Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
/*
 * Copyright (c) 2018 Intel Corporation.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr.h>
#include <tc_util.h>
#include <ztest.h>
#include <kernel.h>
#include <ksched.h>
#include <kernel_structs.h>

#if CONFIG_MP_NUM_CPUS < 2
#error SMP test requires at least two CPUs!
#endif

#define T2_STACK_SIZE (2048 + CONFIG_TEST_EXTRA_STACKSIZE)
#define STACK_SIZE (384 + CONFIG_TEST_EXTRA_STACKSIZE)
#define DELAY_US 50000
#define TIMEOUT 1000
#define EQUAL_PRIORITY 1
#define TIME_SLICE_MS 500
#define THREAD_DELAY 1

struct k_thread t2;
K_THREAD_STACK_DEFINE(t2_stack, T2_STACK_SIZE);

volatile int t2_count;
volatile int sync_count = -1;

static int main_thread_id;
static int child_thread_id;
volatile int rv;

K_SEM_DEFINE(cpuid_sema, 0, 1);
K_SEM_DEFINE(sema, 0, 1);
static struct k_mutex smutex;
static struct k_sem smp_sem;

#define THREADS_NUM CONFIG_MP_NUM_CPUS

struct thread_info {
	k_tid_t tid;
	int executed;
	int priority;
	int cpu_id;
};
static ZTEST_BMEM volatile struct thread_info tinfo[THREADS_NUM];
static struct k_thread tthread[THREADS_NUM];
static K_THREAD_STACK_ARRAY_DEFINE(tstack, THREADS_NUM, STACK_SIZE);

static volatile int thread_started[THREADS_NUM - 1];

static int curr_cpu(void)
{
	unsigned int k = arch_irq_lock();
	int ret = arch_curr_cpu()->id;

	arch_irq_unlock(k);
	return ret;
}

/**
 * @brief Tests for SMP
 * @defgroup kernel_smp_tests SMP Tests
 * @ingroup all_tests
 * @{
 * @}
 */

/**
 * @defgroup kernel_smp_integration_tests SMP Tests
 * @ingroup all_tests
 * @{
 * @}
 */

/**
 * @defgroup kernel_smp_module_tests SMP Tests
 * @ingroup all_tests
 * @{
 * @}
 */

static void t2_fn(void *a, void *b, void *c)
{
	ARG_UNUSED(a);
	ARG_UNUSED(b);
	ARG_UNUSED(c);

	t2_count = 0;

	/* This thread simply increments a counter while spinning on
	 * the CPU.  The idea is that it will always be iterating
	 * faster than the other thread so long as it is fairly
	 * scheduled (and it's designed to NOT be fairly schedulable
	 * without a separate CPU!), so the main thread can always
	 * check its progress.
	 */
	while (1) {
		k_busy_wait(DELAY_US);
		t2_count++;
	}
}

/**
 * @brief Verify SMP with 2 cooperative threads
 *
 * @ingroup kernel_smp_tests
 *
 * @details Multi processing is verified by checking whether
 * 2 cooperative threads run simultaneously at different cores
 */
void test_smp_coop_threads(void)
{
	int i, ok = 1;

	k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, t2_fn,
				      NULL, NULL, NULL,
				      K_PRIO_COOP(2), 0, K_NO_WAIT);

	/* Wait for the other thread (on a separate CPU) to actually
	 * start running.  We want synchrony to be as perfect as
	 * possible.
	 */
	t2_count = -1;
	while (t2_count == -1) {
	}

	for (i = 0; i < 10; i++) {
		/* Wait slightly longer than the other thread so our
		 * count will always be lower
		 */
		k_busy_wait(DELAY_US + (DELAY_US / 8));

		if (t2_count <= i) {
			ok = 0;
			break;
		}
	}

	k_thread_abort(tid);
	zassert_true(ok, "SMP test failed");
}

static void child_fn(void *p1, void *p2, void *p3)
{
	ARG_UNUSED(p2);
	ARG_UNUSED(p3);
	int parent_cpu_id = POINTER_TO_INT(p1);

	zassert_true(parent_cpu_id != curr_cpu(),
		     "Parent isn't on other core");

	sync_count++;
	k_sem_give(&cpuid_sema);
}

/**
 * @brief Verify CPU IDs of threads in SMP
 *
 * @ingroup kernel_smp_tests
 *
 * @details Verify whether thread running on other core is
 * parent thread from child thread
 */
void test_cpu_id_threads(void)
{
	/* Make sure idle thread runs on each core */
	k_sleep(K_MSEC(1000));

	int parent_cpu_id = curr_cpu();

	k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, child_fn,
				      INT_TO_POINTER(parent_cpu_id), NULL,
				      NULL, K_PRIO_PREEMPT(2), 0, K_NO_WAIT);

	while (sync_count == -1) {
	}
	k_sem_take(&cpuid_sema, K_FOREVER);

	k_thread_abort(tid);
}

static void thread_entry(void *p1, void *p2, void *p3)
{
	ARG_UNUSED(p2);
	ARG_UNUSED(p3);
	int thread_num = POINTER_TO_INT(p1);
	int count = 0;

	tinfo[thread_num].executed  = 1;
	tinfo[thread_num].cpu_id = curr_cpu();

	while (count++ < 5) {
		k_busy_wait(DELAY_US);
	}
}

static void spin_for_threads_exit(void)
{
	for (int i = 0; i < THREADS_NUM - 1; i++) {
		volatile uint8_t *p = &tinfo[i].tid->base.thread_state;

		while (!(*p & _THREAD_DEAD)) {
		}
	}
	k_busy_wait(DELAY_US);
}

static void spawn_threads(int prio, int thread_num, int equal_prio,
			k_thread_entry_t thread_entry, int delay)
{
	int i;

	/* Spawn threads of priority higher than
	 * the previously created thread
	 */
	for (i = 0; i < thread_num; i++) {
		if (equal_prio) {
			tinfo[i].priority = prio;
		} else {
			/* Increase priority for each thread */
			tinfo[i].priority = prio - 1;
			prio = tinfo[i].priority;
		}
		tinfo[i].tid = k_thread_create(&tthread[i], tstack[i],
					       STACK_SIZE, thread_entry,
					       INT_TO_POINTER(i), NULL, NULL,
					       tinfo[i].priority, 0,
					       K_MSEC(delay));
		if (delay) {
			/* Increase delay for each thread */
			delay = delay + 10;
		}
	}
}

static void abort_threads(int num)
{
	for (int i = 0; i < num; i++) {
		k_thread_abort(tinfo[i].tid);
	}
}

static void cleanup_resources(void)
{
	for (int i = 0; i < THREADS_NUM; i++) {
		tinfo[i].tid = 0;
		tinfo[i].executed = 0;
		tinfo[i].priority = 0;
	}
}

/**
 * @brief Test cooperative threads non-preemption
 *
 * @ingroup kernel_smp_tests
 *
 * @details Spawn cooperative threads equal to number of cores
 * supported. Main thread will already be running on 1 core.
 * Check if the last thread created preempts any threads
 * already running.
 */
void test_coop_resched_threads(void)
{
	/* Spawn threads equal to number of cores,
	 * since we don't give up current CPU, last thread
	 * will not get scheduled
	 */
	spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY,
		      &thread_entry, THREAD_DELAY);

	/* Wait for some time to let other core's thread run */
	k_busy_wait(DELAY_US);


	/* Reassure that cooperative thread's are not preempted
	 * by checking last thread's execution
	 * status. We know that all threads got rescheduled on
	 * other cores except the last one
	 */
	for (int i = 0; i < THREADS_NUM - 1; i++) {
		zassert_true(tinfo[i].executed == 1,
			     "cooperative thread %d didn't run", i);
	}
	zassert_true(tinfo[THREADS_NUM - 1].executed == 0,
		     "cooperative thread is preempted");

	/* Abort threads created */
	abort_threads(THREADS_NUM);
	cleanup_resources();
}

/**
 * @brief Test preemptness of preemptive thread
 *
 * @ingroup kernel_smp_tests
 *
 * @details Create preemptive thread and let it run
 * on another core and verify if it gets preempted
 * if another thread of higher priority is spawned
 */
void test_preempt_resched_threads(void)
{
	/* Spawn threads  equal to number of cores,
	 * lower priority thread should
	 * be preempted by higher ones
	 */
	spawn_threads(K_PRIO_PREEMPT(10), THREADS_NUM, !EQUAL_PRIORITY,
		      &thread_entry, THREAD_DELAY);

	spin_for_threads_exit();

	for (int i = 0; i < THREADS_NUM; i++) {
		zassert_true(tinfo[i].executed == 1,
			     "preemptive thread %d didn't run", i);
	}

	/* Abort threads created */
	abort_threads(THREADS_NUM);
	cleanup_resources();
}

/**
 * @brief Validate behavior of thread when it yields
 *
 * @ingroup kernel_smp_tests
 *
 * @details Spawn cooperative threads equal to number
 * of cores, so last thread would be pending, call
 * yield() from main thread. Now, all threads must be
 * executed
 */
void test_yield_threads(void)
{
	/* Spawn threads equal to the number
	 * of cores, so the last thread would be
	 * pending.
	 */
	spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY,
		      &thread_entry, !THREAD_DELAY);

	k_yield();
	k_busy_wait(DELAY_US);

	for (int i = 0; i < THREADS_NUM; i++) {
		zassert_true(tinfo[i].executed == 1,
			     "thread %d did not execute", i);

	}

	abort_threads(THREADS_NUM);
	cleanup_resources();
}

/**
 * @brief Test behavior of thread when it sleeps
 *
 * @ingroup kernel_smp_tests
 *
 * @details Spawn cooperative thread and call
 * sleep() from main thread. After timeout, all
 * threads has to be scheduled.
 */
void test_sleep_threads(void)
{
	spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY,
		      &thread_entry, !THREAD_DELAY);

	k_msleep(TIMEOUT);

	for (int i = 0; i < THREADS_NUM; i++) {
		zassert_true(tinfo[i].executed == 1,
			     "thread %d did not execute", i);
	}

	abort_threads(THREADS_NUM);
	cleanup_resources();
}

static void thread_wakeup_entry(void *p1, void *p2, void *p3)
{
	ARG_UNUSED(p2);
	ARG_UNUSED(p3);
	int thread_num = POINTER_TO_INT(p1);

	thread_started[thread_num] = 1;

	k_msleep(DELAY_US * 1000);

	tinfo[thread_num].executed  = 1;
}

static void wakeup_on_start_thread(int tnum)
{
	int threads_started = 0, i;

	/* For each thread, spin waiting for it to first flag that
	 * it's going to sleep, and then that it's actually blocked
	 */
	for (i = 0; i < tnum; i++) {
		while (thread_started[i] == 0) {
		}
		while (!z_is_thread_prevented_from_running(tinfo[i].tid)) {
		}
	}

	for (i = 0; i < tnum; i++) {
		if (thread_started[i] == 1 && threads_started <= tnum) {
			threads_started++;
			k_wakeup(tinfo[i].tid);
		}
	}
	zassert_equal(threads_started, tnum,
		      "All threads haven't started");
}

static void check_wokeup_threads(int tnum)
{
	int threads_woke_up = 0, i;

	/* k_wakeup() isn't synchronous, give the other CPU time to
	 * schedule them
	 */
	k_busy_wait(200000);

	for (i = 0; i < tnum; i++) {
		if (tinfo[i].executed == 1 && threads_woke_up <= tnum) {
			threads_woke_up++;
		}
	}
	zassert_equal(threads_woke_up, tnum, "Threads did not wakeup");
}

/**
 * @brief Test behavior of wakeup() in SMP case
 *
 * @ingroup kernel_smp_tests
 *
 * @details Spawn number of threads equal to number of
 * remaining cores and let them sleep for a while. Call
 * wakeup() of those threads from parent thread and check
 * if they are all running
 */
void test_wakeup_threads(void)
{
	/* Spawn threads to run on all remaining cores */
	spawn_threads(K_PRIO_COOP(10), THREADS_NUM - 1, !EQUAL_PRIORITY,
		      &thread_wakeup_entry, !THREAD_DELAY);

	/* Check if all the threads have started, then call wakeup */
	wakeup_on_start_thread(THREADS_NUM - 1);

	/* Count threads which are woken up */
	check_wokeup_threads(THREADS_NUM - 1);

	/* Abort all threads and cleanup */
	abort_threads(THREADS_NUM - 1);
	cleanup_resources();
}

/* a thread for testing get current cpu */
static void thread_get_cpu_entry(void *p1, void *p2, void *p3)
{
	int bsp_id = *(int *)p1;
	int cpu_id = -1;

	/* get current cpu number for running thread */
	_cpu_t *curr_cpu = arch_curr_cpu();

	/**TESTPOINT: call arch_curr_cpu() to get cpu struct */
	zassert_true(curr_cpu != NULL,
			"test failed to get current cpu.");

	cpu_id = curr_cpu->id;

	zassert_true(bsp_id != cpu_id,
			"should not be the same with our BSP");

	/* loop forever to ensure running on this CPU */
	while (1) {
		k_busy_wait(DELAY_US);
	}
}

/**
 * @brief Test get a pointer of CPU
 *
 * @ingroup kernel_smp_module_tests
 *
 * @details
 * Test Objective:
 * - To verify architecture layer provides a mechanism to return a pointer to the
 *   current kernel CPU record of the running CPU.
 *   We call arch_curr_cpu() and get it's member, both in main and spwaned thread
 *   speratively, and compare them. They shall be different in SMP enviornment.
 *
 * Testing techniques:
 * - Interface testing, function and block box testing,
 *   dynamic analysis and testing,
 *
 * Prerequisite Conditions:
 * - CONFIG_SMP=y, and the HW platform must support SMP.
 *
 * Input Specifications:
 * - N/A
 *
 * Test Procedure:
 * -# In main thread, call arch_curr_cpu() to get it's member "id",then store it
 *  into a variable thread_id.
 * -# Spawn a thread t2, and pass the stored thread_id to it, then call
 *  k_busy_wait() 50us to wait for thread run and won't be swapped out.
 * -# In thread t2, call arch_curr_cpu() to get pointer of current cpu data. Then
 *  check if it not NULL.
 * -# Store the member id via accessing pointer of current cpu data to var cpu_id.
 * -# Check if cpu_id is not equaled to bsp_id that we pass into thread.
 * -# Call k_busy_wait() and loop forever.
 * -# In main thread, terminate the thread t2 before exit.
 *
 * Expected Test Result:
 * - The pointer of current cpu data that we got from function call is correct.
 *
 * Pass/Fail Criteria:
 * - Successful if the check of step 3,5 are all passed.
 * - Failure if one of the check of step 3,5 is failed.
 *
 * Assumptions and Constraints:
 * - This test using for the platform that support SMP, in our current scenario
 *   , only x86_64, arc and xtensa supported.
 *
 * @see arch_curr_cpu()
 */
void test_get_cpu(void)
{
	k_tid_t thread_id;

	/* get current cpu number */
	int cpu_id = arch_curr_cpu()->id;

	thread_id = k_thread_create(&t2, t2_stack, T2_STACK_SIZE,
				      (k_thread_entry_t)thread_get_cpu_entry,
				      &cpu_id, NULL, NULL,
				      K_PRIO_COOP(2),
				      K_INHERIT_PERMS, K_NO_WAIT);

	k_busy_wait(DELAY_US);

	k_thread_abort(thread_id);
}

#ifdef CONFIG_TRACE_SCHED_IPI
/* global variable for testing send IPI */
static volatile int sched_ipi_has_called;

void z_trace_sched_ipi(void)
{
	sched_ipi_has_called++;
}
#endif

/**
 * @brief Test interprocessor interrupt
 *
 * @ingroup kernel_smp_integration_tests
 *
 * @details
 * Test Objective:
 * - To verify architecture layer provides a mechanism to issue an interprocessor
 *   interrupt to all other CPUs in the system that calls the scheduler IPI.
 *   We simply add a hook in z_sched_ipi(), in order to check if it has been
 *   called once in another CPU except the caller, when arch_sched_ipi() is
 *   called.
 *
 * Testing techniques:
 * - Interface testing, function and block box testing,
 *   dynamic analysis and testing
 *
 * Prerequisite Conditions:
 * - CONFIG_SMP=y, and the HW platform must support SMP.
 * - CONFIG_TRACE_SCHED_IPI=y was set.
 *
 * Input Specifications:
 * - N/A
 *
 * Test Procedure:
 * -# In main thread, given a global variable sched_ipi_has_called equaled zero.
 * -# Call arch_sched_ipi() then sleep for 100ms.
 * -# In z_sched_ipi() handler, increment the sched_ipi_has_called.
 * -# In main thread, check the sched_ipi_has_called is not equaled to zero.
 * -# Repeat step 1 to 4 for 3 times.
 *
 * Expected Test Result:
 * - The pointer of current cpu data that we got from function call is correct.
 *
 * Pass/Fail Criteria:
 * - Successful if the check of step 4 are all passed.
 * - Failure if one of the check of step 4 is failed.
 *
 * Assumptions and Constraints:
 * - This test using for the platform that support SMP, in our current scenario
 *   , only x86_64 and arc supported.
 *
 * @see arch_sched_ipi()
 */
void test_smp_ipi(void)
{
#ifndef CONFIG_TRACE_SCHED_IPI
	ztest_test_skip();
#endif

	TC_PRINT("cpu num=%d", CONFIG_MP_NUM_CPUS);

	for (int i = 0; i < 3 ; i++) {
		/* issue a sched ipi to tell other CPU to run thread */
		sched_ipi_has_called = 0;
		arch_sched_ipi();

		/* Need to wait longer than we think, loaded CI
		 * systems need to wait for host scheduling to run the
		 * other CPU's thread.
		 */
		k_msleep(100);

		/**TESTPOINT: check if enter our IPI interrupt handler */
		zassert_true(sched_ipi_has_called != 0,
				"did not receive IPI.(%d)",
				sched_ipi_has_called);
	}
}

void k_sys_fatal_error_handler(unsigned int reason, const z_arch_esf_t *pEsf)
{
	static int trigger;

	if (reason != K_ERR_KERNEL_OOPS) {
		printk("wrong error reason\n");
		k_fatal_halt(reason);
	}

	if (trigger == 0) {
		child_thread_id = curr_cpu();
		trigger++;
	} else {
		main_thread_id = curr_cpu();

		/* Verify the fatal was happened on different core */
		zassert_true(main_thread_id != child_thread_id,
					"fatal on the same core");
	}
}

void entry_oops(void *p1, void *p2, void *p3)
{
	k_oops();
	TC_ERROR("SHOULD NEVER SEE THIS\n");
}

/**
 * @brief Test fatal error can be triggered on different core

 * @details When CONFIG_SMP is enabled, on some multiprocessor
 * platforms, exception can be triggered on different core at
 * the same time.
 *
 * @ingroup kernel_common_tests
 */
void test_fatal_on_smp(void)
{
	/* Creat a child thread and trigger a crash */
	k_thread_create(&t2, t2_stack, T2_STACK_SIZE, entry_oops,
				      NULL, NULL, NULL,
				      K_PRIO_PREEMPT(2), 0, K_NO_WAIT);

	/* hold cpu and wait for thread trigger exception */
	k_busy_wait(2000);

	/* Manually trigger the crash in mainthread */
	entry_oops(NULL, NULL, NULL);

	/* should not be here */
	ztest_test_fail();
}

static void workq_handler(struct k_work *work)
{
	child_thread_id = curr_cpu();
}

/**
 * @brief Test system workq run on different core

 * @details When macro CONFIG_SMP is enabled, workq can be run
 * on different core.
 *
 * @ingroup kernel_common_tests
 */
void test_workq_on_smp(void)
{
	static struct k_work work;

	k_work_init(&work, workq_handler);

	/* submit work item on system workq */
	k_work_submit(&work);

	/* Wait for some time to let other core's thread run */
	k_busy_wait(DELAY_US);

	/* check work have finished */
	zassert_equal(k_work_busy_get(&work), 0, NULL);

	main_thread_id = curr_cpu();

	/* Verify the ztest thread and system workq run on different core */
	zassert_true(main_thread_id != child_thread_id,
		"system workq run on the same core");
}

static void t1_mutex_lock(void *p1, void *p2, void *p3)
{
	/* t1 will get mutex first */
	k_mutex_lock((struct k_mutex *)p1, K_FOREVER);

	k_msleep(2);

	k_mutex_unlock((struct k_mutex *)p1);
}

static void t2_mutex_lock(void *p1, void *p2, void *p3)
{
	zassert_equal(_current->base.global_lock_count, 0,
			"thread global lock cnt %d is incorrect",
			_current->base.global_lock_count);

	k_mutex_lock((struct k_mutex *)p1, K_FOREVER);

	zassert_equal(_current->base.global_lock_count, 0,
			"thread global lock cnt %d is incorrect",
			_current->base.global_lock_count);

	k_mutex_unlock((struct k_mutex *)p1);

	/**TESTPOINT: z_smp_release_global_lock() has been call during
	 * context switch but global_lock_cnt has not been decrease
	 * because no irq_lock() was called.
	 */
	zassert_equal(_current->base.global_lock_count, 0,
			"thread global lock cnt %d is incorrect",
			_current->base.global_lock_count);
}

/**
 * @brief Test scenairo that a thread release the global lock
 *
 * @ingroup kernel_smp_tests
 *
 * @details Validate the scenario that make the internal APIs of SMP
 * z_smp_release_global_lock() to be called.
 */
void test_smp_release_global_lock(void)
{
	k_mutex_init(&smutex);

	tinfo[0].tid =
	k_thread_create(&tthread[0], tstack[0], STACK_SIZE,
			(k_thread_entry_t)t1_mutex_lock,
			&smutex, NULL, NULL,
			K_PRIO_PREEMPT(5),
			K_INHERIT_PERMS, K_NO_WAIT);

	tinfo[1].tid =
	k_thread_create(&tthread[1], tstack[1], STACK_SIZE,
		(k_thread_entry_t)t2_mutex_lock,
			&smutex, NULL, NULL,
			K_PRIO_PREEMPT(3),
			K_INHERIT_PERMS, K_MSEC(1));

	/* Hold one of the cpu to ensure context switch as we wanted
	 * can happen in another cpu.
	 */
	k_busy_wait(20000);

	k_thread_join(tinfo[1].tid, K_FOREVER);
	k_thread_join(tinfo[0].tid, K_FOREVER);
	cleanup_resources();
}

#define LOOP_COUNT 20000

enum sync_t {
	LOCK_IRQ,
	LOCK_SEM,
	LOCK_MUTEX
};

static int global_cnt;
static struct k_mutex smp_mutex;

static void (*sync_lock)(void *);
static void (*sync_unlock)(void *);

static void sync_lock_dummy(void *k)
{
	/* no sync lock used */
}

static void sync_lock_irq(void *k)
{
	*((unsigned int *)k) = irq_lock();
}

static void sync_unlock_irq(void *k)
{
	irq_unlock(*(unsigned int *)k);
}

static void sync_lock_sem(void *k)
{
	k_sem_take(&smp_sem, K_FOREVER);
}

static void sync_unlock_sem(void *k)
{
	k_sem_give(&smp_sem);
}

static void sync_lock_mutex(void *k)
{
	k_mutex_lock(&smp_mutex, K_FOREVER);
}

static void sync_unlock_mutex(void *k)
{
	k_mutex_unlock(&smp_mutex);
}

static void sync_init(int lock_type)
{
	switch (lock_type) {
	case LOCK_IRQ:
		sync_lock = sync_lock_irq;
		sync_unlock = sync_unlock_irq;
		break;
	case LOCK_SEM:
		sync_lock = sync_lock_sem;
		sync_unlock = sync_unlock_sem;
		k_sem_init(&smp_sem, 1, 3);
		break;
	case LOCK_MUTEX:
		sync_lock = sync_lock_mutex;
		sync_unlock = sync_unlock_mutex;
		k_mutex_init(&smp_mutex);
		break;

	default:
		sync_lock = sync_unlock = sync_lock_dummy;
	}
}

static void inc_global_cnt(void *a, void *b, void *c)
{
	int key;

	for (int i = 0; i < LOOP_COUNT; i++) {

		sync_lock(&key);

		global_cnt++;
		global_cnt--;
		global_cnt++;

		sync_unlock(&key);
	}
}

static int run_concurrency(int type, void *func)
{
	uint32_t start_t, end_t;

	sync_init(type);
	global_cnt = 0;
	start_t = k_cycle_get_32();

	tinfo[0].tid =
	k_thread_create(&tthread[0], tstack[0], STACK_SIZE,
			(k_thread_entry_t)func,
			NULL, NULL, NULL,
			K_PRIO_PREEMPT(1),
			K_INHERIT_PERMS, K_NO_WAIT);

	tinfo[1].tid =
	k_thread_create(&tthread[1], tstack[1], STACK_SIZE,
			(k_thread_entry_t)func,
			NULL, NULL, NULL,
			K_PRIO_PREEMPT(1),
			K_INHERIT_PERMS, K_NO_WAIT);

	k_tid_t tid =
	k_thread_create(&t2, t2_stack, T2_STACK_SIZE,
			(k_thread_entry_t)func,
			NULL, NULL, NULL,
			K_PRIO_PREEMPT(1),
			K_INHERIT_PERMS, K_NO_WAIT);

	k_thread_join(tinfo[0].tid, K_FOREVER);
	k_thread_join(tinfo[1].tid, K_FOREVER);
	k_thread_join(tid, K_FOREVER);
	cleanup_resources();

	end_t =  k_cycle_get_32();

	printk("type %d: cnt %d, spend %u ms\n", type, global_cnt,
		k_cyc_to_ms_ceil32(end_t - start_t));

	return global_cnt == (LOOP_COUNT * 3);
}

/**
 * @brief Test if the concurrency of SMP works or not
 *
 * @ingroup kernel_smp_tests
 *
 * @details Validate the global lock and unlock API of SMP are thread-safe.
 * We make 3 thread to increase the global count in differenet cpu and
 * they both do locking then unlocking for LOOP_COUNT times. It shall be no
 * deadlock happened and total global count shall be 3 * LOOP COUNT.
 *
 * We show the 4 kinds of scenairo:
 * - No any lock used
 * - Use global irq lock
 * - Use semaphore
 * - Use mutex
 */
void test_inc_concurrency(void)
{
	/* increasing global var with irq lock */
	zassert_true(run_concurrency(LOCK_IRQ, inc_global_cnt),
			"total count %d is wrong(i)", global_cnt);

	/* increasing global var with irq lock */
	zassert_true(run_concurrency(LOCK_SEM, inc_global_cnt),
			"total count %d is wrong(s)", global_cnt);

	/* increasing global var with irq lock */
	zassert_true(run_concurrency(LOCK_MUTEX, inc_global_cnt),
			"total count %d is wrong(M)", global_cnt);
}

void test_main(void)
{
	/* Sleep a bit to guarantee that both CPUs enter an idle
	 * thread from which they can exit correctly to run the main
	 * test.
	 */
	k_sleep(K_MSEC(10));

	ztest_test_suite(smp,
			 ztest_unit_test(test_smp_coop_threads),
			 ztest_unit_test(test_cpu_id_threads),
			 ztest_unit_test(test_coop_resched_threads),
			 ztest_unit_test(test_preempt_resched_threads),
			 ztest_unit_test(test_yield_threads),
			 ztest_unit_test(test_sleep_threads),
			 ztest_unit_test(test_wakeup_threads),
			 ztest_unit_test(test_smp_ipi),
			 ztest_unit_test(test_get_cpu),
			 ztest_unit_test(test_fatal_on_smp),
			 ztest_unit_test(test_workq_on_smp),
			 ztest_unit_test(test_smp_release_global_lock),
			 ztest_unit_test(test_inc_concurrency)
			 );
	ztest_run_test_suite(smp);
}