Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
/*
 * Copyright (c) 2020 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Routines for managing virtual address spaces
 */

#include <stdint.h>
#include <kernel_arch_interface.h>
#include <spinlock.h>
#include <mmu.h>
#include <init.h>
#include <kernel_internal.h>
#include <syscall_handler.h>
#include <toolchain.h>
#include <linker/linker-defs.h>
#include <sys/bitarray.h>
#include <timing/timing.h>
#include <logging/log.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);

/*
 * General terminology:
 * - A page frame is a page-sized physical memory region in RAM. It is a
 *   container where a data page may be placed. It is always referred to by
 *   physical address. We have a convention of using uintptr_t for physical
 *   addresses. We instantiate a struct z_page_frame to store metadata for
 *   every page frame.
 *
 * - A data page is a page-sized region of data. It may exist in a page frame,
 *   or be paged out to some backing store. Its location can always be looked
 *   up in the CPU's page tables (or equivalent) by virtual address.
 *   The data type will always be void * or in some cases uint8_t * when we
 *   want to do pointer arithmetic.
 */

/* Spinlock to protect any globals in this file and serialize page table
 * updates in arch code
 */
struct k_spinlock z_mm_lock;

/*
 * General page frame management
 */

/* Database of all RAM page frames */
struct z_page_frame z_page_frames[Z_NUM_PAGE_FRAMES];

#if __ASSERT_ON
/* Indicator that z_page_frames has been initialized, many of these APIs do
 * not work before POST_KERNEL
 */
static bool page_frames_initialized;
#endif

/* Add colors to page table dumps to indicate mapping type */
#define COLOR_PAGE_FRAMES	1

#if COLOR_PAGE_FRAMES
#define ANSI_DEFAULT "\x1B[0m"
#define ANSI_RED     "\x1B[1;31m"
#define ANSI_GREEN   "\x1B[1;32m"
#define ANSI_YELLOW  "\x1B[1;33m"
#define ANSI_BLUE    "\x1B[1;34m"
#define ANSI_MAGENTA "\x1B[1;35m"
#define ANSI_CYAN    "\x1B[1;36m"
#define ANSI_GREY    "\x1B[1;90m"

#define COLOR(x)	printk(_CONCAT(ANSI_, x))
#else
#define COLOR(x)	do { } while (0)
#endif

static void page_frame_dump(struct z_page_frame *pf)
{
	if (z_page_frame_is_reserved(pf)) {
		COLOR(CYAN);
		printk("R");
	} else if (z_page_frame_is_busy(pf)) {
		COLOR(MAGENTA);
		printk("B");
	} else if (z_page_frame_is_pinned(pf)) {
		COLOR(YELLOW);
		printk("P");
	} else if (z_page_frame_is_available(pf)) {
		COLOR(GREY);
		printk(".");
	} else if (z_page_frame_is_mapped(pf)) {
		COLOR(DEFAULT);
		printk("M");
	} else {
		COLOR(RED);
		printk("?");
	}
}

void z_page_frames_dump(void)
{
	int column = 0;

	__ASSERT(page_frames_initialized, "%s called too early", __func__);
	printk("Physical memory from 0x%lx to 0x%lx\n",
	       Z_PHYS_RAM_START, Z_PHYS_RAM_END);

	for (int i = 0; i < Z_NUM_PAGE_FRAMES; i++) {
		struct z_page_frame *pf = &z_page_frames[i];

		page_frame_dump(pf);

		column++;
		if (column == 64) {
			column = 0;
			printk("\n");
		}
	}

	COLOR(DEFAULT);
	if (column != 0) {
		printk("\n");
	}
}

#define VIRT_FOREACH(_base, _size, _pos) \
	for (_pos = _base; \
	     _pos < ((uint8_t *)_base + _size); _pos += CONFIG_MMU_PAGE_SIZE)

#define PHYS_FOREACH(_base, _size, _pos) \
	for (_pos = _base; \
	     _pos < ((uintptr_t)_base + _size); _pos += CONFIG_MMU_PAGE_SIZE)


/*
 * Virtual address space management
 *
 * Call all of these functions with z_mm_lock held.
 *
 * Overall virtual memory map: When the kernel starts, it resides in
 * virtual memory in the region Z_KERNEL_VIRT_START to
 * Z_KERNEL_VIRT_END. Unused virtual memory past this, up to the limit
 * noted by CONFIG_KERNEL_VM_SIZE may be used for runtime memory mappings.
 *
 * If CONFIG_ARCH_MAPS_ALL_RAM is set, we do not just map the kernel image,
 * but have a mapping for all RAM in place. This is for special architectural
 * purposes and does not otherwise affect page frame accounting or flags;
 * the only guarantee is that such RAM mapping outside of the Zephyr image
 * won't be disturbed by subsequent memory mapping calls.
 *
 * +--------------+ <- Z_VIRT_RAM_START
 * | Undefined VM | <- May contain ancillary regions like x86_64's locore
 * +--------------+ <- Z_KERNEL_VIRT_START (often == Z_VIRT_RAM_START)
 * | Mapping for  |
 * | main kernel  |
 * | image        |
 * |		  |
 * |		  |
 * +--------------+ <- Z_FREE_VM_START
 * |              |
 * | Unused,      |
 * | Available VM |
 * |              |
 * |..............| <- mapping_pos (grows downward as more mappings are made)
 * | Mapping      |
 * +--------------+
 * | Mapping      |
 * +--------------+
 * | ...          |
 * +--------------+
 * | Mapping      |
 * +--------------+ <- mappings start here
 * | Reserved     | <- special purpose virtual page(s) of size Z_VM_RESERVED
 * +--------------+ <- Z_VIRT_RAM_END
 */

/* Bitmap of virtual addresses where one bit corresponds to one page.
 * This is being used for virt_region_alloc() to figure out which
 * region of virtual addresses can be used for memory mapping.
 *
 * Note that bit #0 is the highest address so that allocation is
 * done in reverse from highest address.
 */
SYS_BITARRAY_DEFINE(virt_region_bitmap,
		    CONFIG_KERNEL_VM_SIZE / CONFIG_MMU_PAGE_SIZE);

static bool virt_region_inited;

#define Z_VIRT_REGION_START_ADDR	Z_FREE_VM_START
#define Z_VIRT_REGION_END_ADDR		(Z_VIRT_RAM_END - Z_VM_RESERVED)

static inline uintptr_t virt_from_bitmap_offset(size_t offset, size_t size)
{
	return POINTER_TO_UINT(Z_VIRT_RAM_END)
	       - (offset * CONFIG_MMU_PAGE_SIZE) - size;
}

static inline size_t virt_to_bitmap_offset(void *vaddr, size_t size)
{
	return (POINTER_TO_UINT(Z_VIRT_RAM_END)
		- POINTER_TO_UINT(vaddr) - size) / CONFIG_MMU_PAGE_SIZE;
}

static void virt_region_init(void)
{
	size_t offset, num_bits;

	/* There are regions where we should never map via
	 * k_mem_map() and z_phys_map(). Mark them as
	 * already allocated so they will never be used.
	 */

	if (Z_VM_RESERVED > 0) {
		/* Mark reserved region at end of virtual address space */
		num_bits = Z_VM_RESERVED / CONFIG_MMU_PAGE_SIZE;
		(void)sys_bitarray_set_region(&virt_region_bitmap,
					      num_bits, 0);
	}

	/* Mark all bits up to Z_FREE_VM_START as allocated */
	num_bits = POINTER_TO_UINT(Z_FREE_VM_START)
		   - POINTER_TO_UINT(Z_VIRT_RAM_START);
	offset = virt_to_bitmap_offset(Z_VIRT_RAM_START, num_bits);
	num_bits /= CONFIG_MMU_PAGE_SIZE;
	(void)sys_bitarray_set_region(&virt_region_bitmap,
				      num_bits, offset);

	virt_region_inited = true;
}

static void *virt_region_alloc(size_t size)
{
	uintptr_t dest_addr;
	size_t offset;
	size_t num_bits;
	int ret;

	if (unlikely(!virt_region_inited)) {
		virt_region_init();
	}

	num_bits = size / CONFIG_MMU_PAGE_SIZE;
	ret = sys_bitarray_alloc(&virt_region_bitmap, num_bits, &offset);
	if (ret != 0) {
		LOG_ERR("insufficient virtual address space (requested %zu)",
			size);
		return NULL;
	}

	/* Remember that bit #0 in bitmap corresponds to the highest
	 * virtual address. So here we need to go downwards (backwards?)
	 * to get the starting address of the allocated region.
	 */
	dest_addr = virt_from_bitmap_offset(offset, size);

	/* Need to make sure this does not step into kernel memory */
	if (dest_addr < POINTER_TO_UINT(Z_VIRT_REGION_START_ADDR)) {
		(void)sys_bitarray_free(&virt_region_bitmap, size, offset);
		return NULL;
	}

	return UINT_TO_POINTER(dest_addr);
}

static void virt_region_free(void *vaddr, size_t size)
{
	size_t offset, num_bits;
	uint8_t *vaddr_u8 = (uint8_t *)vaddr;

	if (unlikely(!virt_region_inited)) {
		virt_region_init();
	}

	__ASSERT((vaddr_u8 >= Z_VIRT_REGION_START_ADDR)
		 && ((vaddr_u8 + size) < Z_VIRT_REGION_END_ADDR),
		 "invalid virtual address region %p (%zu)", vaddr_u8, size);
	if (!((vaddr_u8 >= Z_VIRT_REGION_START_ADDR)
	      && ((vaddr_u8 + size) < Z_VIRT_REGION_END_ADDR))) {
		return;
	}

	offset = virt_to_bitmap_offset(vaddr, size);
	num_bits = size / CONFIG_MMU_PAGE_SIZE;
	(void)sys_bitarray_free(&virt_region_bitmap, num_bits, offset);
}

/*
 * Free page frames management
 *
 * Call all of these functions with z_mm_lock held.
 */

/* Linked list of unused and available page frames.
 *
 * TODO: This is very simple and treats all free page frames as being equal.
 * However, there are use-cases to consolidate free pages such that entire
 * SRAM banks can be switched off to save power, and so obtaining free pages
 * may require a more complex ontology which prefers page frames in RAM banks
 * which are still active.
 *
 * This implies in the future there may be multiple slists managing physical
 * pages. Each page frame will still just have one snode link.
 */
static sys_slist_t free_page_frame_list;

/* Number of unused and available free page frames */
size_t z_free_page_count;

#define PF_ASSERT(pf, expr, fmt, ...) \
	__ASSERT(expr, "page frame 0x%lx: " fmt, z_page_frame_to_phys(pf), \
		 ##__VA_ARGS__)

/* Get an unused page frame. don't care which one, or NULL if there are none */
static struct z_page_frame *free_page_frame_list_get(void)
{
	sys_snode_t *node;
	struct z_page_frame *pf = NULL;

	node = sys_slist_get(&free_page_frame_list);
	if (node != NULL) {
		z_free_page_count--;
		pf = CONTAINER_OF(node, struct z_page_frame, node);
		PF_ASSERT(pf, z_page_frame_is_available(pf),
			 "unavailable but somehow on free list");
	}

	return pf;
}

/* Release a page frame back into the list of free pages */
static void free_page_frame_list_put(struct z_page_frame *pf)
{
	PF_ASSERT(pf, z_page_frame_is_available(pf),
		 "unavailable page put on free list");
	sys_slist_append(&free_page_frame_list, &pf->node);
	z_free_page_count++;
}

static void free_page_frame_list_init(void)
{
	sys_slist_init(&free_page_frame_list);
}

static void page_frame_free_locked(struct z_page_frame *pf)
{
	pf->flags = 0;
	free_page_frame_list_put(pf);
}

/*
 * Memory Mapping
 */

/* Called after the frame is mapped in the arch layer, to update our
 * local ontology (and do some assertions while we're at it)
 */
static void frame_mapped_set(struct z_page_frame *pf, void *addr)
{
	PF_ASSERT(pf, !z_page_frame_is_reserved(pf),
		  "attempted to map a reserved page frame");

	/* We do allow multiple mappings for pinned page frames
	 * since we will never need to reverse map them.
	 * This is uncommon, use-cases are for things like the
	 * Zephyr equivalent of VSDOs
	 */
	PF_ASSERT(pf, !z_page_frame_is_mapped(pf) || z_page_frame_is_pinned(pf),
		 "non-pinned and already mapped to %p", pf->addr);

	pf->flags |= Z_PAGE_FRAME_MAPPED;
	pf->addr = addr;
}

/* Go through page frames to find the physical address mapped
 * by a virtual address.
 *
 * @param[in]  virt Virtual Address
 * @param[out] phys Physical address mapped to the input virtual address
 *                  if such mapping exists.
 *
 * @retval 0 if mapping is found and valid
 * @retval -EFAULT if virtual address is not mapped
 */
static int virt_to_page_frame(void *virt, uintptr_t *phys)
{
	uintptr_t paddr;
	struct z_page_frame *pf;
	int ret = -EFAULT;

	Z_PAGE_FRAME_FOREACH(paddr, pf) {
		if (z_page_frame_is_mapped(pf)) {
			if (virt == pf->addr) {
				ret = 0;
				*phys = z_page_frame_to_phys(pf);
				break;
			}
		}
	}

	return ret;
}
__weak FUNC_ALIAS(virt_to_page_frame, arch_page_phys_get, int);

#ifdef CONFIG_DEMAND_PAGING
static int page_frame_prepare_locked(struct z_page_frame *pf, bool *dirty_ptr,
				     bool page_in, uintptr_t *location_ptr);

static inline void do_backing_store_page_in(uintptr_t location);
static inline void do_backing_store_page_out(uintptr_t location);
#endif /* CONFIG_DEMAND_PAGING */

/* Allocate a free page frame, and map it to a specified virtual address
 *
 * TODO: Add optional support for copy-on-write mappings to a zero page instead
 * of allocating, in which case page frames will be allocated lazily as
 * the mappings to the zero page get touched. This will avoid expensive
 * page-ins as memory is mapped and physical RAM or backing store storage will
 * not be used if the mapped memory is unused. The cost is an empty physical
 * page of zeroes.
 */
static int map_anon_page(void *addr, uint32_t flags)
{
	struct z_page_frame *pf;
	uintptr_t phys;
	bool lock = (flags & K_MEM_MAP_LOCK) != 0U;
	bool uninit = (flags & K_MEM_MAP_UNINIT) != 0U;

	pf = free_page_frame_list_get();
	if (pf == NULL) {
#ifdef CONFIG_DEMAND_PAGING
		uintptr_t location;
		bool dirty;
		int ret;

		pf = k_mem_paging_eviction_select(&dirty);
		__ASSERT(pf != NULL, "failed to get a page frame");
		LOG_DBG("evicting %p at 0x%lx", pf->addr,
			z_page_frame_to_phys(pf));
		ret = page_frame_prepare_locked(pf, &dirty, false, &location);
		if (ret != 0) {
			return -ENOMEM;
		}
		if (dirty) {
			do_backing_store_page_out(location);
		}
		pf->flags = 0;
#else
		return -ENOMEM;
#endif /* CONFIG_DEMAND_PAGING */
	}

	phys = z_page_frame_to_phys(pf);
	arch_mem_map(addr, phys, CONFIG_MMU_PAGE_SIZE, flags | K_MEM_CACHE_WB);

	if (lock) {
		pf->flags |= Z_PAGE_FRAME_PINNED;
	}
	frame_mapped_set(pf, addr);

	LOG_DBG("memory mapping anon page %p -> 0x%lx", addr, phys);

	if (!uninit) {
		/* If we later implement mappings to a copy-on-write
		 * zero page, won't need this step
		 */
		memset(addr, 0, CONFIG_MMU_PAGE_SIZE);
	}

	return 0;
}

void *k_mem_map(size_t size, uint32_t flags)
{
	uint8_t *dst;
	size_t total_size;
	int ret;
	k_spinlock_key_t key;
	uint8_t *pos;

	__ASSERT(!(((flags & K_MEM_PERM_USER) != 0U) &&
		   ((flags & K_MEM_MAP_UNINIT) != 0U)),
		 "user access to anonymous uninitialized pages is forbidden");
	__ASSERT(size % CONFIG_MMU_PAGE_SIZE == 0U,
		 "unaligned size %zu passed to %s", size, __func__);
	__ASSERT(size != 0, "zero sized memory mapping");
	__ASSERT(page_frames_initialized, "%s called too early", __func__);
	__ASSERT((flags & K_MEM_CACHE_MASK) == 0U,
		 "%s does not support explicit cache settings", __func__);

	key = k_spin_lock(&z_mm_lock);

	/* Need extra for the guard pages (before and after) which we
	 * won't map.
	 */
	total_size = size + CONFIG_MMU_PAGE_SIZE * 2;

	dst = virt_region_alloc(total_size);
	if (dst == NULL) {
		/* Address space has no free region */
		goto out;
	}

	/* Unmap both guard pages to make sure accessing them
	 * will generate fault.
	 */
	arch_mem_unmap(dst, CONFIG_MMU_PAGE_SIZE);
	arch_mem_unmap(dst + CONFIG_MMU_PAGE_SIZE + size,
		       CONFIG_MMU_PAGE_SIZE);

	/* Skip over the "before" guard page in returned address. */
	dst += CONFIG_MMU_PAGE_SIZE;

	VIRT_FOREACH(dst, size, pos) {
		ret = map_anon_page(pos, flags);

		if (ret != 0) {
			/* TODO: call k_mem_unmap(dst, pos - dst)  when
			 * implmented in #28990 and release any guard virtual
			 * page as well.
			 */
			dst = NULL;
			goto out;
		}
	}
out:
	k_spin_unlock(&z_mm_lock, key);
	return dst;
}

void k_mem_unmap(void *addr, size_t size)
{
	uintptr_t phys;
	uint8_t *pos;
	struct z_page_frame *pf;
	k_spinlock_key_t key;
	size_t total_size;
	int ret;

	/* Need space for the "before" guard page */
	__ASSERT_NO_MSG(POINTER_TO_UINT(addr) >= CONFIG_MMU_PAGE_SIZE);

	/* Make sure address range is still valid after accounting
	 * for two guard pages.
	 */
	pos = (uint8_t *)addr - CONFIG_MMU_PAGE_SIZE;
	z_mem_assert_virtual_region(pos, size + (CONFIG_MMU_PAGE_SIZE * 2));

	key = k_spin_lock(&z_mm_lock);

	/* Check if both guard pages are unmapped.
	 * Bail if not, as this is probably a region not mapped
	 * using k_mem_map().
	 */
	pos = addr;
	ret = arch_page_phys_get(pos - CONFIG_MMU_PAGE_SIZE, NULL);
	if (ret == 0) {
		__ASSERT(ret == 0,
			 "%s: cannot find preceding guard page for (%p, %zu)",
			 __func__, addr, size);
		goto out;
	}

	ret = arch_page_phys_get(pos + size, NULL);
	if (ret == 0) {
		__ASSERT(ret == 0,
			 "%s: cannot find succeeding guard page for (%p, %zu)",
			 __func__, addr, size);
		goto out;
	}

	VIRT_FOREACH(addr, size, pos) {
		ret = arch_page_phys_get(pos, &phys);

		__ASSERT(ret == 0,
			 "%s: cannot unmap an unmapped address %p",
			 __func__, pos);
		if (ret != 0) {
			/* Found an address not mapped. Do not continue. */
			goto out;
		}

		__ASSERT(z_is_page_frame(phys),
			 "%s: 0x%lx is not a page frame", __func__, phys);
		if (!z_is_page_frame(phys)) {
			/* Physical address has no corresponding page frame
			 * description in the page frame array.
			 * This should not happen. Do not continue.
			 */
			goto out;
		}

		/* Grab the corresponding page frame from physical address */
		pf = z_phys_to_page_frame(phys);

		__ASSERT(z_page_frame_is_mapped(pf),
			 "%s: 0x%lx is not a mapped page frame", __func__, phys);
		if (!z_page_frame_is_mapped(pf)) {
			/* Page frame is not marked mapped.
			 * This should not happen. Do not continue.
			 */
			goto out;
		}

		arch_mem_unmap(pos, CONFIG_MMU_PAGE_SIZE);

		/* Put the page frame back into free list */
		page_frame_free_locked(pf);
	}

	/* There are guard pages just before and after the mapped
	 * region. So we also need to free them from the bitmap.
	 */
	pos = (uint8_t *)addr - CONFIG_MMU_PAGE_SIZE;
	total_size = size + CONFIG_MMU_PAGE_SIZE * 2;
	virt_region_free(pos, total_size);

out:
	k_spin_unlock(&z_mm_lock, key);
}

size_t k_mem_free_get(void)
{
	size_t ret;
	k_spinlock_key_t key;

	__ASSERT(page_frames_initialized, "%s called too early", __func__);

	key = k_spin_lock(&z_mm_lock);
#ifdef CONFIG_DEMAND_PAGING
	if (z_free_page_count > CONFIG_DEMAND_PAGING_PAGE_FRAMES_RESERVE) {
		ret = z_free_page_count - CONFIG_DEMAND_PAGING_PAGE_FRAMES_RESERVE;
	} else {
		ret = 0;
	}
#else
	ret = z_free_page_count;
#endif
	k_spin_unlock(&z_mm_lock, key);

	return ret * (size_t)CONFIG_MMU_PAGE_SIZE;
}

/* This may be called from arch early boot code before z_cstart() is invoked.
 * Data will be copied and BSS zeroed, but this must not rely on any
 * initialization functions being called prior to work correctly.
 */
void z_phys_map(uint8_t **virt_ptr, uintptr_t phys, size_t size, uint32_t flags)
{
	uintptr_t aligned_phys, addr_offset;
	size_t aligned_size;
	k_spinlock_key_t key;
	uint8_t *dest_addr;

	addr_offset = k_mem_region_align(&aligned_phys, &aligned_size,
					 phys, size,
					 CONFIG_MMU_PAGE_SIZE);
	__ASSERT(aligned_size != 0U, "0-length mapping at 0x%lx", aligned_phys);
	__ASSERT(aligned_phys < (aligned_phys + (aligned_size - 1)),
		 "wraparound for physical address 0x%lx (size %zu)",
		 aligned_phys, aligned_size);

	key = k_spin_lock(&z_mm_lock);
	/* Obtain an appropriately sized chunk of virtual memory */
	dest_addr = virt_region_alloc(aligned_size);
	if (!dest_addr) {
		goto fail;
	}

	/* If this fails there's something amiss with virt_region_get */
	__ASSERT((uintptr_t)dest_addr <
		 ((uintptr_t)dest_addr + (size - 1)),
		 "wraparound for virtual address %p (size %zu)",
		 dest_addr, size);

	LOG_DBG("arch_mem_map(%p, 0x%lx, %zu, %x) offset %lu", dest_addr,
		aligned_phys, aligned_size, flags, addr_offset);

	arch_mem_map(dest_addr, aligned_phys, aligned_size, flags);
	k_spin_unlock(&z_mm_lock, key);

	*virt_ptr = dest_addr + addr_offset;
	return;
fail:
	/* May re-visit this in the future, but for now running out of
	 * virtual address space or failing the arch_mem_map() call is
	 * an unrecoverable situation.
	 *
	 * Other problems not related to resource exhaustion we leave as
	 * assertions since they are clearly programming mistakes.
	 */
	LOG_ERR("memory mapping 0x%lx (size %zu, flags 0x%x) failed",
		phys, size, flags);
	k_panic();
}

void z_phys_unmap(uint8_t *virt, size_t size)
{
	uintptr_t aligned_virt, addr_offset;
	size_t aligned_size;
	k_spinlock_key_t key;

	addr_offset = k_mem_region_align(&aligned_virt, &aligned_size,
					 POINTER_TO_UINT(virt), size,
					 CONFIG_MMU_PAGE_SIZE);
	__ASSERT(aligned_size != 0U, "0-length mapping at 0x%lx", aligned_virt);
	__ASSERT(aligned_virt < (aligned_virt + (aligned_size - 1)),
		 "wraparound for virtual address 0x%lx (size %zu)",
		 aligned_virt, aligned_size);

	key = k_spin_lock(&z_mm_lock);
	arch_mem_unmap(UINT_TO_POINTER(aligned_virt), aligned_size);
	virt_region_free(virt, size);
	k_spin_unlock(&z_mm_lock, key);
}

/*
 * Miscellaneous
 */

size_t k_mem_region_align(uintptr_t *aligned_addr, size_t *aligned_size,
			  uintptr_t addr, size_t size, size_t align)
{
	size_t addr_offset;

	/* The actual mapped region must be page-aligned. Round down the
	 * physical address and pad the region size appropriately
	 */
	*aligned_addr = ROUND_DOWN(addr, align);
	addr_offset = addr - *aligned_addr;
	*aligned_size = ROUND_UP(size + addr_offset, align);

	return addr_offset;
}

#if defined(CONFIG_LINKER_USE_BOOT_SECTION) || defined(CONFIG_LINKER_USE_PINNED_SECTION)
static void mark_linker_section_pinned(void *start_addr, void *end_addr,
				       bool pin)
{
	struct z_page_frame *pf;
	uint8_t *addr;

	uintptr_t pinned_start = ROUND_DOWN(POINTER_TO_UINT(start_addr),
					    CONFIG_MMU_PAGE_SIZE);
	uintptr_t pinned_end = ROUND_UP(POINTER_TO_UINT(end_addr),
					CONFIG_MMU_PAGE_SIZE);
	size_t pinned_size = pinned_end - pinned_start;

	VIRT_FOREACH(UINT_TO_POINTER(pinned_start), pinned_size, addr)
	{
		pf = z_phys_to_page_frame(Z_BOOT_VIRT_TO_PHYS(addr));
		frame_mapped_set(pf, addr);

		if (pin) {
			pf->flags |= Z_PAGE_FRAME_PINNED;
		} else {
			pf->flags &= ~Z_PAGE_FRAME_PINNED;
		}
	}
}
#endif /* CONFIG_LINKER_USE_BOOT_SECTION) || CONFIG_LINKER_USE_PINNED_SECTION */

void z_mem_manage_init(void)
{
	uintptr_t phys;
	uint8_t *addr;
	struct z_page_frame *pf;
	k_spinlock_key_t key = k_spin_lock(&z_mm_lock);

	free_page_frame_list_init();

	ARG_UNUSED(addr);

#ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES
	/* If some page frames are unavailable for use as memory, arch
	 * code will mark Z_PAGE_FRAME_RESERVED in their flags
	 */
	arch_reserved_pages_update();
#endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */

#ifdef CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT
	/* All pages composing the Zephyr image are mapped at boot in a
	 * predictable way. This can change at runtime.
	 */
	VIRT_FOREACH(Z_KERNEL_VIRT_START, Z_KERNEL_VIRT_SIZE, addr)
	{
		pf = z_phys_to_page_frame(Z_BOOT_VIRT_TO_PHYS(addr));
		frame_mapped_set(pf, addr);

		/* TODO: for now we pin the whole Zephyr image. Demand paging
		 * currently tested with anonymously-mapped pages which are not
		 * pinned.
		 *
		 * We will need to setup linker regions for a subset of kernel
		 * code/data pages which are pinned in memory and
		 * may not be evicted. This will contain critical CPU data
		 * structures, and any code used to perform page fault
		 * handling, page-ins, etc.
		 */
		pf->flags |= Z_PAGE_FRAME_PINNED;
	}
#endif /* CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */

#ifdef CONFIG_LINKER_USE_BOOT_SECTION
	/* Pin the boot section to prevent it from being swapped out during
	 * boot process. Will be un-pinned once boot process completes.
	 */
	mark_linker_section_pinned(lnkr_boot_start, lnkr_boot_end, true);
#endif

#ifdef CONFIG_LINKER_USE_PINNED_SECTION
	/* Pin the page frames correspondng to the pinned symbols */
	mark_linker_section_pinned(lnkr_pinned_start, lnkr_pinned_end, true);
#endif

	/* Any remaining pages that aren't mapped, reserved, or pinned get
	 * added to the free pages list
	 */
	Z_PAGE_FRAME_FOREACH(phys, pf) {
		if (z_page_frame_is_available(pf)) {
			free_page_frame_list_put(pf);
		}
	}
	LOG_DBG("free page frames: %zu", z_free_page_count);

#ifdef CONFIG_DEMAND_PAGING
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
	z_paging_histogram_init();
#endif
	k_mem_paging_backing_store_init();
	k_mem_paging_eviction_init();
#endif
#if __ASSERT_ON
	page_frames_initialized = true;
#endif
	k_spin_unlock(&z_mm_lock, key);

#ifndef CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT
	/* If BSS section is not present in memory at boot,
	 * it would not have been cleared. This needs to be
	 * done now since paging mechanism has been initialized
	 * and the BSS pages can be brought into physical
	 * memory to be cleared.
	 */
	z_bss_zero();
#endif
}

void z_mem_manage_boot_finish(void)
{
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
	/* At the end of boot process, unpin the boot sections
	 * as they don't need to be in memory all the time anymore.
	 */
	mark_linker_section_pinned(lnkr_boot_start, lnkr_boot_end, false);
#endif
}

#ifdef CONFIG_DEMAND_PAGING

#ifdef CONFIG_DEMAND_PAGING_STATS
struct k_mem_paging_stats_t paging_stats;
extern struct k_mem_paging_histogram_t z_paging_histogram_eviction;
extern struct k_mem_paging_histogram_t z_paging_histogram_backing_store_page_in;
extern struct k_mem_paging_histogram_t z_paging_histogram_backing_store_page_out;
#endif

static inline void do_backing_store_page_in(uintptr_t location)
{
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
	uint32_t time_diff;

#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
	timing_t time_start, time_end;

	time_start = timing_counter_get();
#else
	uint32_t time_start;

	time_start = k_cycle_get_32();
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */

	k_mem_paging_backing_store_page_in(location);

#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
	time_end = timing_counter_get();
	time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end);
#else
	time_diff = k_cycle_get_32() - time_start;
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */

	z_paging_histogram_inc(&z_paging_histogram_backing_store_page_in,
			       time_diff);
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
}

static inline void do_backing_store_page_out(uintptr_t location)
{
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
	uint32_t time_diff;

#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
	timing_t time_start, time_end;

	time_start = timing_counter_get();
#else
	uint32_t time_start;

	time_start = k_cycle_get_32();
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */

	k_mem_paging_backing_store_page_out(location);

#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
	time_end = timing_counter_get();
	time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end);
#else
	time_diff = k_cycle_get_32() - time_start;
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */

	z_paging_histogram_inc(&z_paging_histogram_backing_store_page_out,
			       time_diff);
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
}

/* Current implementation relies on interrupt locking to any prevent page table
 * access, which falls over if other CPUs are active. Addressing this is not
 * as simple as using spinlocks as regular memory reads/writes constitute
 * "access" in this sense.
 *
 * Current needs for demand paging are on uniprocessor systems.
 */
BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP));

static void virt_region_foreach(void *addr, size_t size,
				void (*func)(void *))
{
	z_mem_assert_virtual_region(addr, size);

	for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) {
		func((uint8_t *)addr + offset);
	}
}

/*
 * Perform some preparatory steps before paging out. The provided page frame
 * must be evicted to the backing store immediately after this is called
 * with a call to k_mem_paging_backing_store_page_out() if it contains
 * a data page.
 *
 * - Map page frame to scratch area if requested. This always is true if we're
 *   doing a page fault, but is only set on manual evictions if the page is
 *   dirty.
 * - If mapped:
 *    - obtain backing store location and populate location parameter
 *    - Update page tables with location
 * - Mark page frame as busy
 *
 * Returns -ENOMEM if the backing store is full
 */
static int page_frame_prepare_locked(struct z_page_frame *pf, bool *dirty_ptr,
				     bool page_fault, uintptr_t *location_ptr)
{
	uintptr_t phys;
	int ret;
	bool dirty = *dirty_ptr;

	phys = z_page_frame_to_phys(pf);
	__ASSERT(!z_page_frame_is_pinned(pf), "page frame 0x%lx is pinned",
		 phys);

	/* If the backing store doesn't have a copy of the page, even if it
	 * wasn't modified, treat as dirty. This can happen for a few
	 * reasons:
	 * 1) Page has never been swapped out before, and the backing store
	 *    wasn't pre-populated with this data page.
	 * 2) Page was swapped out before, but the page contents were not
	 *    preserved after swapping back in.
	 * 3) Page contents were preserved when swapped back in, but were later
	 *    evicted from the backing store to make room for other evicted
	 *    pages.
	 */
	if (z_page_frame_is_mapped(pf)) {
		dirty = dirty || !z_page_frame_is_backed(pf);
	}

	if (dirty || page_fault) {
		arch_mem_scratch(phys);
	}

	if (z_page_frame_is_mapped(pf)) {
		ret = k_mem_paging_backing_store_location_get(pf, location_ptr,
							      page_fault);
		if (ret != 0) {
			LOG_ERR("out of backing store memory");
			return -ENOMEM;
		}
		arch_mem_page_out(pf->addr, *location_ptr);
	} else {
		/* Shouldn't happen unless this function is mis-used */
		__ASSERT(!dirty, "un-mapped page determined to be dirty");
	}
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	/* Mark as busy so that z_page_frame_is_evictable() returns false */
	__ASSERT(!z_page_frame_is_busy(pf), "page frame 0x%lx is already busy",
		 phys);
	pf->flags |= Z_PAGE_FRAME_BUSY;
#endif
	/* Update dirty parameter, since we set to true if it wasn't backed
	 * even if otherwise clean
	 */
	*dirty_ptr = dirty;

	return 0;
}

static int do_mem_evict(void *addr)
{
	bool dirty;
	struct z_page_frame *pf;
	uintptr_t location;
	int key, ret;
	uintptr_t flags, phys;

#if CONFIG_DEMAND_PAGING_ALLOW_IRQ
	__ASSERT(!k_is_in_isr(),
		 "%s is unavailable in ISRs with CONFIG_DEMAND_PAGING_ALLOW_IRQ",
		 __func__);
	k_sched_lock();
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
	key = irq_lock();
	flags = arch_page_info_get(addr, &phys, false);
	__ASSERT((flags & ARCH_DATA_PAGE_NOT_MAPPED) == 0,
		 "address %p isn't mapped", addr);
	if ((flags & ARCH_DATA_PAGE_LOADED) == 0) {
		/* Un-mapped or already evicted. Nothing to do */
		ret = 0;
		goto out;
	}

	dirty = (flags & ARCH_DATA_PAGE_DIRTY) != 0;
	pf = z_phys_to_page_frame(phys);
	__ASSERT(pf->addr == addr, "page frame address mismatch");
	ret = page_frame_prepare_locked(pf, &dirty, false, &location);
	if (ret != 0) {
		goto out;
	}

	__ASSERT(ret == 0, "failed to prepare page frame");
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	irq_unlock(key);
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
	if (dirty) {
		do_backing_store_page_out(location);
	}
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	key = irq_lock();
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
	page_frame_free_locked(pf);
out:
	irq_unlock(key);
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	k_sched_unlock();
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
	return ret;
}

int k_mem_page_out(void *addr, size_t size)
{
	__ASSERT(page_frames_initialized, "%s called on %p too early", __func__,
		 addr);
	z_mem_assert_virtual_region(addr, size);

	for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) {
		void *pos = (uint8_t *)addr + offset;
		int ret;

		ret = do_mem_evict(pos);
		if (ret != 0) {
			return ret;
		}
	}

	return 0;
}

int z_page_frame_evict(uintptr_t phys)
{
	int key, ret;
	struct z_page_frame *pf;
	bool dirty;
	uintptr_t flags;
	uintptr_t location;

	__ASSERT(page_frames_initialized, "%s called on 0x%lx too early",
		 __func__, phys);

	/* Implementation is similar to do_page_fault() except there is no
	 * data page to page-in, see comments in that function.
	 */

#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	__ASSERT(!k_is_in_isr(),
		 "%s is unavailable in ISRs with CONFIG_DEMAND_PAGING_ALLOW_IRQ",
		 __func__);
	k_sched_lock();
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
	key = irq_lock();
	pf = z_phys_to_page_frame(phys);
	if (!z_page_frame_is_mapped(pf)) {
		/* Nothing to do, free page */
		ret = 0;
		goto out;
	}
	flags = arch_page_info_get(pf->addr, NULL, false);
	/* Shouldn't ever happen */
	__ASSERT((flags & ARCH_DATA_PAGE_LOADED) != 0, "data page not loaded");
	dirty = (flags & ARCH_DATA_PAGE_DIRTY) != 0;
	ret = page_frame_prepare_locked(pf, &dirty, false, &location);
	if (ret != 0) {
		goto out;
	}

#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	irq_unlock(key);
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
	if (dirty) {
		do_backing_store_page_out(location);
	}
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	key = irq_lock();
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
	page_frame_free_locked(pf);
out:
	irq_unlock(key);
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	k_sched_unlock();
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
	return ret;
}

static inline void paging_stats_faults_inc(struct k_thread *faulting_thread,
					   int key)
{
#ifdef CONFIG_DEMAND_PAGING_STATS
	bool is_irq_unlocked = arch_irq_unlocked(key);

	paging_stats.pagefaults.cnt++;

	if (is_irq_unlocked) {
		paging_stats.pagefaults.irq_unlocked++;
	} else {
		paging_stats.pagefaults.irq_locked++;
	}

#ifdef CONFIG_DEMAND_PAGING_THREAD_STATS
	faulting_thread->paging_stats.pagefaults.cnt++;

	if (is_irq_unlocked) {
		faulting_thread->paging_stats.pagefaults.irq_unlocked++;
	} else {
		faulting_thread->paging_stats.pagefaults.irq_locked++;
	}
#else
	ARG_UNUSED(faulting_thread);
#endif

#ifndef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	if (k_is_in_isr()) {
		paging_stats.pagefaults.in_isr++;

#ifdef CONFIG_DEMAND_PAGING_THREAD_STATS
		faulting_thread->paging_stats.pagefaults.in_isr++;
#endif
	}
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
#endif /* CONFIG_DEMAND_PAGING_STATS */
}

static inline void paging_stats_eviction_inc(struct k_thread *faulting_thread,
					     bool dirty)
{
#ifdef CONFIG_DEMAND_PAGING_STATS
	if (dirty) {
		paging_stats.eviction.dirty++;
	} else {
		paging_stats.eviction.clean++;
	}
#ifdef CONFIG_DEMAND_PAGING_THREAD_STATS
	if (dirty) {
		faulting_thread->paging_stats.eviction.dirty++;
	} else {
		faulting_thread->paging_stats.eviction.clean++;
	}
#else
	ARG_UNUSED(faulting_thread);
#endif /* CONFIG_DEMAND_PAGING_THREAD_STATS */
#endif /* CONFIG_DEMAND_PAGING_STATS */
}

static inline struct z_page_frame *do_eviction_select(bool *dirty)
{
	struct z_page_frame *pf;

#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
	uint32_t time_diff;

#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
	timing_t time_start, time_end;

	time_start = timing_counter_get();
#else
	uint32_t time_start;

	time_start = k_cycle_get_32();
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */

	pf = k_mem_paging_eviction_select(dirty);

#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
	time_end = timing_counter_get();
	time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end);
#else
	time_diff = k_cycle_get_32() - time_start;
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */

	z_paging_histogram_inc(&z_paging_histogram_eviction, time_diff);
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */

	return pf;
}

static bool do_page_fault(void *addr, bool pin)
{
	struct z_page_frame *pf;
	int key, ret;
	uintptr_t page_in_location, page_out_location;
	enum arch_page_location status;
	bool result;
	bool dirty = false;
	struct k_thread *faulting_thread = _current_cpu->current;

	__ASSERT(page_frames_initialized, "page fault at %p happened too early",
		 addr);

	LOG_DBG("page fault at %p", addr);

	/*
	 * TODO: Add performance accounting:
	 * - k_mem_paging_eviction_select() metrics
	 *   * periodic timer execution time histogram (if implemented)
	 */

#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	/* We lock the scheduler so that other threads are never scheduled
	 * during the page-in/out operation.
	 *
	 * We do however re-enable interrupts during the page-in/page-out
	 * operation iff interrupts were enabled when the exception was taken;
	 * in this configuration page faults in an ISR are a bug; all their
	 * code/data must be pinned.
	 *
	 * If interrupts were disabled when the exception was taken, the
	 * arch code is responsible for keeping them that way when entering
	 * this function.
	 *
	 * If this is not enabled, then interrupts are always locked for the
	 * entire operation. This is far worse for system interrupt latency
	 * but requires less pinned pages and ISRs may also take page faults.
	 *
	 * Support for allowing k_mem_paging_backing_store_page_out() and
	 * k_mem_paging_backing_store_page_in() to also sleep and allow
	 * other threads to run (such as in the case where the transfer is
	 * async DMA) is not implemented. Even if limited to thread context,
	 * arbitrary memory access triggering exceptions that put a thread to
	 * sleep on a contended page fault operation will break scheduling
	 * assumptions of cooperative threads or threads that implement
	 * crticial sections with spinlocks or disabling IRQs.
	 */
	k_sched_lock();
	__ASSERT(!k_is_in_isr(), "ISR page faults are forbidden");
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */

	key = irq_lock();
	status = arch_page_location_get(addr, &page_in_location);
	if (status == ARCH_PAGE_LOCATION_BAD) {
		/* Return false to treat as a fatal error */
		result = false;
		goto out;
	}
	result = true;

	if (status == ARCH_PAGE_LOCATION_PAGED_IN) {
		if (pin) {
			/* It's a physical memory address */
			uintptr_t phys = page_in_location;

			pf = z_phys_to_page_frame(phys);
			pf->flags |= Z_PAGE_FRAME_PINNED;
		}

		/* This if-block is to pin the page if it is
		 * already present in physical memory. There is
		 * no need to go through the following code to
		 * pull in the data pages. So skip to the end.
		 */
		goto out;
	}
	__ASSERT(status == ARCH_PAGE_LOCATION_PAGED_OUT,
		 "unexpected status value %d", status);

	paging_stats_faults_inc(faulting_thread, key);

	pf = free_page_frame_list_get();
	if (pf == NULL) {
		/* Need to evict a page frame */
		pf = do_eviction_select(&dirty);
		__ASSERT(pf != NULL, "failed to get a page frame");
		LOG_DBG("evicting %p at 0x%lx", pf->addr,
			z_page_frame_to_phys(pf));

		paging_stats_eviction_inc(faulting_thread, dirty);
	}
	ret = page_frame_prepare_locked(pf, &dirty, true, &page_out_location);
	__ASSERT(ret == 0, "failed to prepare page frame");

#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	irq_unlock(key);
	/* Interrupts are now unlocked if they were not locked when we entered
	 * this function, and we may service ISRs. The scheduler is still
	 * locked.
	 */
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
	if (dirty) {
		do_backing_store_page_out(page_out_location);
	}
	do_backing_store_page_in(page_in_location);

#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	key = irq_lock();
	pf->flags &= ~Z_PAGE_FRAME_BUSY;
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
	if (pin) {
		pf->flags |= Z_PAGE_FRAME_PINNED;
	}
	pf->flags |= Z_PAGE_FRAME_MAPPED;
	pf->addr = UINT_TO_POINTER(POINTER_TO_UINT(addr)
				   & ~(CONFIG_MMU_PAGE_SIZE - 1));

	arch_mem_page_in(addr, z_page_frame_to_phys(pf));
	k_mem_paging_backing_store_page_finalize(pf, page_in_location);
out:
	irq_unlock(key);
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
	k_sched_unlock();
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */

	return result;
}

static void do_page_in(void *addr)
{
	bool ret;

	ret = do_page_fault(addr, false);
	__ASSERT(ret, "unmapped memory address %p", addr);
	(void)ret;
}

void k_mem_page_in(void *addr, size_t size)
{
	__ASSERT(!IS_ENABLED(CONFIG_DEMAND_PAGING_ALLOW_IRQ) || !k_is_in_isr(),
		 "%s may not be called in ISRs if CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled",
		 __func__);
	virt_region_foreach(addr, size, do_page_in);
}

static void do_mem_pin(void *addr)
{
	bool ret;

	ret = do_page_fault(addr, true);
	__ASSERT(ret, "unmapped memory address %p", addr);
	(void)ret;
}

void k_mem_pin(void *addr, size_t size)
{
	__ASSERT(!IS_ENABLED(CONFIG_DEMAND_PAGING_ALLOW_IRQ) || !k_is_in_isr(),
		 "%s may not be called in ISRs if CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled",
		 __func__);
	virt_region_foreach(addr, size, do_mem_pin);
}

bool z_page_fault(void *addr)
{
	return do_page_fault(addr, false);
}

static void do_mem_unpin(void *addr)
{
	struct z_page_frame *pf;
	int key;
	uintptr_t flags, phys;

	key = irq_lock();
	flags = arch_page_info_get(addr, &phys, false);
	__ASSERT((flags & ARCH_DATA_PAGE_NOT_MAPPED) == 0,
		 "invalid data page at %p", addr);
	if ((flags & ARCH_DATA_PAGE_LOADED) != 0) {
		pf = z_phys_to_page_frame(phys);
		pf->flags &= ~Z_PAGE_FRAME_PINNED;
	}
	irq_unlock(key);
}

void k_mem_unpin(void *addr, size_t size)
{
	__ASSERT(page_frames_initialized, "%s called on %p too early", __func__,
		 addr);
	virt_region_foreach(addr, size, do_mem_unpin);
}

#endif /* CONFIG_DEMAND_PAGING */