Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*
 * Copyright (c) 2019 Synopsys.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief ARCv2 ARC CONNECT driver
 *
 */

#include <kernel.h>
#include <arch/cpu.h>
#include <spinlock.h>
#include <kernel_internal.h>

static struct k_spinlock arc_connect_spinlock;

/* Generate an inter-core interrupt to the target core */
void z_arc_connect_ici_generate(uint32_t core)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_INTRPT_GENERATE_IRQ, core);
	}
}

/* Acknowledge the inter-core interrupt raised by core */
void z_arc_connect_ici_ack(uint32_t core)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_INTRPT_GENERATE_ACK, core);
	}
}

/* Read inter-core interrupt status */
uint32_t z_arc_connect_ici_read_status(uint32_t core)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_INTRPT_READ_STATUS, core);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Check the source of inter-core interrupt */
uint32_t z_arc_connect_ici_check_src(void)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_INTRPT_CHECK_SOURCE, 0);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Clear the inter-core interrupt */
void z_arc_connect_ici_clear(void)
{
	uint32_t cpu, c;

	LOCKED(&arc_connect_spinlock) {

		z_arc_connect_cmd(ARC_CONNECT_CMD_INTRPT_CHECK_SOURCE, 0);
		cpu = z_arc_connect_cmd_readback(); /* 1,2,4,8... */
	/*
	 * In rare case, multiple concurrent ICIs sent to same target can
	 * possibly be coalesced by MCIP into 1 asserted IRQ, so @cpu can be
	 * "vectored" (multiple bits sets) as opposed to typical single bit
	 */
		while (cpu) {
			c = find_lsb_set(cpu) - 1;
			z_arc_connect_cmd(
				ARC_CONNECT_CMD_INTRPT_GENERATE_ACK, c);
			cpu &= ~(1U << c);
		}
	}
}

/* Reset the cores in core_mask */
void z_arc_connect_debug_reset(uint32_t core_mask)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd_data(ARC_CONNECT_CMD_DEBUG_RESET,
			0, core_mask);
	}
}

/* Halt the cores in core_mask */
void z_arc_connect_debug_halt(uint32_t core_mask)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd_data(ARC_CONNECT_CMD_DEBUG_HALT,
			0, core_mask);
	}
}

/* Run the cores in core_mask */
void z_arc_connect_debug_run(uint32_t core_mask)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd_data(ARC_CONNECT_CMD_DEBUG_RUN,
			0, core_mask);
	}
}

/* Set core mask */
void z_arc_connect_debug_mask_set(uint32_t core_mask, uint32_t mask)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd_data(ARC_CONNECT_CMD_DEBUG_SET_MASK,
			mask, core_mask);
	}
}

/* Read core mask */
uint32_t z_arc_connect_debug_mask_read(uint32_t core_mask)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd_data(ARC_CONNECT_CMD_DEBUG_READ_MASK,
			0, core_mask);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/*
 * Select cores that should be halted if the core issuing the command is halted
 */
void z_arc_connect_debug_select_set(uint32_t core_mask)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd_data(ARC_CONNECT_CMD_DEBUG_SET_SELECT,
			0, core_mask);
	}
}

/* Read the select value */
uint32_t z_arc_connect_debug_select_read(void)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_DEBUG_READ_SELECT, 0);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Read the status, halt or run of all cores in the system */
uint32_t z_arc_connect_debug_en_read(void)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_DEBUG_READ_EN, 0);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Read the last command sent */
uint32_t z_arc_connect_debug_cmd_read(void)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_DEBUG_READ_CMD, 0);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Read the value of internal MCD_CORE register */
uint32_t z_arc_connect_debug_core_read(void)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_DEBUG_READ_CORE, 0);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Clear global free running counter */
void z_arc_connect_gfrc_clear(void)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_GFRC_CLEAR, 0);
	}
}

/* Read total 64 bits of global free running counter */
uint64_t z_arc_connect_gfrc_read(void)
{
	uint32_t low;
	uint32_t high;
	uint32_t key;

	/*
	 * each core has its own arc connect interface, i.e.,
	 * CMD/READBACK. So several concurrent commands to ARC
	 * connect are of if they are trying to access different
	 * sub-components. For GFRC, HW allows simultaneously accessing to
	 * counters. So an irq lock is enough.
	 */
	key = arch_irq_lock();

	z_arc_connect_cmd(ARC_CONNECT_CMD_GFRC_READ_LO, 0);
	low = z_arc_connect_cmd_readback();

	z_arc_connect_cmd(ARC_CONNECT_CMD_GFRC_READ_HI, 0);
	high = z_arc_connect_cmd_readback();

	arch_irq_unlock(key);

	return (((uint64_t)high) << 32) | low;
}

/* Enable global free running counter */
void z_arc_connect_gfrc_enable(void)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_GFRC_ENABLE, 0);
	}
}

/* Disable global free running counter */
void z_arc_connect_gfrc_disable(void)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_GFRC_DISABLE, 0);
	}
}

/* Disable global free running counter */
void z_arc_connect_gfrc_core_set(uint32_t core_mask)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd_data(ARC_CONNECT_CMD_GFRC_SET_CORE,
			0, core_mask);
	}
}

/* Set the relevant cores to halt global free running counter */
uint32_t z_arc_connect_gfrc_halt_read(void)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_GFRC_READ_HALT, 0);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Read the internal CORE register */
uint32_t z_arc_connect_gfrc_core_read(void)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_GFRC_READ_CORE, 0);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Enable interrupt distribute unit */
void z_arc_connect_idu_enable(void)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_ENABLE, 0);
	}
}

/* Disable interrupt distribute unit */
void z_arc_connect_idu_disable(void)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_DISABLE, 0);
	}
}

/* Read enable status of interrupt distribute unit */
uint32_t z_arc_connect_idu_read_enable(void)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_READ_ENABLE, 0);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/*
 * Set the triggering mode and distribution mode for the specified common
 * interrupt
 */
void z_arc_connect_idu_set_mode(uint32_t irq_num,
	uint16_t trigger_mode, uint16_t distri_mode)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd_data(ARC_CONNECT_CMD_IDU_SET_MODE,
			irq_num, (distri_mode | (trigger_mode << 4)));
	}
}

/* Read the internal MODE register of the specified common interrupt */
uint32_t z_arc_connect_idu_read_mode(uint32_t irq_num)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_READ_MODE, irq_num);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/*
 * Set the target cores to receive the specified common interrupt
 * when it is triggered
 */
void z_arc_connect_idu_set_dest(uint32_t irq_num, uint32_t core_mask)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd_data(ARC_CONNECT_CMD_IDU_SET_DEST,
			irq_num, core_mask);
	}
}

/* Read the internal DEST register of the specified common interrupt */
uint32_t z_arc_connect_idu_read_dest(uint32_t irq_num)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_READ_DEST, irq_num);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Assert the specified common interrupt */
void z_arc_connect_idu_gen_cirq(uint32_t irq_num)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_GEN_CIRQ, irq_num);
	}
}

/* Acknowledge the specified common interrupt */
void z_arc_connect_idu_ack_cirq(uint32_t irq_num)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_ACK_CIRQ, irq_num);
	}
}

/* Read the internal STATUS register of the specified common interrupt */
uint32_t z_arc_connect_idu_check_status(uint32_t irq_num)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_CHECK_STATUS, irq_num);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Read the internal SOURCE register of the specified common interrupt */
uint32_t z_arc_connect_idu_check_source(uint32_t irq_num)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_CHECK_SOURCE, irq_num);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/* Mask or unmask the specified common interrupt */
void z_arc_connect_idu_set_mask(uint32_t irq_num, uint32_t mask)
{
	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd_data(ARC_CONNECT_CMD_IDU_SET_MASK,
			irq_num, mask);
	}
}

/* Read the internal MASK register of the specified common interrupt */
uint32_t z_arc_connect_idu_read_mask(uint32_t irq_num)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_READ_MASK, irq_num);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;
}

/*
 * Check if it is the first-acknowledging core to the common interrupt
 * if IDU is programmed in the first-acknowledged mode
 */
uint32_t z_arc_connect_idu_check_first(uint32_t irq_num)
{
	uint32_t ret = 0;

	LOCKED(&arc_connect_spinlock) {
		z_arc_connect_cmd(ARC_CONNECT_CMD_IDU_CHECK_FIRST, irq_num);
		ret = z_arc_connect_cmd_readback();
	}

	return ret;

}