Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*
 * Copyright (c) 2017 Erwin Rol <erwin@erwinrol.com>
 * Copyright (c) 2020 Alexander Kozhinov <AlexanderKozhinov@yandex.com>
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT st_stm32_ethernet

#define LOG_MODULE_NAME eth_stm32_hal
#define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL

#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);

#include <kernel.h>
#include <device.h>
#include <sys/__assert.h>
#include <sys/util.h>
#include <errno.h>
#include <stdbool.h>
#include <net/net_pkt.h>
#include <net/net_if.h>
#include <net/ethernet.h>
#include <ethernet/eth_stats.h>
#include <soc.h>
#include <sys/printk.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/stm32_clock_control.h>
#include <pinmux/pinmux_stm32.h>

#include "eth.h"
#include "eth_stm32_hal_priv.h"

#if defined(CONFIG_ETH_STM32_HAL_USE_DTCM_FOR_DMA_BUFFER) && \
	    !DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay)
#error DTCM for DMA buffer is activated but zephyr,dtcm is not present in dts
#endif

#define PHY_ADDR	CONFIG_ETH_STM32_HAL_PHY_ADDRESS

#if defined(CONFIG_SOC_SERIES_STM32H7X)

#define PHY_BSR  ((uint16_t)0x0001U)  /*!< Transceiver Basic Status Register */
#define PHY_LINKED_STATUS  ((uint16_t)0x0004U)  /*!< Valid link established */

#define GET_FIRST_DMA_TX_DESC(heth)	(heth->Init.TxDesc)
#define IS_ETH_DMATXDESC_OWN(dma_tx_desc)	(dma_tx_desc->DESC3 & \
							ETH_DMATXNDESCRF_OWN)

#define ETH_RXBUFNB	ETH_RX_DESC_CNT
#define ETH_TXBUFNB	ETH_TX_DESC_CNT

#define ETH_MEDIA_INTERFACE_MII		HAL_ETH_MII_MODE
#define ETH_MEDIA_INTERFACE_RMII	HAL_ETH_RMII_MODE

#define ETH_DMA_TX_TIMEOUT_MS	20U  /* transmit timeout in milliseconds */

/* Only one tx_buffer is sufficient to pass only 1 dma_buffer */
#define ETH_TXBUF_DEF_NB	1U
#else

#define GET_FIRST_DMA_TX_DESC(heth)	(heth->TxDesc)
#define IS_ETH_DMATXDESC_OWN(dma_tx_desc)	(dma_tx_desc->Status & \
							ETH_DMATXDESC_OWN)

#endif /* CONFIG_SOC_SERIES_STM32H7X */

#if defined(CONFIG_ETH_STM32_HAL_USE_DTCM_FOR_DMA_BUFFER) && \
	    DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay)
#define __eth_stm32_desc __dtcm_noinit_section
#define __eth_stm32_buf  __dtcm_noinit_section
#elif defined(CONFIG_SOC_SERIES_STM32H7X) && \
		DT_NODE_HAS_STATUS(DT_NODELABEL(sram3), okay)
#define __eth_stm32_desc __attribute__((section(".eth_stm32_desc")))
#define __eth_stm32_buf  __attribute__((section(".eth_stm32_buf")))
#elif defined(CONFIG_NOCACHE_MEMORY)
#define __eth_stm32_desc __nocache __aligned(4)
#define __eth_stm32_buf  __nocache __aligned(4)
#else
#define __eth_stm32_desc __aligned(4)
#define __eth_stm32_buf  __aligned(4)
#endif

static ETH_DMADescTypeDef dma_rx_desc_tab[ETH_RXBUFNB] __eth_stm32_desc;
static ETH_DMADescTypeDef dma_tx_desc_tab[ETH_TXBUFNB] __eth_stm32_desc;
static uint8_t dma_rx_buffer[ETH_RXBUFNB][ETH_RX_BUF_SIZE] __eth_stm32_buf;
static uint8_t dma_tx_buffer[ETH_TXBUFNB][ETH_TX_BUF_SIZE] __eth_stm32_buf;

#if defined(CONFIG_SOC_SERIES_STM32H7X)
static ETH_TxPacketConfig tx_config;
#endif

#if defined(CONFIG_NET_L2_CANBUS_ETH_TRANSLATOR)
#include <net/can.h>

static void set_mac_to_translator_addr(uint8_t *mac_addr)
{
	/* Set the last 14 bit to the translator  link layer address to avoid
	 * address collissions with the 6LoCAN address range
	 */
	mac_addr[4] = (mac_addr[4] & 0xC0) | (NET_CAN_ETH_TRANSLATOR_ADDR >> 8);
	mac_addr[5] = NET_CAN_ETH_TRANSLATOR_ADDR & 0xFF;
}

static void enable_canbus_eth_translator_filter(ETH_HandleTypeDef *heth,
						uint8_t *mac_addr)
{
	heth->Instance->MACA1LR = (mac_addr[3] << 24U) | (mac_addr[2] << 16U) |
				  (mac_addr[1] << 8U) | mac_addr[0];

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	heth->Instance->MACA1HR = ETH_MACAHR_AE | ETH_MACAHR_MBC_HBITS15_8 |
				  ETH_MACAHR_MBC_HBITS7_0;
#else
	/*enable filter 1 and ignore byte 5 and 6 for filtering*/
	heth->Instance->MACA1HR = ETH_MACA1HR_AE |  ETH_MACA1HR_MBC_HBits15_8 |
				  ETH_MACA1HR_MBC_HBits7_0;
#endif  /* CONFIG_SOC_SERIES_STM32H7X */
}
#endif /*CONFIG_NET_L2_CANBUS_ETH_TRANSLATOR*/

static HAL_StatusTypeDef read_eth_phy_register(ETH_HandleTypeDef *heth,
						uint32_t PHYAddr,
						uint32_t PHYReg,
						uint32_t *RegVal)
{
#if defined(CONFIG_SOC_SERIES_STM32H7X)
	return HAL_ETH_ReadPHYRegister(heth, PHYAddr, PHYReg, RegVal);
#else
	ARG_UNUSED(PHYAddr);
	return HAL_ETH_ReadPHYRegister(heth, PHYReg, RegVal);
#endif /* CONFIG_SOC_SERIES_STM32H7X */
}

static inline void disable_mcast_filter(ETH_HandleTypeDef *heth)
{
	__ASSERT_NO_MSG(heth != NULL);

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	ETH_MACFilterConfigTypeDef MACFilterConf;

	HAL_ETH_GetMACFilterConfig(heth, &MACFilterConf);
	MACFilterConf.HashMulticast = DISABLE;
	MACFilterConf.PassAllMulticast = ENABLE;
	MACFilterConf.HachOrPerfectFilter = DISABLE;

	HAL_ETH_SetMACFilterConfig(heth, &MACFilterConf);

	k_sleep(K_MSEC(1));
#else
	uint32_t tmp = heth->Instance->MACFFR;

	/* disable multicast filtering */
	tmp &= ~(ETH_MULTICASTFRAMESFILTER_PERFECTHASHTABLE |
		 ETH_MULTICASTFRAMESFILTER_HASHTABLE |
		 ETH_MULTICASTFRAMESFILTER_PERFECT);

	/* enable receiving all multicast frames */
	tmp |= ETH_MULTICASTFRAMESFILTER_NONE;

	heth->Instance->MACFFR = tmp;

	/* Wait until the write operation will be taken into account:
	 * at least four TX_CLK/RX_CLK clock cycles
	 */
	tmp = heth->Instance->MACFFR;
	k_sleep(K_MSEC(1));
	heth->Instance->MACFFR = tmp;
#endif /* CONFIG_SOC_SERIES_STM32H7X) */
}

static int eth_tx(const struct device *dev, struct net_pkt *pkt)
{
	struct eth_stm32_hal_dev_data *dev_data = DEV_DATA(dev);
	ETH_HandleTypeDef *heth;
	uint8_t *dma_buffer;
	int res;
	size_t total_len;
	__IO ETH_DMADescTypeDef *dma_tx_desc;
	HAL_StatusTypeDef hal_ret = HAL_OK;

	__ASSERT_NO_MSG(pkt != NULL);
	__ASSERT_NO_MSG(pkt->frags != NULL);
	__ASSERT_NO_MSG(dev != NULL);
	__ASSERT_NO_MSG(dev_data != NULL);

	heth = &dev_data->heth;

	k_mutex_lock(&dev_data->tx_mutex, K_FOREVER);

	total_len = net_pkt_get_len(pkt);
	if (total_len > ETH_TX_BUF_SIZE) {
		LOG_ERR("PKT too big");
		res = -EIO;
		goto error;
	}

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	const uint32_t cur_tx_desc_idx = 0;  /* heth->TxDescList.CurTxDesc; */
#endif

	dma_tx_desc = GET_FIRST_DMA_TX_DESC(heth);
	while (IS_ETH_DMATXDESC_OWN(dma_tx_desc) != (uint32_t)RESET) {
		k_yield();
	}

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	dma_buffer = dma_tx_buffer[cur_tx_desc_idx];
#else
	dma_buffer = (uint8_t *)(dma_tx_desc->Buffer1Addr);
#endif /* CONFIG_SOC_SERIES_STM32H7X */

	if (net_pkt_read(pkt, dma_buffer, total_len)) {
		res = -ENOBUFS;
		goto error;
	}

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	ETH_BufferTypeDef tx_buffer_def[ETH_TXBUF_DEF_NB];

	memset(tx_buffer_def, 0, ETH_TXBUF_DEF_NB*sizeof(ETH_BufferTypeDef));

	tx_buffer_def[cur_tx_desc_idx].buffer = dma_buffer;
	tx_buffer_def[cur_tx_desc_idx].len = total_len;
	tx_buffer_def[cur_tx_desc_idx].next = NULL;

	tx_config.Length = total_len;
	tx_config.TxBuffer = tx_buffer_def;

	/* Reset TX complete interrupt semaphore before TX request*/
	k_sem_reset(&dev_data->tx_int_sem);

	/* tx_buffer is allocated on function stack, we need */
	/* to wait for the transfer to complete */
	/* So it is not freed before the interrupt happens */
	hal_ret = HAL_ETH_Transmit_IT(heth, &tx_config);

	if (hal_ret != HAL_OK) {
		LOG_ERR("HAL_ETH_Transmit: failed!");
		res = -EIO;
		goto error;
	}

	/* Wait for end of TX buffer transmission */
	/* If the semaphore timeout breaks, it means */
	/* an error occurred or IT was not fired */
	if (k_sem_take(&dev_data->tx_int_sem,
			K_MSEC(ETH_DMA_TX_TIMEOUT_MS)) != 0) {

		LOG_ERR("HAL_ETH_TransmitIT tx_int_sem take timeout");
		res = -EIO;

		/* Content of the packet could be the reason for timeout */
		LOG_HEXDUMP_ERR(dma_buffer, total_len, "eth packet timeout");

		/* Check for errors */
		/* Ethernet device was put in error state */
		/* Error state is unrecoverable ? */
		if (HAL_ETH_GetState(heth) == HAL_ETH_STATE_ERROR) {
			LOG_ERR("%s: ETH in error state: errorcode:%x",
				__func__,
				HAL_ETH_GetError(heth));
			/* TODO recover from error state by restarting eth */
		}

		/* Check for DMA errors */
		if (HAL_ETH_GetDMAError(heth)) {
			LOG_ERR("%s: ETH DMA error: dmaerror:%x",
				__func__,
				HAL_ETH_GetDMAError(heth));
			/* DMA fatal bus errors are putting in error state*/
			/* TODO recover from this */
		}

		/* Check for MAC errors */
		if (HAL_ETH_GetDMAError(heth)) {
			LOG_ERR("%s: ETH DMA error: macerror:%x",
				__func__,
				HAL_ETH_GetDMAError(heth));
			/* MAC errors are putting in error state*/
			/* TODO recover from this */
		}

		goto error;
	}

#else
	hal_ret = HAL_ETH_TransmitFrame(heth, total_len);

	if (hal_ret != HAL_OK) {
		LOG_ERR("HAL_ETH_Transmit: failed!");
		res = -EIO;
		goto error;
	}

	/* When Transmit Underflow flag is set, clear it and issue a
	 * Transmit Poll Demand to resume transmission.
	 */
	if ((heth->Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET) {
		/* Clear TUS ETHERNET DMA flag */
		heth->Instance->DMASR = ETH_DMASR_TUS;
		/* Resume DMA transmission*/
		heth->Instance->DMATPDR = 0;
		res = -EIO;
		goto error;
	}
#endif /* CONFIG_SOC_SERIES_STM32H7X */

	res = 0;
error:
	k_mutex_unlock(&dev_data->tx_mutex);

	return res;
}

static struct net_if *get_iface(struct eth_stm32_hal_dev_data *ctx,
				uint16_t vlan_tag)
{
#if defined(CONFIG_NET_VLAN)
	struct net_if *iface;

	iface = net_eth_get_vlan_iface(ctx->iface, vlan_tag);
	if (!iface) {
		return ctx->iface;
	}

	return iface;
#else
	ARG_UNUSED(vlan_tag);

	return ctx->iface;
#endif
}

static struct net_pkt *eth_rx(const struct device *dev, uint16_t *vlan_tag)
{
	struct eth_stm32_hal_dev_data *dev_data;
	ETH_HandleTypeDef *heth;
#if !defined(CONFIG_SOC_SERIES_STM32H7X)
	__IO ETH_DMADescTypeDef *dma_rx_desc;
#endif /* !CONFIG_SOC_SERIES_STM32H7X */
	struct net_pkt *pkt;
	size_t total_len;
	uint8_t *dma_buffer;
	HAL_StatusTypeDef hal_ret = HAL_OK;

	__ASSERT_NO_MSG(dev != NULL);

	dev_data = DEV_DATA(dev);

	__ASSERT_NO_MSG(dev_data != NULL);

	heth = &dev_data->heth;

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	if (HAL_ETH_IsRxDataAvailable(heth) != true) {
		/* no frame available */
		return NULL;
	}

	ETH_BufferTypeDef rx_buffer_def;
	uint32_t frame_length = 0;

	hal_ret = HAL_ETH_GetRxDataBuffer(heth, &rx_buffer_def);
	if (hal_ret != HAL_OK) {
		LOG_ERR("HAL_ETH_GetRxDataBuffer: failed with state: %d",
			hal_ret);
		return NULL;
	}

	hal_ret = HAL_ETH_GetRxDataLength(heth, &frame_length);
	if (hal_ret != HAL_OK) {
		LOG_ERR("HAL_ETH_GetRxDataLength: failed with state: %d",
			hal_ret);
		return NULL;
	}

	total_len = frame_length;
	dma_buffer = rx_buffer_def.buffer;
#else
	hal_ret = HAL_ETH_GetReceivedFrame_IT(heth);
	if (hal_ret != HAL_OK) {
		/* no frame available */
		return NULL;
	}

	total_len = heth->RxFrameInfos.length;
	dma_buffer = (uint8_t *)heth->RxFrameInfos.buffer;
#endif /* CONFIG_SOC_SERIES_STM32H7X */

	pkt = net_pkt_rx_alloc_with_buffer(get_iface(dev_data, *vlan_tag),
					   total_len, AF_UNSPEC, 0, K_MSEC(100));
	if (!pkt) {
		LOG_ERR("Failed to obtain RX buffer");
		goto release_desc;
	}

	if (net_pkt_write(pkt, dma_buffer, total_len)) {
		LOG_ERR("Failed to append RX buffer to context buffer");
		net_pkt_unref(pkt);
		pkt = NULL;
		goto release_desc;
	}

release_desc:
#if defined(CONFIG_SOC_SERIES_STM32H7X)
	hal_ret = HAL_ETH_BuildRxDescriptors(heth);
	if (hal_ret != HAL_OK) {
		LOG_ERR("HAL_ETH_BuildRxDescriptors: failed: %d", hal_ret);
	}
#else
	/* Release descriptors to DMA */
	/* Point to first descriptor */
	dma_rx_desc = heth->RxFrameInfos.FSRxDesc;
	/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
	for (int i = 0; i < heth->RxFrameInfos.SegCount; i++) {
		dma_rx_desc->Status |= ETH_DMARXDESC_OWN;
		dma_rx_desc = (ETH_DMADescTypeDef *)
			(dma_rx_desc->Buffer2NextDescAddr);
	}

	/* Clear Segment_Count */
	heth->RxFrameInfos.SegCount = 0;

	/* When Rx Buffer unavailable flag is set: clear it
	 * and resume reception.
	 */
	if ((heth->Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET) {
		/* Clear RBUS ETHERNET DMA flag */
		heth->Instance->DMASR = ETH_DMASR_RBUS;
		/* Resume DMA reception */
		heth->Instance->DMARPDR = 0;
	}
#endif /* CONFIG_SOC_SERIES_STM32H7X */

#if defined(CONFIG_NET_VLAN)
	struct net_eth_hdr *hdr = NET_ETH_HDR(pkt);

	if (ntohs(hdr->type) == NET_ETH_PTYPE_VLAN) {
		struct net_eth_vlan_hdr *hdr_vlan =
			(struct net_eth_vlan_hdr *)NET_ETH_HDR(pkt);

		net_pkt_set_vlan_tci(pkt, ntohs(hdr_vlan->vlan.tci));
		*vlan_tag = net_pkt_vlan_tag(pkt);

#if CONFIG_NET_TC_RX_COUNT > 1
		enum net_priority prio;

		prio = net_vlan2priority(net_pkt_vlan_priority(pkt));
		net_pkt_set_priority(pkt, prio);
#endif
	} else {
		net_pkt_set_iface(pkt, dev_data->iface);
	}
#endif /* CONFIG_NET_VLAN */

	if (!pkt) {
		eth_stats_update_errors_rx(get_iface(dev_data, *vlan_tag));
	}

	return pkt;
}

static void rx_thread(void *arg1, void *unused1, void *unused2)
{
	uint16_t vlan_tag = NET_VLAN_TAG_UNSPEC;
	const struct device *dev;
	struct eth_stm32_hal_dev_data *dev_data;
	struct net_pkt *pkt;
	int res;
	uint32_t status;
	HAL_StatusTypeDef hal_ret = HAL_OK;

	__ASSERT_NO_MSG(arg1 != NULL);
	ARG_UNUSED(unused1);
	ARG_UNUSED(unused2);

	dev = (const struct device *)arg1;
	dev_data = DEV_DATA(dev);

	__ASSERT_NO_MSG(dev_data != NULL);

	while (1) {
		res = k_sem_take(&dev_data->rx_int_sem,
			K_MSEC(CONFIG_ETH_STM32_CARRIER_CHECK_RX_IDLE_TIMEOUT_MS));
		if (res == 0) {
			/* semaphore taken, update link status and receive packets */
			if (dev_data->link_up != true) {
				dev_data->link_up = true;
				net_eth_carrier_on(get_iface(dev_data,
							     vlan_tag));
			}
			while ((pkt = eth_rx(dev, &vlan_tag)) != NULL) {
				res = net_recv_data(net_pkt_iface(pkt), pkt);
				if (res < 0) {
					eth_stats_update_errors_rx(
							net_pkt_iface(pkt));
					LOG_ERR("Failed to enqueue frame "
						"into RX queue: %d", res);
					net_pkt_unref(pkt);
				}
			}
		} else if (res == -EAGAIN) {
			/* semaphore timeout period expired, check link status */
			hal_ret = read_eth_phy_register(&dev_data->heth,
				    PHY_ADDR, PHY_BSR, (uint32_t *) &status);
			if (hal_ret == HAL_OK) {
				if ((status & PHY_LINKED_STATUS) == PHY_LINKED_STATUS) {
					if (dev_data->link_up != true) {
						dev_data->link_up = true;
						net_eth_carrier_on(
							get_iface(dev_data,
								  vlan_tag));
					}
				} else {
					if (dev_data->link_up != false) {
						dev_data->link_up = false;
						net_eth_carrier_off(
							get_iface(dev_data,
								  vlan_tag));
					}
				}
			}
		}
	}
}

static void eth_isr(const struct device *dev)
{
	struct eth_stm32_hal_dev_data *dev_data;
	ETH_HandleTypeDef *heth;

	__ASSERT_NO_MSG(dev != NULL);

	dev_data = DEV_DATA(dev);

	__ASSERT_NO_MSG(dev_data != NULL);

	heth = &dev_data->heth;

	__ASSERT_NO_MSG(heth != NULL);

	HAL_ETH_IRQHandler(heth);
}
#ifdef CONFIG_SOC_SERIES_STM32H7X
void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth_handle)
{
	__ASSERT_NO_MSG(heth_handle != NULL);

	struct eth_stm32_hal_dev_data *dev_data =
		CONTAINER_OF(heth_handle, struct eth_stm32_hal_dev_data, heth);

	__ASSERT_NO_MSG(dev_data != NULL);

	k_sem_give(&dev_data->tx_int_sem);

}
/* DMA and MAC errors callback only appear in H7 series */
void HAL_ETH_DMAErrorCallback(ETH_HandleTypeDef *heth_handle)
{
	__ASSERT_NO_MSG(heth_handle != NULL);

	LOG_ERR("%s errorcode:%x dmaerror:%x",
		__func__,
		HAL_ETH_GetError(heth_handle),
		HAL_ETH_GetDMAError(heth_handle));

	/* State of eth handle is ERROR in case of unrecoverable error */
	/* unrecoverable (ETH_DMACSR_FBE | ETH_DMACSR_TPS | ETH_DMACSR_RPS) */
	if (HAL_ETH_GetState(heth_handle) == HAL_ETH_STATE_ERROR) {
		LOG_ERR("%s ethernet in error state", __func__);
		/* TODO restart the ETH peripheral to recover */
		return;
	}

	/* Recoverable errors don't put ETH in error state */
	/* ETH_DMACSR_CDE | ETH_DMACSR_ETI | ETH_DMACSR_RWT */
	/* | ETH_DMACSR_RBU | ETH_DMACSR_AIS) */

	/* TODO Check if we were TX transmitting and the unlock semaphore */
	/* To return the error as soon as possible else we'll just wait */
	/* for the timeout */


}
void HAL_ETH_MACErrorCallback(ETH_HandleTypeDef *heth_handle)
{
	__ASSERT_NO_MSG(heth_handle != NULL);

	/* MAC errors dumping */
	LOG_ERR("%s errorcode:%x macerror:%x",
		__func__,
		HAL_ETH_GetError(heth_handle),
		HAL_ETH_GetMACError(heth_handle));

	/* State of eth handle is ERROR in case of unrecoverable error */
	if (HAL_ETH_GetState(heth_handle) == HAL_ETH_STATE_ERROR) {
		LOG_ERR("%s ethernet in error state", __func__);
		/* TODO restart or reconfig ETH peripheral to recover */

		return;
	}
}
#endif /* CONFIG_SOC_SERIES_STM32H7X */

void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth_handle)
{
	__ASSERT_NO_MSG(heth_handle != NULL);

	struct eth_stm32_hal_dev_data *dev_data =
		CONTAINER_OF(heth_handle, struct eth_stm32_hal_dev_data, heth);

	__ASSERT_NO_MSG(dev_data != NULL);

	k_sem_give(&dev_data->rx_int_sem);
}

#if defined(CONFIG_ETH_STM32_HAL_RANDOM_MAC)
static void generate_mac(uint8_t *mac_addr)
{
	gen_random_mac(mac_addr, ST_OUI_B0, ST_OUI_B1, ST_OUI_B2);
}
#endif

static int eth_initialize(const struct device *dev)
{
	struct eth_stm32_hal_dev_data *dev_data;
	const struct eth_stm32_hal_dev_cfg *cfg;
	ETH_HandleTypeDef *heth;
	HAL_StatusTypeDef hal_ret = HAL_OK;
	int ret = 0;

	__ASSERT_NO_MSG(dev != NULL);

	dev_data = DEV_DATA(dev);
	cfg = DEV_CFG(dev);

	__ASSERT_NO_MSG(dev_data != NULL);
	__ASSERT_NO_MSG(cfg != NULL);

	dev_data->clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);

	/* enable clock */
	ret = clock_control_on(dev_data->clock,
		(clock_control_subsys_t *)&cfg->pclken);
	ret |= clock_control_on(dev_data->clock,
		(clock_control_subsys_t *)&cfg->pclken_tx);
	ret |= clock_control_on(dev_data->clock,
		(clock_control_subsys_t *)&cfg->pclken_rx);
#if !defined(CONFIG_SOC_SERIES_STM32H7X)
	ret |= clock_control_on(dev_data->clock,
		(clock_control_subsys_t *)&cfg->pclken_ptp);
#endif /* !defined(CONFIG_SOC_SERIES_STM32H7X) */

	if (ret) {
		LOG_ERR("Failed to enable ethernet clock");
		return -EIO;
	}

	/* configure pinmux */
	ret = stm32_dt_pinctrl_configure(cfg->pinctrl, cfg->pinctrl_len,
					 (uint32_t)dev_data->heth.Instance);
	if (ret < 0) {
		LOG_ERR("Could not configure ethernet pins");
		return ret;
	}

	heth = &dev_data->heth;

#if defined(CONFIG_ETH_STM32_HAL_RANDOM_MAC)
	generate_mac(dev_data->mac_addr);
#endif
#if defined(CONFIG_NET_L2_CANBUS_ETH_TRANSLATOR)
	set_mac_to_translator_addr(dev_data->mac_addr);
#endif

	heth->Init.MACAddr = dev_data->mac_addr;

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	heth->Init.TxDesc = dma_tx_desc_tab;
	heth->Init.RxDesc = dma_rx_desc_tab;
	heth->Init.RxBuffLen = ETH_RX_BUF_SIZE;
#endif /* CONFIG_SOC_SERIES_STM32H7X */

	hal_ret = HAL_ETH_Init(heth);
	if (hal_ret == HAL_TIMEOUT) {
		/* HAL Init time out. This could be linked to */
		/* a recoverable error. Log the issue and continue */
		/* driver initialisation */
		LOG_ERR("HAL_ETH_Init Timed out");
	} else if (hal_ret != HAL_OK) {
		LOG_ERR("HAL_ETH_Init failed: %d", hal_ret);
		return -EINVAL;
	}

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	/* Tx config init: */
	memset(&tx_config, 0, sizeof(ETH_TxPacketConfig));
	tx_config.Attributes = ETH_TX_PACKETS_FEATURES_CSUM |
				ETH_TX_PACKETS_FEATURES_CRCPAD;
	tx_config.ChecksumCtrl = ETH_CHECKSUM_IPHDR_PAYLOAD_INSERT_PHDR_CALC;
	tx_config.CRCPadCtrl = ETH_CRC_PAD_INSERT;
#endif /* CONFIG_SOC_SERIES_STM32H7X */

	dev_data->link_up = false;

	/* Initialize semaphores */
	k_mutex_init(&dev_data->tx_mutex);
	k_sem_init(&dev_data->rx_int_sem, 0, K_SEM_MAX_LIMIT);
#ifdef CONFIG_SOC_SERIES_STM32H7X
	k_sem_init(&dev_data->tx_int_sem, 0, K_SEM_MAX_LIMIT);
#endif /* CONFIG_SOC_SERIES_STM32H7X */

	/* Start interruption-poll thread */
	k_thread_create(&dev_data->rx_thread, dev_data->rx_thread_stack,
			K_KERNEL_STACK_SIZEOF(dev_data->rx_thread_stack),
			rx_thread, (void *) dev, NULL, NULL,
			K_PRIO_COOP(CONFIG_ETH_STM32_HAL_RX_THREAD_PRIO),
			0, K_NO_WAIT);

	k_thread_name_set(&dev_data->rx_thread, "stm_eth");

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	for (uint32_t i = 0; i < ETH_RX_DESC_CNT; i++) {
		hal_ret = HAL_ETH_DescAssignMemory(heth, i, dma_rx_buffer[i],
						   NULL);
		if (hal_ret != HAL_OK) {
			LOG_ERR("HAL_ETH_DescAssignMemory: failed: %d, i: %d",
				hal_ret, i);
			return -EINVAL;
		}
	}

	hal_ret = HAL_ETH_Start_IT(heth);
#else
	HAL_ETH_DMATxDescListInit(heth, dma_tx_desc_tab,
		&dma_tx_buffer[0][0], ETH_TXBUFNB);
	HAL_ETH_DMARxDescListInit(heth, dma_rx_desc_tab,
		&dma_rx_buffer[0][0], ETH_RXBUFNB);

	hal_ret = HAL_ETH_Start(heth);
#endif /* CONFIG_SOC_SERIES_STM32H7X */

	if (hal_ret != HAL_OK) {
		LOG_ERR("HAL_ETH_Start{_IT} failed");
	}

	disable_mcast_filter(heth);

#if defined(CONFIG_NET_L2_CANBUS_ETH_TRANSLATOR)
	enable_canbus_eth_translator_filter(heth, dev_data->mac_addr);
#endif

#if defined(CONFIG_SOC_SERIES_STM32H7X)
	/* Adjust MDC clock range depending on HCLK frequency: */
	HAL_ETH_SetMDIOClockRange(heth);

	/* @TODO: read duplex mode and speed from PHY and set it to ETH */

	ETH_MACConfigTypeDef mac_config;

	HAL_ETH_GetMACConfig(heth, &mac_config);
	mac_config.DuplexMode = ETH_FULLDUPLEX_MODE;
	mac_config.Speed = ETH_SPEED_100M;
	HAL_ETH_SetMACConfig(heth, &mac_config);
#endif /* CONFIG_SOC_SERIES_STM32H7X */

	LOG_DBG("MAC %02x:%02x:%02x:%02x:%02x:%02x",
		dev_data->mac_addr[0], dev_data->mac_addr[1],
		dev_data->mac_addr[2], dev_data->mac_addr[3],
		dev_data->mac_addr[4], dev_data->mac_addr[5]);

	return 0;
}

static void eth_iface_init(struct net_if *iface)
{
	const struct device *dev;
	struct eth_stm32_hal_dev_data *dev_data;
	bool is_first_init = false;

	__ASSERT_NO_MSG(iface != NULL);

	dev = net_if_get_device(iface);
	__ASSERT_NO_MSG(dev != NULL);

	dev_data = DEV_DATA(dev);
	__ASSERT_NO_MSG(dev_data != NULL);

	/* For VLAN, this value is only used to get the correct L2 driver.
	 * The iface pointer in context should contain the main interface
	 * if the VLANs are enabled.
	 */
	if (dev_data->iface == NULL) {
		dev_data->iface = iface;
		is_first_init = true;
	}

	/* Register Ethernet MAC Address with the upper layer */
	net_if_set_link_addr(iface, dev_data->mac_addr,
			     sizeof(dev_data->mac_addr),
			     NET_LINK_ETHERNET);

	ethernet_init(iface);

	net_if_flag_set(iface, NET_IF_NO_AUTO_START);

	if (is_first_init) {
		/* Now that the iface is setup, we are safe to enable IRQs. */
		__ASSERT_NO_MSG(DEV_CFG(dev)->config_func != NULL);
		DEV_CFG(dev)->config_func();
	}
}

static enum ethernet_hw_caps eth_stm32_hal_get_capabilities(const struct device *dev)
{
	ARG_UNUSED(dev);

	return ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T
#if defined(CONFIG_NET_VLAN)
		| ETHERNET_HW_VLAN
#endif
		;
}

static int eth_stm32_hal_set_config(const struct device *dev,
				    enum ethernet_config_type type,
				    const struct ethernet_config *config)
{
	struct eth_stm32_hal_dev_data *dev_data;
	ETH_HandleTypeDef *heth;

	switch (type) {
	case ETHERNET_CONFIG_TYPE_MAC_ADDRESS:
		dev_data = DEV_DATA(dev);
		heth = &dev_data->heth;

		memcpy(dev_data->mac_addr, config->mac_address.addr, 6);
		heth->Instance->MACA0HR = (dev_data->mac_addr[5] << 8) |
			dev_data->mac_addr[4];
		heth->Instance->MACA0LR = (dev_data->mac_addr[3] << 24) |
			(dev_data->mac_addr[2] << 16) |
			(dev_data->mac_addr[1] << 8) |
			dev_data->mac_addr[0];
		net_if_set_link_addr(dev_data->iface, dev_data->mac_addr,
				     sizeof(dev_data->mac_addr),
				     NET_LINK_ETHERNET);
		return 0;
	default:
		break;
	}

	return -ENOTSUP;
}

static const struct ethernet_api eth_api = {
	.iface_api.init = eth_iface_init,

	.get_capabilities = eth_stm32_hal_get_capabilities,
	.set_config = eth_stm32_hal_set_config,
	.send = eth_tx,
};

static void eth0_irq_config(void)
{
	IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), eth_isr,
		    DEVICE_DT_INST_GET(0), 0);
	irq_enable(DT_INST_IRQN(0));
}

static const struct soc_gpio_pinctrl eth0_pins[] = ST_STM32_DT_INST_PINCTRL(0, 0);

static const struct eth_stm32_hal_dev_cfg eth0_config = {
	.config_func = eth0_irq_config,
	.pclken = {.bus = DT_INST_CLOCKS_CELL_BY_NAME(0, stmmaceth, bus),
		   .enr = DT_INST_CLOCKS_CELL_BY_NAME(0, stmmaceth, bits)},
	.pclken_tx = {.bus = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_tx, bus),
		      .enr = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_tx, bits)},
	.pclken_rx = {.bus = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_rx, bus),
		      .enr = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_rx, bits)},
#if !defined(CONFIG_SOC_SERIES_STM32H7X)
	.pclken_ptp = {.bus = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_ptp, bus),
		       .enr = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_ptp, bits)},
#endif /* !CONFIG_SOC_SERIES_STM32H7X */
	.pinctrl = eth0_pins,
	.pinctrl_len = ARRAY_SIZE(eth0_pins),
};

static struct eth_stm32_hal_dev_data eth0_data = {
	.heth = {
		.Instance = (ETH_TypeDef *)DT_INST_REG_ADDR(0),
		.Init = {
#if !defined(CONFIG_SOC_SERIES_STM32H7X)
#if defined(CONFIG_ETH_STM32_AUTO_NEGOTIATION_ENABLE)
			.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE,
#else
			.AutoNegotiation = ETH_AUTONEGOTIATION_DISABLE,
#if defined(CONFIG_ETH_STM32_SPEED_10M)
			.Speed = ETH_SPEED_10M,
#else
			.Speed = ETH_SPEED_100M,
#endif
#if defined(CONFIG_ETH_STM32_MODE_HALFDUPLEX)
			.DuplexMode = ETH_MODE_HALFDUPLEX,
#else
			.DuplexMode = ETH_MODE_FULLDUPLEX,
#endif
#endif /* !CONFIG_ETH_STM32_AUTO_NEGOTIATION_ENABLE */
			.PhyAddress = PHY_ADDR,
			.RxMode = ETH_RXINTERRUPT_MODE,
			.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE,
#endif /* !CONFIG_SOC_SERIES_STM32H7X */
#if defined(CONFIG_ETH_STM32_HAL_MII)
			.MediaInterface = ETH_MEDIA_INTERFACE_MII,
#else
			.MediaInterface = ETH_MEDIA_INTERFACE_RMII,
#endif
		},
	},
	.mac_addr = {
		ST_OUI_B0,
		ST_OUI_B1,
		ST_OUI_B2,
#if !defined(CONFIG_ETH_STM32_HAL_RANDOM_MAC)
		CONFIG_ETH_STM32_HAL_MAC3,
		CONFIG_ETH_STM32_HAL_MAC4,
		CONFIG_ETH_STM32_HAL_MAC5
#endif
	},
};

ETH_NET_DEVICE_DT_INST_DEFINE(0, eth_initialize,
		    NULL, &eth0_data, &eth0_config,
		    CONFIG_ETH_INIT_PRIORITY, &eth_api, ETH_STM32_HAL_MTU);