Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 | /* * Copyright (c) 2020 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 * * Routines for managing virtual address spaces */ #include <stdint.h> #include <kernel_arch_interface.h> #include <spinlock.h> #include <mmu.h> #include <init.h> #include <kernel_internal.h> #include <syscall_handler.h> #include <toolchain.h> #include <linker/linker-defs.h> #include <sys/bitarray.h> #include <timing/timing.h> #include <logging/log.h> LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); /* * General terminology: * - A page frame is a page-sized physical memory region in RAM. It is a * container where a data page may be placed. It is always referred to by * physical address. We have a convention of using uintptr_t for physical * addresses. We instantiate a struct z_page_frame to store metadata for * every page frame. * * - A data page is a page-sized region of data. It may exist in a page frame, * or be paged out to some backing store. Its location can always be looked * up in the CPU's page tables (or equivalent) by virtual address. * The data type will always be void * or in some cases uint8_t * when we * want to do pointer arithmetic. */ /* Spinlock to protect any globals in this file and serialize page table * updates in arch code */ struct k_spinlock z_mm_lock; /* * General page frame management */ /* Database of all RAM page frames */ struct z_page_frame z_page_frames[Z_NUM_PAGE_FRAMES]; #if __ASSERT_ON /* Indicator that z_page_frames has been initialized, many of these APIs do * not work before POST_KERNEL */ static bool page_frames_initialized; #endif /* Add colors to page table dumps to indicate mapping type */ #define COLOR_PAGE_FRAMES 1 #if COLOR_PAGE_FRAMES #define ANSI_DEFAULT "\x1B[0m" #define ANSI_RED "\x1B[1;31m" #define ANSI_GREEN "\x1B[1;32m" #define ANSI_YELLOW "\x1B[1;33m" #define ANSI_BLUE "\x1B[1;34m" #define ANSI_MAGENTA "\x1B[1;35m" #define ANSI_CYAN "\x1B[1;36m" #define ANSI_GREY "\x1B[1;90m" #define COLOR(x) printk(_CONCAT(ANSI_, x)) #else #define COLOR(x) do { } while (0) #endif static void page_frame_dump(struct z_page_frame *pf) { if (z_page_frame_is_reserved(pf)) { COLOR(CYAN); printk("R"); } else if (z_page_frame_is_busy(pf)) { COLOR(MAGENTA); printk("B"); } else if (z_page_frame_is_pinned(pf)) { COLOR(YELLOW); printk("P"); } else if (z_page_frame_is_available(pf)) { COLOR(GREY); printk("."); } else if (z_page_frame_is_mapped(pf)) { COLOR(DEFAULT); printk("M"); } else { COLOR(RED); printk("?"); } } void z_page_frames_dump(void) { int column = 0; __ASSERT(page_frames_initialized, "%s called too early", __func__); printk("Physical memory from 0x%lx to 0x%lx\n", Z_PHYS_RAM_START, Z_PHYS_RAM_END); for (int i = 0; i < Z_NUM_PAGE_FRAMES; i++) { struct z_page_frame *pf = &z_page_frames[i]; page_frame_dump(pf); column++; if (column == 64) { column = 0; printk("\n"); } } COLOR(DEFAULT); if (column != 0) { printk("\n"); } } #define VIRT_FOREACH(_base, _size, _pos) \ for (_pos = _base; \ _pos < ((uint8_t *)_base + _size); _pos += CONFIG_MMU_PAGE_SIZE) #define PHYS_FOREACH(_base, _size, _pos) \ for (_pos = _base; \ _pos < ((uintptr_t)_base + _size); _pos += CONFIG_MMU_PAGE_SIZE) /* * Virtual address space management * * Call all of these functions with z_mm_lock held. * * Overall virtual memory map: When the kernel starts, it resides in * virtual memory in the region Z_KERNEL_VIRT_START to * Z_KERNEL_VIRT_END. Unused virtual memory past this, up to the limit * noted by CONFIG_KERNEL_VM_SIZE may be used for runtime memory mappings. * * If CONFIG_ARCH_MAPS_ALL_RAM is set, we do not just map the kernel image, * but have a mapping for all RAM in place. This is for special architectural * purposes and does not otherwise affect page frame accounting or flags; * the only guarantee is that such RAM mapping outside of the Zephyr image * won't be disturbed by subsequent memory mapping calls. * * +--------------+ <- Z_VIRT_RAM_START * | Undefined VM | <- May contain ancillary regions like x86_64's locore * +--------------+ <- Z_KERNEL_VIRT_START (often == Z_VIRT_RAM_START) * | Mapping for | * | main kernel | * | image | * | | * | | * +--------------+ <- Z_FREE_VM_START * | | * | Unused, | * | Available VM | * | | * |..............| <- mapping_pos (grows downward as more mappings are made) * | Mapping | * +--------------+ * | Mapping | * +--------------+ * | ... | * +--------------+ * | Mapping | * +--------------+ <- mappings start here * | Reserved | <- special purpose virtual page(s) of size Z_VM_RESERVED * +--------------+ <- Z_VIRT_RAM_END */ /* Bitmap of virtual addresses where one bit corresponds to one page. * This is being used for virt_region_alloc() to figure out which * region of virtual addresses can be used for memory mapping. * * Note that bit #0 is the highest address so that allocation is * done in reverse from highest address. */ SYS_BITARRAY_DEFINE(virt_region_bitmap, CONFIG_KERNEL_VM_SIZE / CONFIG_MMU_PAGE_SIZE); static bool virt_region_inited; #define Z_VIRT_REGION_START_ADDR Z_FREE_VM_START #define Z_VIRT_REGION_END_ADDR (Z_VIRT_RAM_END - Z_VM_RESERVED) static inline uintptr_t virt_from_bitmap_offset(size_t offset, size_t size) { return POINTER_TO_UINT(Z_VIRT_RAM_END) - (offset * CONFIG_MMU_PAGE_SIZE) - size; } static inline size_t virt_to_bitmap_offset(void *vaddr, size_t size) { return (POINTER_TO_UINT(Z_VIRT_RAM_END) - POINTER_TO_UINT(vaddr) - size) / CONFIG_MMU_PAGE_SIZE; } static void virt_region_init(void) { size_t offset, num_bits; /* There are regions where we should never map via * k_mem_map() and z_phys_map(). Mark them as * already allocated so they will never be used. */ if (Z_VM_RESERVED > 0) { /* Mark reserved region at end of virtual address space */ num_bits = Z_VM_RESERVED / CONFIG_MMU_PAGE_SIZE; (void)sys_bitarray_set_region(&virt_region_bitmap, num_bits, 0); } /* Mark all bits up to Z_FREE_VM_START as allocated */ num_bits = POINTER_TO_UINT(Z_FREE_VM_START) - POINTER_TO_UINT(Z_VIRT_RAM_START); offset = virt_to_bitmap_offset(Z_VIRT_RAM_START, num_bits); num_bits /= CONFIG_MMU_PAGE_SIZE; (void)sys_bitarray_set_region(&virt_region_bitmap, num_bits, offset); virt_region_inited = true; } static void *virt_region_alloc(size_t size) { uintptr_t dest_addr; size_t offset; size_t num_bits; int ret; if (unlikely(!virt_region_inited)) { virt_region_init(); } num_bits = size / CONFIG_MMU_PAGE_SIZE; ret = sys_bitarray_alloc(&virt_region_bitmap, num_bits, &offset); if (ret != 0) { LOG_ERR("insufficient virtual address space (requested %zu)", size); return NULL; } /* Remember that bit #0 in bitmap corresponds to the highest * virtual address. So here we need to go downwards (backwards?) * to get the starting address of the allocated region. */ dest_addr = virt_from_bitmap_offset(offset, size); /* Need to make sure this does not step into kernel memory */ if (dest_addr < POINTER_TO_UINT(Z_VIRT_REGION_START_ADDR)) { (void)sys_bitarray_free(&virt_region_bitmap, size, offset); return NULL; } return UINT_TO_POINTER(dest_addr); } static void virt_region_free(void *vaddr, size_t size) { size_t offset, num_bits; uint8_t *vaddr_u8 = (uint8_t *)vaddr; if (unlikely(!virt_region_inited)) { virt_region_init(); } __ASSERT((vaddr_u8 >= Z_VIRT_REGION_START_ADDR) && ((vaddr_u8 + size) < Z_VIRT_REGION_END_ADDR), "invalid virtual address region %p (%zu)", vaddr_u8, size); if (!((vaddr_u8 >= Z_VIRT_REGION_START_ADDR) && ((vaddr_u8 + size) < Z_VIRT_REGION_END_ADDR))) { return; } offset = virt_to_bitmap_offset(vaddr, size); num_bits = size / CONFIG_MMU_PAGE_SIZE; (void)sys_bitarray_free(&virt_region_bitmap, num_bits, offset); } /* * Free page frames management * * Call all of these functions with z_mm_lock held. */ /* Linked list of unused and available page frames. * * TODO: This is very simple and treats all free page frames as being equal. * However, there are use-cases to consolidate free pages such that entire * SRAM banks can be switched off to save power, and so obtaining free pages * may require a more complex ontology which prefers page frames in RAM banks * which are still active. * * This implies in the future there may be multiple slists managing physical * pages. Each page frame will still just have one snode link. */ static sys_slist_t free_page_frame_list; /* Number of unused and available free page frames */ size_t z_free_page_count; #define PF_ASSERT(pf, expr, fmt, ...) \ __ASSERT(expr, "page frame 0x%lx: " fmt, z_page_frame_to_phys(pf), \ ##__VA_ARGS__) /* Get an unused page frame. don't care which one, or NULL if there are none */ static struct z_page_frame *free_page_frame_list_get(void) { sys_snode_t *node; struct z_page_frame *pf = NULL; node = sys_slist_get(&free_page_frame_list); if (node != NULL) { z_free_page_count--; pf = CONTAINER_OF(node, struct z_page_frame, node); PF_ASSERT(pf, z_page_frame_is_available(pf), "unavailable but somehow on free list"); } return pf; } /* Release a page frame back into the list of free pages */ static void free_page_frame_list_put(struct z_page_frame *pf) { PF_ASSERT(pf, z_page_frame_is_available(pf), "unavailable page put on free list"); sys_slist_append(&free_page_frame_list, &pf->node); z_free_page_count++; } static void free_page_frame_list_init(void) { sys_slist_init(&free_page_frame_list); } static void page_frame_free_locked(struct z_page_frame *pf) { pf->flags = 0; free_page_frame_list_put(pf); } /* * Memory Mapping */ /* Called after the frame is mapped in the arch layer, to update our * local ontology (and do some assertions while we're at it) */ static void frame_mapped_set(struct z_page_frame *pf, void *addr) { PF_ASSERT(pf, !z_page_frame_is_reserved(pf), "attempted to map a reserved page frame"); /* We do allow multiple mappings for pinned page frames * since we will never need to reverse map them. * This is uncommon, use-cases are for things like the * Zephyr equivalent of VSDOs */ PF_ASSERT(pf, !z_page_frame_is_mapped(pf) || z_page_frame_is_pinned(pf), "non-pinned and already mapped to %p", pf->addr); pf->flags |= Z_PAGE_FRAME_MAPPED; pf->addr = addr; } /* Go through page frames to find the physical address mapped * by a virtual address. * * @param[in] virt Virtual Address * @param[out] phys Physical address mapped to the input virtual address * if such mapping exists. * * @retval 0 if mapping is found and valid * @retval -EFAULT if virtual address is not mapped */ static int virt_to_page_frame(void *virt, uintptr_t *phys) { uintptr_t paddr; struct z_page_frame *pf; int ret = -EFAULT; Z_PAGE_FRAME_FOREACH(paddr, pf) { if (z_page_frame_is_mapped(pf)) { if (virt == pf->addr) { ret = 0; *phys = z_page_frame_to_phys(pf); break; } } } return ret; } __weak FUNC_ALIAS(virt_to_page_frame, arch_page_phys_get, int); #ifdef CONFIG_DEMAND_PAGING static int page_frame_prepare_locked(struct z_page_frame *pf, bool *dirty_ptr, bool page_in, uintptr_t *location_ptr); static inline void do_backing_store_page_in(uintptr_t location); static inline void do_backing_store_page_out(uintptr_t location); #endif /* CONFIG_DEMAND_PAGING */ /* Allocate a free page frame, and map it to a specified virtual address * * TODO: Add optional support for copy-on-write mappings to a zero page instead * of allocating, in which case page frames will be allocated lazily as * the mappings to the zero page get touched. This will avoid expensive * page-ins as memory is mapped and physical RAM or backing store storage will * not be used if the mapped memory is unused. The cost is an empty physical * page of zeroes. */ static int map_anon_page(void *addr, uint32_t flags) { struct z_page_frame *pf; uintptr_t phys; bool lock = (flags & K_MEM_MAP_LOCK) != 0U; bool uninit = (flags & K_MEM_MAP_UNINIT) != 0U; pf = free_page_frame_list_get(); if (pf == NULL) { #ifdef CONFIG_DEMAND_PAGING uintptr_t location; bool dirty; int ret; pf = k_mem_paging_eviction_select(&dirty); __ASSERT(pf != NULL, "failed to get a page frame"); LOG_DBG("evicting %p at 0x%lx", pf->addr, z_page_frame_to_phys(pf)); ret = page_frame_prepare_locked(pf, &dirty, false, &location); if (ret != 0) { return -ENOMEM; } if (dirty) { do_backing_store_page_out(location); } pf->flags = 0; #else return -ENOMEM; #endif /* CONFIG_DEMAND_PAGING */ } phys = z_page_frame_to_phys(pf); arch_mem_map(addr, phys, CONFIG_MMU_PAGE_SIZE, flags | K_MEM_CACHE_WB); if (lock) { pf->flags |= Z_PAGE_FRAME_PINNED; } frame_mapped_set(pf, addr); LOG_DBG("memory mapping anon page %p -> 0x%lx", addr, phys); if (!uninit) { /* If we later implement mappings to a copy-on-write * zero page, won't need this step */ memset(addr, 0, CONFIG_MMU_PAGE_SIZE); } return 0; } void *k_mem_map(size_t size, uint32_t flags) { uint8_t *dst; size_t total_size; int ret; k_spinlock_key_t key; uint8_t *pos; __ASSERT(!(((flags & K_MEM_PERM_USER) != 0U) && ((flags & K_MEM_MAP_UNINIT) != 0U)), "user access to anonymous uninitialized pages is forbidden"); __ASSERT(size % CONFIG_MMU_PAGE_SIZE == 0U, "unaligned size %zu passed to %s", size, __func__); __ASSERT(size != 0, "zero sized memory mapping"); __ASSERT(page_frames_initialized, "%s called too early", __func__); __ASSERT((flags & K_MEM_CACHE_MASK) == 0U, "%s does not support explicit cache settings", __func__); key = k_spin_lock(&z_mm_lock); /* Need extra for the guard pages (before and after) which we * won't map. */ total_size = size + CONFIG_MMU_PAGE_SIZE * 2; dst = virt_region_alloc(total_size); if (dst == NULL) { /* Address space has no free region */ goto out; } /* Unmap both guard pages to make sure accessing them * will generate fault. */ arch_mem_unmap(dst, CONFIG_MMU_PAGE_SIZE); arch_mem_unmap(dst + CONFIG_MMU_PAGE_SIZE + size, CONFIG_MMU_PAGE_SIZE); /* Skip over the "before" guard page in returned address. */ dst += CONFIG_MMU_PAGE_SIZE; VIRT_FOREACH(dst, size, pos) { ret = map_anon_page(pos, flags); if (ret != 0) { /* TODO: call k_mem_unmap(dst, pos - dst) when * implmented in #28990 and release any guard virtual * page as well. */ dst = NULL; goto out; } } out: k_spin_unlock(&z_mm_lock, key); return dst; } void k_mem_unmap(void *addr, size_t size) { uintptr_t phys; uint8_t *pos; struct z_page_frame *pf; k_spinlock_key_t key; size_t total_size; int ret; /* Need space for the "before" guard page */ __ASSERT_NO_MSG(POINTER_TO_UINT(addr) >= CONFIG_MMU_PAGE_SIZE); /* Make sure address range is still valid after accounting * for two guard pages. */ pos = (uint8_t *)addr - CONFIG_MMU_PAGE_SIZE; z_mem_assert_virtual_region(pos, size + (CONFIG_MMU_PAGE_SIZE * 2)); key = k_spin_lock(&z_mm_lock); /* Check if both guard pages are unmapped. * Bail if not, as this is probably a region not mapped * using k_mem_map(). */ pos = addr; ret = arch_page_phys_get(pos - CONFIG_MMU_PAGE_SIZE, NULL); if (ret == 0) { __ASSERT(ret == 0, "%s: cannot find preceding guard page for (%p, %zu)", __func__, addr, size); goto out; } ret = arch_page_phys_get(pos + size, NULL); if (ret == 0) { __ASSERT(ret == 0, "%s: cannot find succeeding guard page for (%p, %zu)", __func__, addr, size); goto out; } VIRT_FOREACH(addr, size, pos) { ret = arch_page_phys_get(pos, &phys); __ASSERT(ret == 0, "%s: cannot unmap an unmapped address %p", __func__, pos); if (ret != 0) { /* Found an address not mapped. Do not continue. */ goto out; } __ASSERT(z_is_page_frame(phys), "%s: 0x%lx is not a page frame", __func__, phys); if (!z_is_page_frame(phys)) { /* Physical address has no corresponding page frame * description in the page frame array. * This should not happen. Do not continue. */ goto out; } /* Grab the corresponding page frame from physical address */ pf = z_phys_to_page_frame(phys); __ASSERT(z_page_frame_is_mapped(pf), "%s: 0x%lx is not a mapped page frame", __func__, phys); if (!z_page_frame_is_mapped(pf)) { /* Page frame is not marked mapped. * This should not happen. Do not continue. */ goto out; } arch_mem_unmap(pos, CONFIG_MMU_PAGE_SIZE); /* Put the page frame back into free list */ page_frame_free_locked(pf); } /* There are guard pages just before and after the mapped * region. So we also need to free them from the bitmap. */ pos = (uint8_t *)addr - CONFIG_MMU_PAGE_SIZE; total_size = size + CONFIG_MMU_PAGE_SIZE * 2; virt_region_free(pos, total_size); out: k_spin_unlock(&z_mm_lock, key); } size_t k_mem_free_get(void) { size_t ret; k_spinlock_key_t key; __ASSERT(page_frames_initialized, "%s called too early", __func__); key = k_spin_lock(&z_mm_lock); #ifdef CONFIG_DEMAND_PAGING if (z_free_page_count > CONFIG_DEMAND_PAGING_PAGE_FRAMES_RESERVE) { ret = z_free_page_count - CONFIG_DEMAND_PAGING_PAGE_FRAMES_RESERVE; } else { ret = 0; } #else ret = z_free_page_count; #endif k_spin_unlock(&z_mm_lock, key); return ret * (size_t)CONFIG_MMU_PAGE_SIZE; } /* This may be called from arch early boot code before z_cstart() is invoked. * Data will be copied and BSS zeroed, but this must not rely on any * initialization functions being called prior to work correctly. */ void z_phys_map(uint8_t **virt_ptr, uintptr_t phys, size_t size, uint32_t flags) { uintptr_t aligned_phys, addr_offset; size_t aligned_size; k_spinlock_key_t key; uint8_t *dest_addr; addr_offset = k_mem_region_align(&aligned_phys, &aligned_size, phys, size, CONFIG_MMU_PAGE_SIZE); __ASSERT(aligned_size != 0U, "0-length mapping at 0x%lx", aligned_phys); __ASSERT(aligned_phys < (aligned_phys + (aligned_size - 1)), "wraparound for physical address 0x%lx (size %zu)", aligned_phys, aligned_size); key = k_spin_lock(&z_mm_lock); /* Obtain an appropriately sized chunk of virtual memory */ dest_addr = virt_region_alloc(aligned_size); if (!dest_addr) { goto fail; } /* If this fails there's something amiss with virt_region_get */ __ASSERT((uintptr_t)dest_addr < ((uintptr_t)dest_addr + (size - 1)), "wraparound for virtual address %p (size %zu)", dest_addr, size); LOG_DBG("arch_mem_map(%p, 0x%lx, %zu, %x) offset %lu", dest_addr, aligned_phys, aligned_size, flags, addr_offset); arch_mem_map(dest_addr, aligned_phys, aligned_size, flags); k_spin_unlock(&z_mm_lock, key); *virt_ptr = dest_addr + addr_offset; return; fail: /* May re-visit this in the future, but for now running out of * virtual address space or failing the arch_mem_map() call is * an unrecoverable situation. * * Other problems not related to resource exhaustion we leave as * assertions since they are clearly programming mistakes. */ LOG_ERR("memory mapping 0x%lx (size %zu, flags 0x%x) failed", phys, size, flags); k_panic(); } void z_phys_unmap(uint8_t *virt, size_t size) { uintptr_t aligned_virt, addr_offset; size_t aligned_size; k_spinlock_key_t key; addr_offset = k_mem_region_align(&aligned_virt, &aligned_size, POINTER_TO_UINT(virt), size, CONFIG_MMU_PAGE_SIZE); __ASSERT(aligned_size != 0U, "0-length mapping at 0x%lx", aligned_virt); __ASSERT(aligned_virt < (aligned_virt + (aligned_size - 1)), "wraparound for virtual address 0x%lx (size %zu)", aligned_virt, aligned_size); key = k_spin_lock(&z_mm_lock); arch_mem_unmap(UINT_TO_POINTER(aligned_virt), aligned_size); virt_region_free(virt, size); k_spin_unlock(&z_mm_lock, key); } /* * Miscellaneous */ size_t k_mem_region_align(uintptr_t *aligned_addr, size_t *aligned_size, uintptr_t addr, size_t size, size_t align) { size_t addr_offset; /* The actual mapped region must be page-aligned. Round down the * physical address and pad the region size appropriately */ *aligned_addr = ROUND_DOWN(addr, align); addr_offset = addr - *aligned_addr; *aligned_size = ROUND_UP(size + addr_offset, align); return addr_offset; } #if defined(CONFIG_LINKER_USE_BOOT_SECTION) || defined(CONFIG_LINKER_USE_PINNED_SECTION) static void mark_linker_section_pinned(void *start_addr, void *end_addr, bool pin) { struct z_page_frame *pf; uint8_t *addr; uintptr_t pinned_start = ROUND_DOWN(POINTER_TO_UINT(start_addr), CONFIG_MMU_PAGE_SIZE); uintptr_t pinned_end = ROUND_UP(POINTER_TO_UINT(end_addr), CONFIG_MMU_PAGE_SIZE); size_t pinned_size = pinned_end - pinned_start; VIRT_FOREACH(UINT_TO_POINTER(pinned_start), pinned_size, addr) { pf = z_phys_to_page_frame(Z_BOOT_VIRT_TO_PHYS(addr)); frame_mapped_set(pf, addr); if (pin) { pf->flags |= Z_PAGE_FRAME_PINNED; } else { pf->flags &= ~Z_PAGE_FRAME_PINNED; } } } #endif /* CONFIG_LINKER_USE_BOOT_SECTION) || CONFIG_LINKER_USE_PINNED_SECTION */ void z_mem_manage_init(void) { uintptr_t phys; uint8_t *addr; struct z_page_frame *pf; k_spinlock_key_t key = k_spin_lock(&z_mm_lock); free_page_frame_list_init(); ARG_UNUSED(addr); #ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES /* If some page frames are unavailable for use as memory, arch * code will mark Z_PAGE_FRAME_RESERVED in their flags */ arch_reserved_pages_update(); #endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */ #ifdef CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT /* All pages composing the Zephyr image are mapped at boot in a * predictable way. This can change at runtime. */ VIRT_FOREACH(Z_KERNEL_VIRT_START, Z_KERNEL_VIRT_SIZE, addr) { pf = z_phys_to_page_frame(Z_BOOT_VIRT_TO_PHYS(addr)); frame_mapped_set(pf, addr); /* TODO: for now we pin the whole Zephyr image. Demand paging * currently tested with anonymously-mapped pages which are not * pinned. * * We will need to setup linker regions for a subset of kernel * code/data pages which are pinned in memory and * may not be evicted. This will contain critical CPU data * structures, and any code used to perform page fault * handling, page-ins, etc. */ pf->flags |= Z_PAGE_FRAME_PINNED; } #endif /* CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */ #ifdef CONFIG_LINKER_USE_BOOT_SECTION /* Pin the boot section to prevent it from being swapped out during * boot process. Will be un-pinned once boot process completes. */ mark_linker_section_pinned(lnkr_boot_start, lnkr_boot_end, true); #endif #ifdef CONFIG_LINKER_USE_PINNED_SECTION /* Pin the page frames correspondng to the pinned symbols */ mark_linker_section_pinned(lnkr_pinned_start, lnkr_pinned_end, true); #endif /* Any remaining pages that aren't mapped, reserved, or pinned get * added to the free pages list */ Z_PAGE_FRAME_FOREACH(phys, pf) { if (z_page_frame_is_available(pf)) { free_page_frame_list_put(pf); } } LOG_DBG("free page frames: %zu", z_free_page_count); #ifdef CONFIG_DEMAND_PAGING #ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM z_paging_histogram_init(); #endif k_mem_paging_backing_store_init(); k_mem_paging_eviction_init(); #endif #if __ASSERT_ON page_frames_initialized = true; #endif k_spin_unlock(&z_mm_lock, key); #ifndef CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT /* If BSS section is not present in memory at boot, * it would not have been cleared. This needs to be * done now since paging mechanism has been initialized * and the BSS pages can be brought into physical * memory to be cleared. */ z_bss_zero(); #endif } void z_mem_manage_boot_finish(void) { #ifdef CONFIG_LINKER_USE_BOOT_SECTION /* At the end of boot process, unpin the boot sections * as they don't need to be in memory all the time anymore. */ mark_linker_section_pinned(lnkr_boot_start, lnkr_boot_end, false); #endif } #ifdef CONFIG_DEMAND_PAGING #ifdef CONFIG_DEMAND_PAGING_STATS struct k_mem_paging_stats_t paging_stats; extern struct k_mem_paging_histogram_t z_paging_histogram_eviction; extern struct k_mem_paging_histogram_t z_paging_histogram_backing_store_page_in; extern struct k_mem_paging_histogram_t z_paging_histogram_backing_store_page_out; #endif static inline void do_backing_store_page_in(uintptr_t location) { #ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM uint32_t time_diff; #ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS timing_t time_start, time_end; time_start = timing_counter_get(); #else uint32_t time_start; time_start = k_cycle_get_32(); #endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */ #endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */ k_mem_paging_backing_store_page_in(location); #ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM #ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS time_end = timing_counter_get(); time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end); #else time_diff = k_cycle_get_32() - time_start; #endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */ z_paging_histogram_inc(&z_paging_histogram_backing_store_page_in, time_diff); #endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */ } static inline void do_backing_store_page_out(uintptr_t location) { #ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM uint32_t time_diff; #ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS timing_t time_start, time_end; time_start = timing_counter_get(); #else uint32_t time_start; time_start = k_cycle_get_32(); #endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */ #endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */ k_mem_paging_backing_store_page_out(location); #ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM #ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS time_end = timing_counter_get(); time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end); #else time_diff = k_cycle_get_32() - time_start; #endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */ z_paging_histogram_inc(&z_paging_histogram_backing_store_page_out, time_diff); #endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */ } /* Current implementation relies on interrupt locking to any prevent page table * access, which falls over if other CPUs are active. Addressing this is not * as simple as using spinlocks as regular memory reads/writes constitute * "access" in this sense. * * Current needs for demand paging are on uniprocessor systems. */ BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP)); static void virt_region_foreach(void *addr, size_t size, void (*func)(void *)) { z_mem_assert_virtual_region(addr, size); for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) { func((uint8_t *)addr + offset); } } /* * Perform some preparatory steps before paging out. The provided page frame * must be evicted to the backing store immediately after this is called * with a call to k_mem_paging_backing_store_page_out() if it contains * a data page. * * - Map page frame to scratch area if requested. This always is true if we're * doing a page fault, but is only set on manual evictions if the page is * dirty. * - If mapped: * - obtain backing store location and populate location parameter * - Update page tables with location * - Mark page frame as busy * * Returns -ENOMEM if the backing store is full */ static int page_frame_prepare_locked(struct z_page_frame *pf, bool *dirty_ptr, bool page_fault, uintptr_t *location_ptr) { uintptr_t phys; int ret; bool dirty = *dirty_ptr; phys = z_page_frame_to_phys(pf); __ASSERT(!z_page_frame_is_pinned(pf), "page frame 0x%lx is pinned", phys); /* If the backing store doesn't have a copy of the page, even if it * wasn't modified, treat as dirty. This can happen for a few * reasons: * 1) Page has never been swapped out before, and the backing store * wasn't pre-populated with this data page. * 2) Page was swapped out before, but the page contents were not * preserved after swapping back in. * 3) Page contents were preserved when swapped back in, but were later * evicted from the backing store to make room for other evicted * pages. */ if (z_page_frame_is_mapped(pf)) { dirty = dirty || !z_page_frame_is_backed(pf); } if (dirty || page_fault) { arch_mem_scratch(phys); } if (z_page_frame_is_mapped(pf)) { ret = k_mem_paging_backing_store_location_get(pf, location_ptr, page_fault); if (ret != 0) { LOG_ERR("out of backing store memory"); return -ENOMEM; } arch_mem_page_out(pf->addr, *location_ptr); } else { /* Shouldn't happen unless this function is mis-used */ __ASSERT(!dirty, "un-mapped page determined to be dirty"); } #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ /* Mark as busy so that z_page_frame_is_evictable() returns false */ __ASSERT(!z_page_frame_is_busy(pf), "page frame 0x%lx is already busy", phys); pf->flags |= Z_PAGE_FRAME_BUSY; #endif /* Update dirty parameter, since we set to true if it wasn't backed * even if otherwise clean */ *dirty_ptr = dirty; return 0; } static int do_mem_evict(void *addr) { bool dirty; struct z_page_frame *pf; uintptr_t location; int key, ret; uintptr_t flags, phys; #if CONFIG_DEMAND_PAGING_ALLOW_IRQ __ASSERT(!k_is_in_isr(), "%s is unavailable in ISRs with CONFIG_DEMAND_PAGING_ALLOW_IRQ", __func__); k_sched_lock(); #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ key = irq_lock(); flags = arch_page_info_get(addr, &phys, false); __ASSERT((flags & ARCH_DATA_PAGE_NOT_MAPPED) == 0, "address %p isn't mapped", addr); if ((flags & ARCH_DATA_PAGE_LOADED) == 0) { /* Un-mapped or already evicted. Nothing to do */ ret = 0; goto out; } dirty = (flags & ARCH_DATA_PAGE_DIRTY) != 0; pf = z_phys_to_page_frame(phys); __ASSERT(pf->addr == addr, "page frame address mismatch"); ret = page_frame_prepare_locked(pf, &dirty, false, &location); if (ret != 0) { goto out; } __ASSERT(ret == 0, "failed to prepare page frame"); #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ irq_unlock(key); #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ if (dirty) { do_backing_store_page_out(location); } #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ key = irq_lock(); #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ page_frame_free_locked(pf); out: irq_unlock(key); #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ k_sched_unlock(); #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ return ret; } int k_mem_page_out(void *addr, size_t size) { __ASSERT(page_frames_initialized, "%s called on %p too early", __func__, addr); z_mem_assert_virtual_region(addr, size); for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) { void *pos = (uint8_t *)addr + offset; int ret; ret = do_mem_evict(pos); if (ret != 0) { return ret; } } return 0; } int z_page_frame_evict(uintptr_t phys) { int key, ret; struct z_page_frame *pf; bool dirty; uintptr_t flags; uintptr_t location; __ASSERT(page_frames_initialized, "%s called on 0x%lx too early", __func__, phys); /* Implementation is similar to do_page_fault() except there is no * data page to page-in, see comments in that function. */ #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ __ASSERT(!k_is_in_isr(), "%s is unavailable in ISRs with CONFIG_DEMAND_PAGING_ALLOW_IRQ", __func__); k_sched_lock(); #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ key = irq_lock(); pf = z_phys_to_page_frame(phys); if (!z_page_frame_is_mapped(pf)) { /* Nothing to do, free page */ ret = 0; goto out; } flags = arch_page_info_get(pf->addr, NULL, false); /* Shouldn't ever happen */ __ASSERT((flags & ARCH_DATA_PAGE_LOADED) != 0, "data page not loaded"); dirty = (flags & ARCH_DATA_PAGE_DIRTY) != 0; ret = page_frame_prepare_locked(pf, &dirty, false, &location); if (ret != 0) { goto out; } #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ irq_unlock(key); #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ if (dirty) { do_backing_store_page_out(location); } #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ key = irq_lock(); #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ page_frame_free_locked(pf); out: irq_unlock(key); #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ k_sched_unlock(); #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ return ret; } static inline void paging_stats_faults_inc(struct k_thread *faulting_thread, int key) { #ifdef CONFIG_DEMAND_PAGING_STATS bool is_irq_unlocked = arch_irq_unlocked(key); paging_stats.pagefaults.cnt++; if (is_irq_unlocked) { paging_stats.pagefaults.irq_unlocked++; } else { paging_stats.pagefaults.irq_locked++; } #ifdef CONFIG_DEMAND_PAGING_THREAD_STATS faulting_thread->paging_stats.pagefaults.cnt++; if (is_irq_unlocked) { faulting_thread->paging_stats.pagefaults.irq_unlocked++; } else { faulting_thread->paging_stats.pagefaults.irq_locked++; } #else ARG_UNUSED(faulting_thread); #endif #ifndef CONFIG_DEMAND_PAGING_ALLOW_IRQ if (k_is_in_isr()) { paging_stats.pagefaults.in_isr++; #ifdef CONFIG_DEMAND_PAGING_THREAD_STATS faulting_thread->paging_stats.pagefaults.in_isr++; #endif } #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ #endif /* CONFIG_DEMAND_PAGING_STATS */ } static inline void paging_stats_eviction_inc(struct k_thread *faulting_thread, bool dirty) { #ifdef CONFIG_DEMAND_PAGING_STATS if (dirty) { paging_stats.eviction.dirty++; } else { paging_stats.eviction.clean++; } #ifdef CONFIG_DEMAND_PAGING_THREAD_STATS if (dirty) { faulting_thread->paging_stats.eviction.dirty++; } else { faulting_thread->paging_stats.eviction.clean++; } #else ARG_UNUSED(faulting_thread); #endif /* CONFIG_DEMAND_PAGING_THREAD_STATS */ #endif /* CONFIG_DEMAND_PAGING_STATS */ } static inline struct z_page_frame *do_eviction_select(bool *dirty) { struct z_page_frame *pf; #ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM uint32_t time_diff; #ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS timing_t time_start, time_end; time_start = timing_counter_get(); #else uint32_t time_start; time_start = k_cycle_get_32(); #endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */ #endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */ pf = k_mem_paging_eviction_select(dirty); #ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM #ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS time_end = timing_counter_get(); time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end); #else time_diff = k_cycle_get_32() - time_start; #endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */ z_paging_histogram_inc(&z_paging_histogram_eviction, time_diff); #endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */ return pf; } static bool do_page_fault(void *addr, bool pin) { struct z_page_frame *pf; int key, ret; uintptr_t page_in_location, page_out_location; enum arch_page_location status; bool result; bool dirty = false; struct k_thread *faulting_thread = _current_cpu->current; __ASSERT(page_frames_initialized, "page fault at %p happened too early", addr); LOG_DBG("page fault at %p", addr); /* * TODO: Add performance accounting: * - k_mem_paging_eviction_select() metrics * * periodic timer execution time histogram (if implemented) */ #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ /* We lock the scheduler so that other threads are never scheduled * during the page-in/out operation. * * We do however re-enable interrupts during the page-in/page-out * operation iff interrupts were enabled when the exception was taken; * in this configuration page faults in an ISR are a bug; all their * code/data must be pinned. * * If interrupts were disabled when the exception was taken, the * arch code is responsible for keeping them that way when entering * this function. * * If this is not enabled, then interrupts are always locked for the * entire operation. This is far worse for system interrupt latency * but requires less pinned pages and ISRs may also take page faults. * * Support for allowing k_mem_paging_backing_store_page_out() and * k_mem_paging_backing_store_page_in() to also sleep and allow * other threads to run (such as in the case where the transfer is * async DMA) is not implemented. Even if limited to thread context, * arbitrary memory access triggering exceptions that put a thread to * sleep on a contended page fault operation will break scheduling * assumptions of cooperative threads or threads that implement * crticial sections with spinlocks or disabling IRQs. */ k_sched_lock(); __ASSERT(!k_is_in_isr(), "ISR page faults are forbidden"); #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ key = irq_lock(); status = arch_page_location_get(addr, &page_in_location); if (status == ARCH_PAGE_LOCATION_BAD) { /* Return false to treat as a fatal error */ result = false; goto out; } result = true; if (status == ARCH_PAGE_LOCATION_PAGED_IN) { if (pin) { /* It's a physical memory address */ uintptr_t phys = page_in_location; pf = z_phys_to_page_frame(phys); pf->flags |= Z_PAGE_FRAME_PINNED; } /* This if-block is to pin the page if it is * already present in physical memory. There is * no need to go through the following code to * pull in the data pages. So skip to the end. */ goto out; } __ASSERT(status == ARCH_PAGE_LOCATION_PAGED_OUT, "unexpected status value %d", status); paging_stats_faults_inc(faulting_thread, key); pf = free_page_frame_list_get(); if (pf == NULL) { /* Need to evict a page frame */ pf = do_eviction_select(&dirty); __ASSERT(pf != NULL, "failed to get a page frame"); LOG_DBG("evicting %p at 0x%lx", pf->addr, z_page_frame_to_phys(pf)); paging_stats_eviction_inc(faulting_thread, dirty); } ret = page_frame_prepare_locked(pf, &dirty, true, &page_out_location); __ASSERT(ret == 0, "failed to prepare page frame"); #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ irq_unlock(key); /* Interrupts are now unlocked if they were not locked when we entered * this function, and we may service ISRs. The scheduler is still * locked. */ #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ if (dirty) { do_backing_store_page_out(page_out_location); } do_backing_store_page_in(page_in_location); #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ key = irq_lock(); pf->flags &= ~Z_PAGE_FRAME_BUSY; #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ if (pin) { pf->flags |= Z_PAGE_FRAME_PINNED; } pf->flags |= Z_PAGE_FRAME_MAPPED; pf->addr = UINT_TO_POINTER(POINTER_TO_UINT(addr) & ~(CONFIG_MMU_PAGE_SIZE - 1)); arch_mem_page_in(addr, z_page_frame_to_phys(pf)); k_mem_paging_backing_store_page_finalize(pf, page_in_location); out: irq_unlock(key); #ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ k_sched_unlock(); #endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */ return result; } static void do_page_in(void *addr) { bool ret; ret = do_page_fault(addr, false); __ASSERT(ret, "unmapped memory address %p", addr); (void)ret; } void k_mem_page_in(void *addr, size_t size) { __ASSERT(!IS_ENABLED(CONFIG_DEMAND_PAGING_ALLOW_IRQ) || !k_is_in_isr(), "%s may not be called in ISRs if CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled", __func__); virt_region_foreach(addr, size, do_page_in); } static void do_mem_pin(void *addr) { bool ret; ret = do_page_fault(addr, true); __ASSERT(ret, "unmapped memory address %p", addr); (void)ret; } void k_mem_pin(void *addr, size_t size) { __ASSERT(!IS_ENABLED(CONFIG_DEMAND_PAGING_ALLOW_IRQ) || !k_is_in_isr(), "%s may not be called in ISRs if CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled", __func__); virt_region_foreach(addr, size, do_mem_pin); } bool z_page_fault(void *addr) { return do_page_fault(addr, false); } static void do_mem_unpin(void *addr) { struct z_page_frame *pf; int key; uintptr_t flags, phys; key = irq_lock(); flags = arch_page_info_get(addr, &phys, false); __ASSERT((flags & ARCH_DATA_PAGE_NOT_MAPPED) == 0, "invalid data page at %p", addr); if ((flags & ARCH_DATA_PAGE_LOADED) != 0) { pf = z_phys_to_page_frame(phys); pf->flags &= ~Z_PAGE_FRAME_PINNED; } irq_unlock(key); } void k_mem_unpin(void *addr, size_t size) { __ASSERT(page_frames_initialized, "%s called on %p too early", __func__, addr); virt_region_foreach(addr, size, do_mem_unpin); } #endif /* CONFIG_DEMAND_PAGING */ |