Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/*
 * Copyright (c) 2019 Vestas Wind Systems A/S
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT nxp_kinetis_flexcan

#include <zephyr.h>
#include <sys/atomic.h>
#include <drivers/can.h>
#include <drivers/clock_control.h>
#include <device.h>
#include <sys/byteorder.h>
#include <fsl_flexcan.h>

#define LOG_LEVEL CONFIG_CAN_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(can_mcux_flexcan);

#define SP_IS_SET(inst) DT_INST_NODE_HAS_PROP(inst, sample_point) ||

/* Macro to exclude the sample point algorithm from compilation if not used
 * Without the macro, the algorithm would always waste ROM
 */
#define USE_SP_ALGO (DT_INST_FOREACH_STATUS_OKAY(SP_IS_SET) 0)

#define SP_AND_TIMING_NOT_SET(inst) \
	(!DT_INST_NODE_HAS_PROP(inst, sample_point) && \
	!(DT_INST_NODE_HAS_PROP(inst, prop_seg) && \
	DT_INST_NODE_HAS_PROP(inst, phase_seg1) && \
	DT_INST_NODE_HAS_PROP(inst, phase_seg2))) ||

#if DT_INST_FOREACH_STATUS_OKAY(SP_AND_TIMING_NOT_SET) 0
#error You must either set a sampling-point or timings (phase-seg* and prop-seg)
#endif

#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
	(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
/* the first valid MB should be occupied by ERRATA 5461 or 5829. */
#define RX_START_IDX 1
#else
#define RX_START_IDX 0
#endif

/*
 * RX message buffers (filters) will take up the first N message
 * buffers. The rest are available for TX use.
 */
#define MCUX_FLEXCAN_MAX_RX CONFIG_CAN_MAX_FILTER
#define MCUX_FLEXCAN_MAX_TX \
	(FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(0) \
	- MCUX_FLEXCAN_MAX_RX)

#define MCUX_N_TX_ALLOC_ELEM (1 + (MCUX_FLEXCAN_MAX_TX - 1) / ATOMIC_BITS)

/*
 * Convert from RX message buffer index to allocated filter ID and
 * vice versa.
 */
#define RX_MBIDX_TO_ALLOC_IDX(x) (x)
#define ALLOC_IDX_TO_RXMB_IDX(x) (x)

/*
 * Convert from TX message buffer index to allocated TX ID and vice
 * versa.
 */
#define TX_MBIDX_TO_ALLOC_IDX(x) (x - MCUX_FLEXCAN_MAX_RX)
#define ALLOC_IDX_TO_TXMB_IDX(x) (x + MCUX_FLEXCAN_MAX_RX)

/* Convert from back from FLEXCAN IDs to Zephyr CAN IDs. */
#define FLEXCAN_ID_TO_ZCAN_ID_STD(id) \
	((uint32_t)((((uint32_t)(id)) & CAN_ID_STD_MASK) >> CAN_ID_STD_SHIFT))
#define FLEXCAN_ID_TO_ZCAN_ID_EXT(id) \
	((uint32_t)((((uint32_t)(id)) & (CAN_ID_STD_MASK | CAN_ID_EXT_MASK)) \
	>> CAN_ID_EXT_SHIFT))

struct mcux_flexcan_config {
	CAN_Type *base;
	const struct device *clock_dev;
	clock_control_subsys_t clock_subsys;
	int clk_source;
	uint32_t bitrate;
	uint32_t sample_point;
	uint32_t sjw;
	uint32_t prop_seg;
	uint32_t phase_seg1;
	uint32_t phase_seg2;
	void (*irq_config_func)(const struct device *dev);
};

struct mcux_flexcan_rx_callback {
	flexcan_rx_mb_config_t mb_config;
	flexcan_frame_t frame;
	can_rx_callback_t function;
	void *arg;
};

struct mcux_flexcan_tx_callback {
	struct k_sem done;
	int status;
	flexcan_frame_t frame;
	can_tx_callback_t function;
	void *arg;
};

struct mcux_flexcan_data {
	const struct device *dev;
	flexcan_handle_t handle;

	ATOMIC_DEFINE(rx_allocs, MCUX_FLEXCAN_MAX_RX);
	struct k_mutex rx_mutex;
	struct mcux_flexcan_rx_callback rx_cbs[MCUX_FLEXCAN_MAX_RX];

	ATOMIC_DEFINE(tx_allocs, MCUX_FLEXCAN_MAX_TX);
	struct k_sem tx_allocs_sem;
	struct mcux_flexcan_tx_callback tx_cbs[MCUX_FLEXCAN_MAX_TX];
	enum can_state state;
	can_state_change_isr_t state_change_isr;
	struct can_timing timing;
};

static int mcux_flexcan_get_core_clock(const struct device *dev, uint32_t *rate)
{
	const struct mcux_flexcan_config *config = dev->config;

	return clock_control_get_rate(config->clock_dev, config->clock_subsys, rate);
}

static int mcux_flexcan_set_timing(const struct device *dev,
				   const struct can_timing *timing,
				   const struct can_timing *timing_data)
{
	ARG_UNUSED(timing_data);
	struct mcux_flexcan_data *data = dev->data;
	const struct mcux_flexcan_config *config = dev->config;
	uint8_t sjw_backup = data->timing.sjw;
	flexcan_timing_config_t timing_tmp;

	if (!timing) {
		return -EINVAL;
	}

	data->timing = *timing;
	if (timing->sjw == CAN_SJW_NO_CHANGE) {
		data->timing.sjw = sjw_backup;
	}

	timing_tmp.preDivider = data->timing.prescaler - 1U;
	timing_tmp.rJumpwidth = data->timing.sjw - 1U;
	timing_tmp.phaseSeg1 = data->timing.phase_seg1 - 1U;
	timing_tmp.phaseSeg2 = data->timing.phase_seg2 - 1U;
	timing_tmp.propSeg = data->timing.prop_seg - 1U;

	FLEXCAN_SetTimingConfig(config->base, &timing_tmp);

	return 0;
}

static int mcux_flexcan_set_mode(const struct device *dev, enum can_mode mode)
{
	struct mcux_flexcan_data *data = dev->data;
	const struct mcux_flexcan_config *config = dev->config;
	flexcan_config_t flexcan_config;
	uint32_t clock_freq;
	int ret;

	ret = mcux_flexcan_get_core_clock(dev, &clock_freq);
	if (ret != 0) {
		return -EIO;
	}

	FLEXCAN_GetDefaultConfig(&flexcan_config);
	flexcan_config.maxMbNum = FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(0);
	flexcan_config.clkSrc = config->clk_source;
	flexcan_config.baudRate = clock_freq /
	      (1U + data->timing.prop_seg + data->timing.phase_seg1 +
	       data->timing.phase_seg2) / data->timing.prescaler;
	flexcan_config.enableIndividMask = true;

	flexcan_config.timingConfig.rJumpwidth = data->timing.sjw - 1U;
	flexcan_config.timingConfig.propSeg = data->timing.prop_seg - 1U;
	flexcan_config.timingConfig.phaseSeg1 = data->timing.phase_seg1 - 1U;
	flexcan_config.timingConfig.phaseSeg2 = data->timing.phase_seg2 - 1U;

	if (mode == CAN_LOOPBACK_MODE || mode == CAN_SILENT_LOOPBACK_MODE) {
		flexcan_config.enableLoopBack = true;
	} else {
		/* Disable self-reception unless loopback is requested */
		flexcan_config.disableSelfReception = true;
	}

	if (mode == CAN_SILENT_MODE || mode == CAN_SILENT_LOOPBACK_MODE) {
		flexcan_config.enableListenOnlyMode = true;
	}

	FLEXCAN_Init(config->base, &flexcan_config, clock_freq);

	return 0;
}

static void mcux_flexcan_copy_zframe_to_frame(const struct zcan_frame *src,
					      flexcan_frame_t *dest)
{
	if (src->id_type == CAN_STANDARD_IDENTIFIER) {
		dest->format = kFLEXCAN_FrameFormatStandard;
		dest->id = FLEXCAN_ID_STD(src->id);
	} else {
		dest->format = kFLEXCAN_FrameFormatExtend;
		dest->id = FLEXCAN_ID_EXT(src->id);
	}

	if (src->rtr == CAN_DATAFRAME) {
		dest->type = kFLEXCAN_FrameTypeData;
	} else {
		dest->type = kFLEXCAN_FrameTypeRemote;
	}

	dest->length = src->dlc;
	dest->dataWord0 = sys_cpu_to_be32(src->data_32[0]);
	dest->dataWord1 = sys_cpu_to_be32(src->data_32[1]);
}

static void mcux_flexcan_copy_frame_to_zframe(const flexcan_frame_t *src,
					      struct zcan_frame *dest)
{
	if (src->format == kFLEXCAN_FrameFormatStandard) {
		dest->id_type = CAN_STANDARD_IDENTIFIER;
		dest->id = FLEXCAN_ID_TO_ZCAN_ID_STD(src->id);
	} else {
		dest->id_type = CAN_EXTENDED_IDENTIFIER;
		dest->id = FLEXCAN_ID_TO_ZCAN_ID_EXT(src->id);
	}

	if (src->type == kFLEXCAN_FrameTypeData) {
		dest->rtr = CAN_DATAFRAME;
	} else {
		dest->rtr = CAN_REMOTEREQUEST;
	}

	dest->dlc = src->length;
	dest->data_32[0] = sys_be32_to_cpu(src->dataWord0);
	dest->data_32[1] = sys_be32_to_cpu(src->dataWord1);
#ifdef CONFIG_CAN_RX_TIMESTAMP
	dest->timestamp = src->timestamp;
#endif /* CAN_RX_TIMESTAMP */
}

static void mcux_flexcan_copy_zfilter_to_mbconfig(const struct zcan_filter *src,
						  flexcan_rx_mb_config_t *dest,
						  uint32_t *mask)
{
	if (src->id_type == CAN_STANDARD_IDENTIFIER) {
		dest->format = kFLEXCAN_FrameFormatStandard;
		dest->id = FLEXCAN_ID_STD(src->id);
		*mask = FLEXCAN_RX_MB_STD_MASK(src->id_mask,
					       src->rtr & src->rtr_mask, 1);
	} else {
		dest->format = kFLEXCAN_FrameFormatExtend;
		dest->id = FLEXCAN_ID_EXT(src->id);
		*mask = FLEXCAN_RX_MB_EXT_MASK(src->id_mask,
					       src->rtr & src->rtr_mask, 1);
	}

	if ((src->rtr & src->rtr_mask) == CAN_DATAFRAME) {
		dest->type = kFLEXCAN_FrameTypeData;
	} else {
		dest->type = kFLEXCAN_FrameTypeRemote;
	}
}

/* mcux_get_tx_alloc is a linear on array, and binary on atomic_val_t search
 * for the highest bit set in data->tx_allocs. 0 is returned in case of an empty
 * tx_alloc, the next free bit otherwise.
 * The reason to always use a higher buffer number than the current in use is
 * that a FIFO manner is kept. The Controller would otherwise send the frame
 * that is in the lowest buffer number first.
 */
static int mcux_get_tx_alloc(struct mcux_flexcan_data *data)
{
	atomic_val_t *allocs = data->tx_allocs;
	atomic_val_t pivot = ATOMIC_BITS / 2;
	atomic_val_t alloc, mask;
	int i;

	for (i = MCUX_N_TX_ALLOC_ELEM - 1; i >= 0; i--) {
		alloc = allocs[i];
		if (alloc) {
			for (atomic_val_t bits = ATOMIC_BITS / 2U;
			    bits; bits >>= 1) {
				mask = GENMASK(pivot + bits - 1, pivot);
				if (alloc & mask) {
					pivot += bits / 2U;
				} else {
					pivot -= bits / 2U;
				}
			}

			if (!(alloc & mask)) {
				pivot--;
			}

			break;
		}
	}

	alloc = alloc ? (pivot + 1 + i * ATOMIC_BITS) : 0;
	return alloc >= MCUX_FLEXCAN_MAX_TX ? -1 : alloc;
}

static int mcux_flexcan_send(const struct device *dev,
			     const struct zcan_frame *msg,
			     k_timeout_t timeout,
			     can_tx_callback_t callback_isr, void *callback_arg)
{
	const struct mcux_flexcan_config *config = dev->config;
	struct mcux_flexcan_data *data = dev->data;
	flexcan_mb_transfer_t xfer;
	status_t status;
	int alloc;

	if (msg->dlc > CAN_MAX_DLC) {
		LOG_ERR("DLC of %d exceeds maximum (%d)", msg->dlc, CAN_MAX_DLC);
		return CAN_TX_EINVAL;
	}

	while (true) {
		alloc = mcux_get_tx_alloc(data);
		if (alloc >= 0) {
			if (atomic_test_and_set_bit(data->tx_allocs, alloc)) {
				continue;
			}

			break;
		}

		if (k_sem_take(&data->tx_allocs_sem, timeout) != 0) {
			return CAN_TIMEOUT;
		}
	}

	mcux_flexcan_copy_zframe_to_frame(msg, &data->tx_cbs[alloc].frame);
	data->tx_cbs[alloc].function = callback_isr;
	data->tx_cbs[alloc].arg = callback_arg;
	xfer.frame = &data->tx_cbs[alloc].frame;
	xfer.mbIdx = ALLOC_IDX_TO_TXMB_IDX(alloc);
	FLEXCAN_SetTxMbConfig(config->base, xfer.mbIdx, true);
	status = FLEXCAN_TransferSendNonBlocking(config->base, &data->handle,
						 &xfer);
	if (status != kStatus_Success) {
		return CAN_TX_ERR;
	}

	if (callback_isr == NULL) {
		k_sem_take(&data->tx_cbs[alloc].done, K_FOREVER);
		return data->tx_cbs[alloc].status;
	}

	return CAN_TX_OK;
}

static int mcux_flexcan_attach_isr(const struct device *dev,
				   can_rx_callback_t isr,
				   void *callback_arg,
				   const struct zcan_filter *filter)
{
	const struct mcux_flexcan_config *config = dev->config;
	struct mcux_flexcan_data *data = dev->data;
	flexcan_mb_transfer_t xfer;
	status_t status;
	uint32_t mask;
	int alloc = CAN_NO_FREE_FILTER;
	int i;

	__ASSERT_NO_MSG(isr);

	k_mutex_lock(&data->rx_mutex, K_FOREVER);

	/* Find and allocate RX message buffer */
	for (i = RX_START_IDX; i < MCUX_FLEXCAN_MAX_RX; i++) {
		if (!atomic_test_and_set_bit(data->rx_allocs, i)) {
			alloc = i;
			break;
		}
	}

	if (alloc == CAN_NO_FREE_FILTER) {
		return alloc;
	}

	mcux_flexcan_copy_zfilter_to_mbconfig(filter,
					      &data->rx_cbs[alloc].mb_config,
					      &mask);

	data->rx_cbs[alloc].arg = callback_arg;
	data->rx_cbs[alloc].function = isr;

	FLEXCAN_SetRxIndividualMask(config->base, ALLOC_IDX_TO_RXMB_IDX(alloc),
				    mask);
	FLEXCAN_SetRxMbConfig(config->base, ALLOC_IDX_TO_RXMB_IDX(alloc),
			      &data->rx_cbs[alloc].mb_config, true);

	xfer.frame = &data->rx_cbs[alloc].frame;
	xfer.mbIdx = ALLOC_IDX_TO_RXMB_IDX(alloc);
	status = FLEXCAN_TransferReceiveNonBlocking(config->base, &data->handle,
						    &xfer);
	if (status != kStatus_Success) {
		LOG_ERR("Failed to start rx for filter id %d (err = %d)",
			alloc, status);
		alloc = CAN_NO_FREE_FILTER;
	}

	k_mutex_unlock(&data->rx_mutex);

	return alloc;
}

static void mcux_flexcan_register_state_change_isr(const struct device *dev,
						   can_state_change_isr_t isr)
{
	struct mcux_flexcan_data *data = dev->data;

	data->state_change_isr = isr;
}

static enum can_state mcux_flexcan_get_state(const struct device *dev,
					     struct can_bus_err_cnt *err_cnt)
{
	const struct mcux_flexcan_config *config = dev->config;
	uint32_t status_flags;

	if (err_cnt) {
		FLEXCAN_GetBusErrCount(config->base, &err_cnt->tx_err_cnt,
				       &err_cnt->rx_err_cnt);
	}

	status_flags = (FLEXCAN_GetStatusFlags(config->base) &
			CAN_ESR1_FLTCONF_MASK) << CAN_ESR1_FLTCONF_SHIFT;

	if (status_flags & 0x02) {
		return CAN_BUS_OFF;
	}

	if (status_flags & 0x01) {
		return CAN_ERROR_PASSIVE;
	}

	return CAN_ERROR_ACTIVE;
}

#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
int mcux_flexcan_recover(const struct device *dev, k_timeout_t timeout)
{
	const struct mcux_flexcan_config *config = dev->config;
	int ret = 0;
	uint64_t start_time;

	if (mcux_flexcan_get_state(dev, NULL) != CAN_BUS_OFF) {
		return 0;
	}

	start_time = k_uptime_ticks();
	config->base->CTRL1 &= ~CAN_CTRL1_BOFFREC_MASK;

	if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
		while (mcux_flexcan_get_state(dev, NULL) == CAN_BUS_OFF) {
			if (!K_TIMEOUT_EQ(timeout, K_FOREVER) &&
			    k_uptime_ticks() - start_time >= timeout.ticks) {
				ret = CAN_TIMEOUT;
			}
		}
	}

	config->base->CTRL1 |= CAN_CTRL1_BOFFREC_MASK;

	return ret;
}
#endif /* CONFIG_CAN_AUTO_BUS_OFF_RECOVERY */

static void mcux_flexcan_detach(const struct device *dev, int filter_id)
{
	const struct mcux_flexcan_config *config = dev->config;
	struct mcux_flexcan_data *data = dev->data;

	if (filter_id >= MCUX_FLEXCAN_MAX_RX) {
		LOG_ERR("Detach: Filter id >= MAX_RX (%d >= %d)", filter_id,
			MCUX_FLEXCAN_MAX_RX);
		return;
	}

	k_mutex_lock(&data->rx_mutex, K_FOREVER);

	if (atomic_test_and_clear_bit(data->rx_allocs, filter_id)) {
		FLEXCAN_TransferAbortReceive(config->base, &data->handle,
					     ALLOC_IDX_TO_RXMB_IDX(filter_id));
		FLEXCAN_SetRxMbConfig(config->base,
				      ALLOC_IDX_TO_RXMB_IDX(filter_id), NULL,
				      false);
		data->rx_cbs[filter_id].function = NULL;
		data->rx_cbs[filter_id].arg = NULL;
	} else {
		LOG_WRN("Filter ID %d already detached", filter_id);
	}

	k_mutex_unlock(&data->rx_mutex);
}

static inline void mcux_flexcan_transfer_error_status(const struct device *dev,
						      uint64_t error)
{
	const struct mcux_flexcan_config *config = dev->config;
	struct mcux_flexcan_data *data = dev->data;
	can_tx_callback_t function;
	int status = CAN_TX_OK;
	void *arg;
	int alloc;
	enum can_state state;
	struct can_bus_err_cnt err_cnt;

	if (error & CAN_ESR1_FLTCONF(2)) {
		LOG_DBG("Tx bus off (error 0x%08llx)", error);
		status = CAN_TX_BUS_OFF;
	} else if ((error & kFLEXCAN_Bit0Error) ||
		   (error & kFLEXCAN_Bit1Error)) {
		LOG_DBG("TX arbitration lost (error 0x%08llx)", error);
		status = CAN_TX_ARB_LOST;
	} else if (error & kFLEXCAN_AckError) {
		LOG_DBG("TX no ACK received (error 0x%08llx)", error);
		status = CAN_TX_ERR;
	} else if (error & kFLEXCAN_StuffingError) {
		LOG_DBG("RX stuffing error (error 0x%08llx)", error);
	} else if (error & kFLEXCAN_FormError) {
		LOG_DBG("RX form error (error 0x%08llx)", error);
	} else if (error & kFLEXCAN_CrcError) {
		LOG_DBG("RX CRC error (error 0x%08llx)", error);
	} else {
		LOG_DBG("Unhandled error (error 0x%08llx)", error);
	}

	state = mcux_flexcan_get_state(dev, &err_cnt);
	if (data->state != state) {
		data->state = state;
		if (data->state_change_isr) {
			data->state_change_isr(state, err_cnt);
		}
	}

	if (status == CAN_TX_OK) {
		/*
		 * Error/status is not TX related. No further action
		 * required.
		 */
		return;
	}

	/*
	 * Since the FlexCAN module ESR1 register accumulates errors
	 * and warnings across multiple transmitted frames (until the
	 * CPU reads the register) it is not possible to find out
	 * which transfer caused the error/warning.
	 *
	 * We therefore propagate the error/warning to all currently
	 * active transmitters.
	 */
	for (alloc = 0; alloc < MCUX_FLEXCAN_MAX_TX; alloc++) {
		/* Copy callback function and argument before clearing bit */
		function = data->tx_cbs[alloc].function;
		arg = data->tx_cbs[alloc].arg;

		if (atomic_test_and_clear_bit(data->tx_allocs, alloc)) {
			FLEXCAN_TransferAbortSend(config->base, &data->handle,
						  ALLOC_IDX_TO_TXMB_IDX(alloc));
			if (function != NULL) {
				function(status, arg);
			} else {
				data->tx_cbs[alloc].status = status;
				k_sem_give(&data->tx_cbs[alloc].done);
			}

			k_sem_give(&data->tx_allocs_sem);
		}
	}
}

static inline void mcux_flexcan_transfer_tx_idle(const struct device *dev,
						 uint32_t mb)
{
	struct mcux_flexcan_data *data = dev->data;
	can_tx_callback_t function;
	void *arg;
	int alloc;

	alloc = TX_MBIDX_TO_ALLOC_IDX(mb);

	/* Copy callback function and argument before clearing bit */
	function = data->tx_cbs[alloc].function;
	arg = data->tx_cbs[alloc].arg;

	if (atomic_test_and_clear_bit(data->tx_allocs, alloc)) {
		if (function != NULL) {
			function(CAN_TX_OK, arg);
		} else {
			data->tx_cbs[alloc].status = CAN_TX_OK;
			k_sem_give(&data->tx_cbs[alloc].done);
		}
		k_sem_give(&data->tx_allocs_sem);
	}
}

static inline void mcux_flexcan_transfer_rx_idle(const struct device *dev,
						 uint32_t mb)
{
	const struct mcux_flexcan_config *config = dev->config;
	struct mcux_flexcan_data *data = dev->data;
	can_rx_callback_t function;
	flexcan_mb_transfer_t xfer;
	struct zcan_frame frame;
	status_t status;
	void *arg;
	int alloc;

	alloc = RX_MBIDX_TO_ALLOC_IDX(mb);
	function = data->rx_cbs[alloc].function;
	arg = data->rx_cbs[alloc].arg;

	if (atomic_test_bit(data->rx_allocs, alloc)) {
		mcux_flexcan_copy_frame_to_zframe(&data->rx_cbs[alloc].frame,
						  &frame);
		function(&frame, arg);

		/* Setup RX message buffer to receive next message */
		FLEXCAN_SetRxMbConfig(config->base, mb,
				      &data->rx_cbs[alloc].mb_config, true);
		xfer.frame = &data->rx_cbs[alloc].frame;
		xfer.mbIdx = mb;
		status = FLEXCAN_TransferReceiveNonBlocking(config->base,
							    &data->handle,
							    &xfer);
		if (status != kStatus_Success) {
			LOG_ERR("Failed to restart rx for filter id %d "
				"(err = %d)", alloc, status);
		}
	}
}

static FLEXCAN_CALLBACK(mcux_flexcan_transfer_callback)
{
	struct mcux_flexcan_data *data = (struct mcux_flexcan_data *)userData;

	switch (status) {
	case kStatus_FLEXCAN_UnHandled:
		__fallthrough;
	case kStatus_FLEXCAN_ErrorStatus:
		mcux_flexcan_transfer_error_status(data->dev, (uint64_t)result);
		break;
	case kStatus_FLEXCAN_TxSwitchToRx:
		__fallthrough;
	case kStatus_FLEXCAN_TxIdle:
		/* The result field is a MB value which is limited to 32bit value */
		mcux_flexcan_transfer_tx_idle(data->dev, (uint32_t)result);
		break;
	case kStatus_FLEXCAN_RxOverflow:
		__fallthrough;
	case kStatus_FLEXCAN_RxIdle:
		/* The result field is a MB value which is limited to 32bit value */
		mcux_flexcan_transfer_rx_idle(data->dev, (uint32_t)result);
		break;
	default:
		LOG_WRN("Unhandled error/status (status 0x%08x, "
			 "result = 0x%08llx", status, (uint64_t)result);
	}
}

static void mcux_flexcan_isr(const struct device *dev)
{
	const struct mcux_flexcan_config *config = dev->config;
	struct mcux_flexcan_data *data = dev->data;

	FLEXCAN_TransferHandleIRQ(config->base, &data->handle);
}

static int mcux_flexcan_init(const struct device *dev)
{
	const struct mcux_flexcan_config *config = dev->config;
	struct mcux_flexcan_data *data = dev->data;
	int err;
	int i;

	k_mutex_init(&data->rx_mutex);
	k_sem_init(&data->tx_allocs_sem, 0, 1);

	for (i = 0; i < ARRAY_SIZE(data->tx_cbs); i++) {
		k_sem_init(&data->tx_cbs[i].done, 0, 1);
	}

	data->timing.sjw = config->sjw;
	if (config->sample_point && USE_SP_ALGO) {
		err = can_calc_timing(dev, &data->timing, config->bitrate,
				      config->sample_point);
		if (err == -EINVAL) {
			LOG_ERR("Can't find timing for given param");
			return -EIO;
		}
		LOG_DBG("Presc: %d, Seg1S1: %d, Seg2: %d",
			data->timing.prescaler, data->timing.phase_seg1,
			data->timing.phase_seg2);
		LOG_DBG("Sample-point err : %d", err);
	} else {
		data->timing.prop_seg = config->prop_seg;
		data->timing.phase_seg1 = config->phase_seg1;
		data->timing.phase_seg2 = config->phase_seg2;
		err = can_calc_prescaler(dev, &data->timing, config->bitrate);
		if (err) {
			LOG_WRN("Bitrate error: %d", err);
		}
	}

	err = mcux_flexcan_set_mode(dev, CAN_NORMAL_MODE);
	if (err) {
		return err;
	}

	data->dev = dev;

	FLEXCAN_TransferCreateHandle(config->base, &data->handle,
				     mcux_flexcan_transfer_callback, data);

	config->irq_config_func(dev);

#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
	config->base->CTRL1 |= CAN_CTRL1_BOFFREC_MASK;
#endif /* CONFIG_CAN_AUTO_BUS_OFF_RECOVERY */
	data->state = mcux_flexcan_get_state(dev, NULL);

	return 0;
}

static const struct can_driver_api mcux_flexcan_driver_api = {
	.set_mode = mcux_flexcan_set_mode,
	.set_timing = mcux_flexcan_set_timing,
	.send = mcux_flexcan_send,
	.attach_isr = mcux_flexcan_attach_isr,
	.detach = mcux_flexcan_detach,
	.get_state = mcux_flexcan_get_state,
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
	.recover = mcux_flexcan_recover,
#endif
	.register_state_change_isr = mcux_flexcan_register_state_change_isr,
	.get_core_clock = mcux_flexcan_get_core_clock,
	/*
	 * FlexCAN timing limits are specified in the "FLEXCANx_CTRL1 field
	 * descriptions" table in the SoC reference manual.
	 *
	 * Note that the values here are the "physical" timing limits, whereas
	 * the register field limits are physical values minus 1 (which is
	 * handled by the flexcan_config_t field assignments elsewhere in this
	 * driver).
	 */
	.timing_min = {
		.sjw = 0x01,
		.prop_seg = 0x01,
		.phase_seg1 = 0x01,
		.phase_seg2 = 0x02,
		.prescaler = 0x01
	},
	.timing_max = {
		.sjw = 0x04,
		.prop_seg = 0x08,
		.phase_seg1 = 0x08,
		.phase_seg2 = 0x08,
		.prescaler = 0x100
	}
};

#define FLEXCAN_IRQ_CODE(id, name) \
	do {								\
		IRQ_CONNECT(DT_INST_IRQ_BY_NAME(id, name, irq),		\
		DT_INST_IRQ_BY_NAME(id, name, priority),		\
		mcux_flexcan_isr,					\
		DEVICE_DT_INST_GET(id), 0);				\
		irq_enable(DT_INST_IRQ_BY_NAME(id, name, irq));		\
	} while (0)

#define FLEXCAN_IRQ(id, name) \
	COND_CODE_1(DT_INST_IRQ_HAS_NAME(id, name), \
		(FLEXCAN_IRQ_CODE(id, name)), ())

#define FLEXCAN_DEVICE_INIT_MCUX(id)					\
	static void mcux_flexcan_irq_config_##id(const struct device *dev); \
									\
	static const struct mcux_flexcan_config mcux_flexcan_config_##id = { \
		.base = (CAN_Type *)DT_INST_REG_ADDR(id),		\
		.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)),	\
		.clock_subsys = (clock_control_subsys_t)		\
			DT_INST_CLOCKS_CELL(id, name),			\
		.clk_source = DT_INST_PROP(id, clk_source),		\
		.bitrate = DT_INST_PROP(id, bus_speed),			\
		.sjw = DT_INST_PROP(id, sjw),				\
		.prop_seg = DT_INST_PROP_OR(id, prop_seg, 0),		\
		.phase_seg1 = DT_INST_PROP_OR(id, phase_seg1, 0),	\
		.phase_seg2 = DT_INST_PROP_OR(id, phase_seg2, 0),	\
		.sample_point = DT_INST_PROP_OR(id, sample_point, 0),	\
		.irq_config_func = mcux_flexcan_irq_config_##id,	\
	};								\
									\
	static struct mcux_flexcan_data mcux_flexcan_data_##id;		\
									\
	DEVICE_DT_INST_DEFINE(id, &mcux_flexcan_init,			\
			NULL, &mcux_flexcan_data_##id,	\
			&mcux_flexcan_config_##id, POST_KERNEL,		\
			CONFIG_KERNEL_INIT_PRIORITY_DEVICE,		\
			&mcux_flexcan_driver_api);			\
									\
	static void mcux_flexcan_irq_config_##id(const struct device *dev) \
	{								\
		FLEXCAN_IRQ(id, rx_warning);				\
		FLEXCAN_IRQ(id, tx_warning);				\
		FLEXCAN_IRQ(id, bus_off);				\
		FLEXCAN_IRQ(id, warning);				\
		FLEXCAN_IRQ(id, error);					\
		FLEXCAN_IRQ(id, wake_up);				\
		FLEXCAN_IRQ(id, mb_0_15);				\
		FLEXCAN_IRQ(id, common);				\
	}

DT_INST_FOREACH_STATUS_OKAY(FLEXCAN_DEVICE_INIT_MCUX)

#if defined(CONFIG_NET_SOCKETS_CAN)
#include "socket_can_generic.h"
#define FLEXCAN_DEVICE_SOCKET_CAN(id)					\
	static struct socket_can_context socket_can_context_##id;	\
	static int socket_can_init_##id(const struct device *dev)	\
	{								\
		const struct device *can_dev = DEVICE_DT_INST_GET(id);	\
		struct socket_can_context *socket_context = dev->data;	\
		LOG_DBG("Init socket CAN device %p (%s) for dev %p (%s)", \
			dev, dev->name, can_dev, can_dev->name);	\
		socket_context->can_dev = can_dev;			\
		socket_context->msgq = &socket_can_msgq;		\
		socket_context->rx_tid =				\
		k_thread_create(&socket_context->rx_thread_data,	\
				rx_thread_stack,			\
				K_KERNEL_STACK_SIZEOF(rx_thread_stack),	\
				rx_thread, socket_context, NULL, NULL,	\
				RX_THREAD_PRIORITY, 0, K_NO_WAIT);	\
		return 0;						\
	}								\
									\
	NET_DEVICE_INIT(socket_can_flexcan_##id, SOCKET_CAN_NAME_##id,	\
		socket_can_init_##id, NULL,				\
		&socket_can_context_##id, NULL,				\
		CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &socket_can_api,	\
		CANBUS_RAW_L2, NET_L2_GET_CTX_TYPE(CANBUS_RAW_L2),	\
		CAN_MTU);						\

DT_INST_FOREACH_STATUS_OKAY(FLEXCAN_DEVICE_SOCKET_CAN)
#endif