == false) {
			return -ENOENT;
		}
	}

	/* Init the real UART only once */
	if (atomic_cas(&real_uart->init_done, false, true)) {
		real_uart->mux = gsm_mux_create(mux);

		LOG_DBG("Initializing UART %s and GSM mux %p",
			real_uart->uart->name, (void *)real_uart->mux);

		if (!real_uart->mux) {
			real_uart->uart = NULL;
			atomic_clear(&real_uart->init_done);
			return -ENOMEM;
		}

		k_work_init(&real_uart->rx_work, uart_mux_rx_work);
		k_mutex_init(&real_uart->lock);

		uart_irq_rx_disable(real_uart->uart);
		uart_irq_tx_disable(real_uart->uart);
		uart_mux_flush_isr(real_uart->uart);
		uart_irq_callback_user_data_set(
			real_uart->uart, uart_mux_isr,
			real_uart);

		uart_irq_rx_enable(real_uart->uart);
	}

	__ASSERT(real_uart->uart, "Real UART not set");

	*mux_uart = real_uart;

	return 0;
}

/* This will bind the physical (real) UART to this muxed UART */
static int attach(const struct device *mux_uart, const struct device *uart,
		  int dlci_address, uart_mux_attach_cb_t cb,
		  void *user_data)
{
	sys_snode_t *sn, *sns;

	if (mux_uart == NULL || uart == NULL) {
		return -EINVAL;
	}

	LOG_DBG("Attach DLCI %d (%s) to %s", dlci_address,
		mux_uart->name, uart->name);

	SYS_SLIST_FOR_EACH_NODE_SAFE(&uart_mux_data_devlist, sn, sns) {
		struct uart_mux_dev_data *dev_data =
			CONTAINER_OF(sn, struct uart_mux_dev_data, node);

		if (dev_data->dev == mux_uart) {
			struct uart_mux *real_uart;
			int ret;

			ret = init_real_uart(mux_uart, uart, &real_uart);
			if (ret < 0) {
				return ret;
			}

			dev_data->real_uart = real_uart;
			dev_data->tx_ready = true;
			dev_data->tx_enabled = true;
			dev_data->rx_enabled = true;
			dev_data->attach_cb = cb;
			dev_data->attach_user_data = user_data;
			dev_data->status = UART_MUX_CONFIGURED;

			ret = gsm_dlci_create(real_uart->mux,
					      mux_uart,
					      dlci_address,
					      dlci_created_cb,
					      dev_data,
					      &dev_data->dlci);
			if (ret < 0) {
				LOG_DBG("Cannot create DLCI %d (%d)",
					dlci_address, ret);
				return ret;
			}

			return 0;
		}
	}

	return -ENOENT;
}

static int uart_mux_poll_in(const struct device *dev, unsigned char *p_char)
{
	ARG_UNUSED(dev);
	ARG_UNUSED(p_char);

	return -ENOTSUP;
}

static void uart_mux_poll_out(const struct device *dev,
			      unsigned char out_char)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);

	if (dev_data->dev == NULL) {
		return;
	}

	(void)gsm_dlci_send(dev_data->dlci, &out_char, 1);
}

static int uart_mux_err_check(const struct device *dev)
{
	ARG_UNUSED(dev);

	return -ENOTSUP;
}

static int uart_mux_configure(const struct device *dev,
			      const struct uart_config *cfg)
{
	ARG_UNUSED(dev);
	ARG_UNUSED(cfg);

	return -ENOTSUP;
}

static int uart_mux_config_get(const struct device *dev,
			       struct uart_config *cfg)
{
	ARG_UNUSED(dev);
	ARG_UNUSED(cfg);

	return -ENOTSUP;
}

static int uart_mux_fifo_fill(const struct device *dev,
			      const uint8_t *tx_data, int len)
{
	struct uart_mux_dev_data *dev_data;
	size_t wrote;

	if (dev == NULL) {
		return -EINVAL;
	}

	dev_data = DEV_DATA(dev);
	if (dev_data->dev == NULL) {
		return -ENOENT;
	}

	/* If we're not in ISR context, do the xfer synchronously. This
	 * effectively let's applications use this implementation of fifo_fill
	 * as a multi-byte poll_out which prevents each byte getting wrapped by
	 * mux headers.
	 */
	if (!k_is_in_isr() && dev_data->dlci) {
		return gsm_dlci_send(dev_data->dlci, tx_data, len);
	}

	LOG_DBG("dev_data %p len %d tx_ringbuf space %u",
		dev_data, len, ring_buf_space_get(dev_data->tx_ringbuf));

	if (dev_data->status != UART_MUX_CONNECTED) {
		LOG_WRN("UART mux not connected, drop %d bytes", len);
		return 0;
	}

	dev_data->tx_ready = false;

	wrote = ring_buf_put(dev_data->tx_ringbuf, tx_data, len);
	if (wrote < len) {
		LOG_WRN("Ring buffer full, drop %d bytes", len - wrote);
	}

	k_work_submit_to_queue(&uart_mux_workq, &dev_data->tx_work);

	return wrote;
}

static int uart_mux_fifo_read(const struct device *dev, uint8_t *rx_data,
			      const int size)
{
	struct uart_mux_dev_data *dev_data;
	uint32_t len;

	if (dev == NULL) {
		return -EINVAL;
	}

	dev_data = DEV_DATA(dev);
	if (dev_data->dev == NULL) {
		return -ENOENT;
	}

	LOG_DBG("%s size %d rx_ringbuf space %u",
		dev->name, size,
		ring_buf_space_get(dev_data->rx_ringbuf));

	len = ring_buf_get(dev_data->rx_ringbuf, rx_data, size);

	if (ring_buf_is_empty(dev_data->rx_ringbuf)) {
		dev_data->rx_ready = false;
	}

	return len;
}

static void uart_mux_irq_tx_enable(const struct device *dev)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);

	if (dev_data == NULL || dev_data->dev == NULL) {
		return;
	}

	dev_data->tx_enabled = true;

	if (dev_data->cb && dev_data->tx_ready) {
		k_work_submit_to_queue(&uart_mux_workq, &dev_data->cb_work);
	}
}

static void uart_mux_irq_tx_disable(const struct device *dev)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);

	if (dev_data == NULL || dev_data->dev == NULL) {
		return;
	}

	dev_data->tx_enabled = false;
}

static int uart_mux_irq_tx_ready(const struct device *dev)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);

	if (dev_data == NULL) {
		return -EINVAL;
	}

	if (dev_data->dev == NULL) {
		return -ENOENT;
	}

	return dev_data->tx_ready;
}

static void uart_mux_irq_rx_enable(const struct device *dev)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);

	if (dev_data == NULL || dev_data->dev == NULL) {
		return;
	}

	dev_data->rx_enabled = true;

	if (dev_data->cb && dev_data->rx_ready) {
		k_work_submit_to_queue(&uart_mux_workq, &dev_data->cb_work);
	}
}

static void uart_mux_irq_rx_disable(const struct device *dev)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);

	if (dev_data == NULL || dev_data->dev == NULL) {
		return;
	}

	dev_data->rx_enabled = false;
}

static int uart_mux_irq_tx_complete(const struct device *dev)
{
	ARG_UNUSED(dev);

	return -ENOTSUP;
}

static int uart_mux_irq_rx_ready(const struct device *dev)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);

	if (dev_data == NULL) {
		return -EINVAL;
	}

	if (dev_data->dev == NULL) {
		return -ENOENT;
	}

	return dev_data->rx_ready;
}

static void uart_mux_irq_err_enable(const struct device *dev)
{
	ARG_UNUSED(dev);
}

static void uart_mux_irq_err_disable(const struct device *dev)
{
	ARG_UNUSED(dev);
}

static int uart_mux_irq_is_pending(const struct device *dev)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);

	if (dev_data == NULL || dev_data->dev == NULL) {
		return 0;
	}

	if (dev_data->tx_ready && dev_data->tx_enabled) {
		return 1;
	}

	if (dev_data->rx_ready && dev_data->rx_enabled) {
		return 1;
	}

	return 0;
}

static int uart_mux_irq_update(const struct device *dev)
{
	ARG_UNUSED(dev);

	return 1;
}

static void uart_mux_irq_callback_set(const struct device *dev,
				      uart_irq_callback_user_data_t cb,
				      void *user_data)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(dev);

	if (dev_data == NULL) {
		return;
	}

	dev_data->cb = cb;
	dev_data->cb_user_data = user_data;
}

static struct uart_mux_driver_api uart_mux_driver_api = {
	.uart_api.poll_in = uart_mux_poll_in,
	.uart_api.poll_out = uart_mux_poll_out,
	.uart_api.err_check = uart_mux_err_check,
	.uart_api.configure = uart_mux_configure,
	.uart_api.config_get = uart_mux_config_get,
	.uart_api.fifo_fill = uart_mux_fifo_fill,
	.uart_api.fifo_read = uart_mux_fifo_read,
	.uart_api.irq_tx_enable = uart_mux_irq_tx_enable,
	.uart_api.irq_tx_disable = uart_mux_irq_tx_disable,
	.uart_api.irq_tx_ready = uart_mux_irq_tx_ready,
	.uart_api.irq_rx_enable = uart_mux_irq_rx_enable,
	.uart_api.irq_rx_disable = uart_mux_irq_rx_disable,
	.uart_api.irq_tx_complete = uart_mux_irq_tx_complete,
	.uart_api.irq_rx_ready = uart_mux_irq_rx_ready,
	.uart_api.irq_err_enable = uart_mux_irq_err_enable,
	.uart_api.irq_err_disable = uart_mux_irq_err_disable,
	.uart_api.irq_is_pending = uart_mux_irq_is_pending,
	.uart_api.irq_update = uart_mux_irq_update,
	.uart_api.irq_callback_set = uart_mux_irq_callback_set,

	.attach = attach,
};

const struct device *uart_mux_alloc(void)
{
	sys_snode_t *sn, *sns;

	SYS_SLIST_FOR_EACH_NODE_SAFE(&uart_mux_data_devlist, sn, sns) {
		struct uart_mux_dev_data *dev_data =
			CONTAINER_OF(sn, struct uart_mux_dev_data, node);

		if (dev_data->in_use) {
			continue;
		}

		dev_data->in_use = true;

		return dev_data->dev;
	}

	return NULL;
}

#ifdef CONFIG_USERSPACE
static inline const struct device *z_vrfy_uart_mux_find(int dlci_address)
{
	return z_impl_uart_mux_find(dlci_address);
}
#include <syscalls/uart_mux_find_mrsh.c>
#endif /* CONFIG_USERSPACE */

const struct device *z_impl_uart_mux_find(int dlci_address)
{
	sys_snode_t *sn, *sns;

	SYS_SLIST_FOR_EACH_NODE_SAFE(&uart_mux_data_devlist, sn, sns) {
		struct uart_mux_dev_data *dev_data =
			CONTAINER_OF(sn, struct uart_mux_dev_data, node);

		if (!dev_data->in_use) {
			continue;
		}

		if (dev_data->dlci == NULL) {
			continue;
		}

		if (gsm_dlci_id(dev_data->dlci) == dlci_address) {
			return dev_data->dev;
		}
	}

	return NULL;
}

int uart_mux_send(const struct device *uart, const uint8_t *buf, size_t size)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(uart);

	if (size == 0) {
		return 0;
	}

	if (atomic_get(&dev_data->real_uart->init_done) == false) {
		return -ENODEV;
	}

	if (IS_ENABLED(CONFIG_UART_MUX_VERBOSE_DEBUG)) {
		char tmp[sizeof("SEND muxed ") + 10];

		snprintk(tmp, sizeof(tmp), "SEND muxed %s",
			 dev_data->real_uart->uart->name);
		LOG_HEXDUMP_DBG(buf, size, log_strdup(tmp));
	}

	k_mutex_lock(&dev_data->real_uart->lock, K_FOREVER);

	do {
		uart_poll_out(dev_data->real_uart->uart, *buf++);
	} while (--size);

	k_mutex_unlock(&dev_data->real_uart->lock);

	return 0;
}

int uart_mux_recv(const struct device *mux, struct gsm_dlci *dlci,
		  uint8_t *data,
		  size_t len)
{
	struct uart_mux_dev_data *dev_data = DEV_DATA(mux);
	size_t wrote = 0;

	LOG_DBG("%s: dlci %p data %p len %zd", mux->name, (void *)dlci,
		data, len);

	if (IS_ENABLED(CONFIG_UART_MUX_VERBOSE_DEBUG)) {
		char tmp[sizeof("RECV _x") +
			 sizeof(CONFIG_UART_MUX_DEVICE_NAME)];

		snprintk(tmp, sizeof(tmp), "RECV %s",
			 dev_data->dev->name);
		LOG_HEXDUMP_DBG(data, len, log_strdup(tmp));
	}

	wrote = ring_buf_put(dev_data->rx_ringbuf, data, len);
	if (wrote < len) {
		LOG_ERR("Ring buffer full, drop %d bytes", len - wrote);
	}

	dev_data->rx_ready = true;

	if (dev_data->cb && dev_data->rx_enabled) {
		k_work_submit_to_queue(&uart_mux_workq, &dev_data->cb_work);
	}

	return wrote;
}

void uart_mux_foreach(uart_mux_cb_t cb, void *user_data)
{
	sys_snode_t *sn, *sns;

	SYS_SLIST_FOR_EACH_NODE_SAFE(&uart_mux_data_devlist, sn, sns) {
		struct uart_mux_dev_data *dev_data =
			CONTAINER_OF(sn, struct uart_mux_dev_data, node);

		if (!dev_data->in_use) {
			continue;
		}

		cb(dev_data->real_uart->uart, dev_data->dev,
		   dev_data->dlci ? gsm_dlci_id(dev_data->dlci) : -1,
		   user_data);
	}
}

#define DEFINE_UART_MUX_CFG_DATA(x, _)					  \
	struct uart_mux_cfg_data uart_mux_config_##x = {		  \
	};

#define DEFINE_UART_MUX_DEV_DATA(x, _)					  \
	RING_BUF_DECLARE(tx_ringbuf_##x, CONFIG_UART_MUX_RINGBUF_SIZE);	  \
	RING_BUF_DECLARE(rx_ringbuf_##x, CONFIG_UART_MUX_RINGBUF_SIZE);	  \
	static struct uart_mux_dev_data uart_mux_dev_data_##x = {	  \
		.tx_ringbuf = &tx_ringbuf_##x,				  \
		.rx_ringbuf = &rx_ringbuf_##x,				  \
	};

#define DEFINE_UART_MUX_DEVICE(x, _)					  \
	DEVICE_DEFINE(uart_mux_##x,					  \
			    CONFIG_UART_MUX_DEVICE_NAME "_" #x,		  \
			    &uart_mux_init,				  \
			    NULL,					  \
			    &uart_mux_dev_data_##x,			  \
			    &uart_mux_config_##x,			  \
			    POST_KERNEL,				  \
			    CONFIG_KERNEL_INIT_PRIORITY_DEVICE,		  \
			    &uart_mux_driver_api);

UTIL_LISTIFY(CONFIG_UART_MUX_DEVICE_COUNT, DEFINE_UART_MUX_CFG_DATA, _)
UTIL_LISTIFY(CONFIG_UART_MUX_DEVICE_COUNT, DEFINE_UART_MUX_DEV_DATA, _)
UTIL_LISTIFY(CONFIG_UART_MUX_DEVICE_COUNT, DEFINE_UART_MUX_DEVICE, _)

static int init_uart_mux(const struct device *dev)
{
	ARG_UNUSED(dev);

	k_work_queue_start(&uart_mux_workq, uart_mux_stack,
			   K_KERNEL_STACK_SIZEOF(uart_mux_stack),
			   K_PRIO_COOP(UART_MUX_WORKQ_PRIORITY), NULL);
	k_thread_name_set(&uart_mux_workq.thread, "uart_mux_workq");

	return 0;
}

SYS_INIT(init_uart_mux, POST_KERNEL, CONFIG_UART_MUX_INIT_PRIORITY);