Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
/*
 * Copyright (c) 2016 BayLibre, SAS
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT st_stm32_spi

#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(spi_ll_stm32);

#include <sys/util.h>
#include <kernel.h>
#include <soc.h>
#include <stm32_ll_spi.h>
#include <errno.h>
#include <drivers/spi.h>
#include <toolchain.h>
#ifdef CONFIG_SPI_STM32_DMA
#include <drivers/dma/dma_stm32.h>
#include <drivers/dma.h>
#endif
#include <pinmux/pinmux_stm32.h>
#include <drivers/clock_control/stm32_clock_control.h>
#include <drivers/clock_control.h>

#include "spi_ll_stm32.h"

#define DEV_CFG(dev)						\
(const struct spi_stm32_config * const)(dev->config)

#define DEV_DATA(dev)					\
(struct spi_stm32_data * const)(dev->data)

/*
 * Check for SPI_SR_FRE to determine support for TI mode frame format
 * error flag, because STM32F1 SoCs do not support it and  STM32CUBE
 * for F1 family defines an unused LL_SPI_SR_FRE.
 */
#if defined(CONFIG_SOC_SERIES_STM32MP1X) || \
    defined(CONFIG_SOC_SERIES_STM32H7X)
#define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCE | LL_SPI_SR_MODF | \
			   LL_SPI_SR_OVR | LL_SPI_SR_TIFRE)
#else
#if defined(LL_SPI_SR_UDR)
#define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \
			   LL_SPI_SR_OVR | LL_SPI_SR_FRE)
#elif defined(SPI_SR_FRE)
#define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \
			   LL_SPI_SR_OVR | LL_SPI_SR_FRE)
#else
#define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | LL_SPI_SR_OVR)
#endif
#endif /* CONFIG_SOC_SERIES_STM32MP1X */

#ifdef CONFIG_SPI_STM32_DMA
/* dummy value used for transferring NOP when tx buf is null
 * and use as dummy sink for when rx buf is null
 */
uint32_t dummy_rx_tx_buffer;

/* This function is executed in the interrupt context */
static void dma_callback(const struct device *dev, void *arg,
			 uint32_t channel, int status)
{
	/* arg directly holds the spi device */
	struct spi_stm32_data *data = arg;

	if (status != 0) {
		LOG_ERR("DMA callback error with channel %d.", channel);
		data->status_flags |= SPI_STM32_DMA_ERROR_FLAG;
	} else {
		/* identify the origin of this callback */
		if (channel == data->dma_tx.channel) {
			/* this part of the transfer ends */
			data->status_flags |= SPI_STM32_DMA_TX_DONE_FLAG;
		} else if (channel == data->dma_rx.channel) {
			/* this part of the transfer ends */
			data->status_flags |= SPI_STM32_DMA_RX_DONE_FLAG;
		} else {
			LOG_ERR("DMA callback channel %d is not valid.",
								channel);
			data->status_flags |= SPI_STM32_DMA_ERROR_FLAG;
		}
	}

	k_sem_give(&data->status_sem);
}

static int spi_stm32_dma_tx_load(const struct device *dev, const uint8_t *buf,
				 size_t len)
{
	const struct spi_stm32_config *cfg = DEV_CFG(dev);
	struct spi_stm32_data *data = DEV_DATA(dev);
	struct dma_block_config *blk_cfg;
	int ret;

	/* remember active TX DMA channel (used in callback) */
	struct stream *stream = &data->dma_tx;

	blk_cfg = &stream->dma_blk_cfg;

	/* prepare the block for this TX DMA channel */
	memset(blk_cfg, 0, sizeof(struct dma_block_config));
	blk_cfg->block_size = len;

	/* tx direction has memory as source and periph as dest. */
	if (buf == NULL) {
		dummy_rx_tx_buffer = 0;
		/* if tx buff is null, then sends NOP on the line. */
		blk_cfg->source_address = (uint32_t)&dummy_rx_tx_buffer;
		blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
	} else {
		blk_cfg->source_address = (uint32_t)buf;
		if (data->dma_tx.src_addr_increment) {
			blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
		} else {
			blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		}
	}

	blk_cfg->dest_address = (uint32_t)LL_SPI_DMA_GetRegAddr(cfg->spi);
	/* fifo mode NOT USED there */
	if (data->dma_tx.dst_addr_increment) {
		blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
	} else {
		blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
	}

	/* give the fifo mode from the DT */
	blk_cfg->fifo_mode_control = data->dma_tx.fifo_threshold;

	/* direction is given by the DT */
	stream->dma_cfg.head_block = blk_cfg;
	/* give the client dev as arg, as the callback comes from the dma */
	stream->dma_cfg.user_data = data;
	/* pass our client origin to the dma: data->dma_tx.dma_channel */
	ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.channel,
			&stream->dma_cfg);
	/* the channel is the actual stream from 0 */
	if (ret != 0) {
		return ret;
	}

	/* gives the request ID to the dma mux */
	return dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
}

static int spi_stm32_dma_rx_load(const struct device *dev, uint8_t *buf,
				 size_t len)
{
	const struct spi_stm32_config *cfg = DEV_CFG(dev);
	struct spi_stm32_data *data = DEV_DATA(dev);
	struct dma_block_config *blk_cfg;
	int ret;

	/* retrieve active RX DMA channel (used in callback) */
	struct stream *stream = &data->dma_rx;

	blk_cfg = &stream->dma_blk_cfg;

	/* prepare the block for this RX DMA channel */
	memset(blk_cfg, 0, sizeof(struct dma_block_config));
	blk_cfg->block_size = len;


	/* rx direction has periph as source and mem as dest. */
	if (buf == NULL) {
		/* if rx buff is null, then write data to dummy address. */
		blk_cfg->dest_address = (uint32_t)&dummy_rx_tx_buffer;
		blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
	} else {
		blk_cfg->dest_address = (uint32_t)buf;
		if (data->dma_rx.dst_addr_increment) {
			blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
		} else {
			blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
		}
	}

	blk_cfg->source_address = (uint32_t)LL_SPI_DMA_GetRegAddr(cfg->spi);
	if (data->dma_rx.src_addr_increment) {
		blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
	} else {
		blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
	}

	/* give the fifo mode from the DT */
	blk_cfg->fifo_mode_control = data->dma_rx.fifo_threshold;

	/* direction is given by the DT */
	stream->dma_cfg.head_block = blk_cfg;
	stream->dma_cfg.user_data = data;


	/* pass our client origin to the dma: data->dma_rx.channel */
	ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.channel,
			&stream->dma_cfg);
	/* the channel is the actual stream from 0 */
	if (ret != 0) {
		return ret;
	}

	/* gives the request ID to the dma mux */
	return dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
}

static int spi_dma_move_buffers(const struct device *dev, size_t len)
{
	struct spi_stm32_data *data = DEV_DATA(dev);
	int ret;
	size_t dma_segment_len;

	dma_segment_len = len / data->dma_rx.dma_cfg.dest_data_size;
	ret = spi_stm32_dma_rx_load(dev, data->ctx.rx_buf, dma_segment_len);

	if (ret != 0) {
		return ret;
	}

	dma_segment_len = len / data->dma_tx.dma_cfg.source_data_size;
	ret = spi_stm32_dma_tx_load(dev, data->ctx.tx_buf, dma_segment_len);

	return ret;
}

#endif /* CONFIG_SPI_STM32_DMA */

/* Value to shift out when no application data needs transmitting. */
#define SPI_STM32_TX_NOP 0x00

static bool spi_stm32_transfer_ongoing(struct spi_stm32_data *data)
{
	return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
}

static int spi_stm32_get_err(SPI_TypeDef *spi)
{
	uint32_t sr = LL_SPI_ReadReg(spi, SR);

	if (sr & SPI_STM32_ERR_MSK) {
		LOG_ERR("%s: err=%d", __func__,
			    sr & (uint32_t)SPI_STM32_ERR_MSK);

		/* OVR error must be explicitly cleared */
		if (LL_SPI_IsActiveFlag_OVR(spi)) {
			LL_SPI_ClearFlag_OVR(spi);
		}

		return -EIO;
	}

	return 0;
}

/* Shift a SPI frame as master. */
static void spi_stm32_shift_m(SPI_TypeDef *spi, struct spi_stm32_data *data)
{
	uint16_t tx_frame = SPI_STM32_TX_NOP;
	uint16_t rx_frame;

	while (!ll_func_tx_is_empty(spi)) {
		/* NOP */
	}

#if defined(CONFIG_SOC_SERIES_STM32MP1X) || \
    defined(CONFIG_SOC_SERIES_STM32H7X)
	/* With the STM32MP1 and the STM32H7, if the device is the SPI master,
	 * we need to enable the start of the transfer with
	 * LL_SPI_StartMasterTransfer(spi)
	 */
	if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) {
		LL_SPI_StartMasterTransfer(spi);
		while (!LL_SPI_IsActiveMasterTransfer(spi)) {
			/* NOP */
		}
	}
#endif

	if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
		if (spi_context_tx_buf_on(&data->ctx)) {
			tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
		}
		LL_SPI_TransmitData8(spi, tx_frame);
		/* The update is ignored if TX is off. */
		spi_context_update_tx(&data->ctx, 1, 1);
	} else {
		if (spi_context_tx_buf_on(&data->ctx)) {
			tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf));
		}
		LL_SPI_TransmitData16(spi, tx_frame);
		/* The update is ignored if TX is off. */
		spi_context_update_tx(&data->ctx, 2, 1);
	}

	while (!ll_func_rx_is_not_empty(spi)) {
		/* NOP */
	}

	if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
		rx_frame = LL_SPI_ReceiveData8(spi);
		if (spi_context_rx_buf_on(&data->ctx)) {
			UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf);
		}
		spi_context_update_rx(&data->ctx, 1, 1);
	} else {
		rx_frame = LL_SPI_ReceiveData16(spi);
		if (spi_context_rx_buf_on(&data->ctx)) {
			UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf);
		}
		spi_context_update_rx(&data->ctx, 2, 1);
	}
}

/* Shift a SPI frame as slave. */
static void spi_stm32_shift_s(SPI_TypeDef *spi, struct spi_stm32_data *data)
{
	if (ll_func_tx_is_empty(spi) && spi_context_tx_on(&data->ctx)) {
		uint16_t tx_frame;

		if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
			tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
			LL_SPI_TransmitData8(spi, tx_frame);
			spi_context_update_tx(&data->ctx, 1, 1);
		} else {
			tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf));
			LL_SPI_TransmitData16(spi, tx_frame);
			spi_context_update_tx(&data->ctx, 2, 1);
		}
	} else {
		ll_func_disable_int_tx_empty(spi);
	}

	if (ll_func_rx_is_not_empty(spi) &&
	    spi_context_rx_buf_on(&data->ctx)) {
		uint16_t rx_frame;

		if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
			rx_frame = LL_SPI_ReceiveData8(spi);
			UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf);
			spi_context_update_rx(&data->ctx, 1, 1);
		} else {
			rx_frame = LL_SPI_ReceiveData16(spi);
			UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf);
			spi_context_update_rx(&data->ctx, 2, 1);
		}
	}
}

/*
 * Without a FIFO, we can only shift out one frame's worth of SPI
 * data, and read the response back.
 *
 * TODO: support 16-bit data frames.
 */
static int spi_stm32_shift_frames(SPI_TypeDef *spi, struct spi_stm32_data *data)
{
	uint16_t operation = data->ctx.config->operation;

	if (SPI_OP_MODE_GET(operation) == SPI_OP_MODE_MASTER) {
		spi_stm32_shift_m(spi, data);
	} else {
		spi_stm32_shift_s(spi, data);
	}

	return spi_stm32_get_err(spi);
}

static void spi_stm32_cs_control(const struct device *dev, bool on)
{
	struct spi_stm32_data *data = dev->data;

	spi_context_cs_control(&data->ctx, on);

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz)
	const struct spi_stm32_config *cfg = dev->config;

	if (cfg->use_subghzspi_nss) {
		if (on) {
			LL_PWR_SelectSUBGHZSPI_NSS();
		} else {
			LL_PWR_UnselectSUBGHZSPI_NSS();
		}
	}
#endif
}

static void spi_stm32_complete(const struct device *dev, int status)
{
	const struct spi_stm32_config *cfg = dev->config;
	SPI_TypeDef *spi = cfg->spi;
#ifdef CONFIG_SPI_STM32_INTERRUPT
	struct spi_stm32_data *data = dev->data;

	ll_func_disable_int_tx_empty(spi);
	ll_func_disable_int_rx_not_empty(spi);
	ll_func_disable_int_errors(spi);
#endif

	spi_stm32_cs_control(dev, false);

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo)
	/* Flush RX buffer */
	while (ll_func_rx_is_not_empty(spi)) {
		(void) LL_SPI_ReceiveData8(spi);
	}
#endif

	if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) {
		while (ll_func_spi_is_busy(spi)) {
			/* NOP */
		}
	}
	/* BSY flag is cleared when MODF flag is raised */
	if (LL_SPI_IsActiveFlag_MODF(spi)) {
		LL_SPI_ClearFlag_MODF(spi);
	}

	ll_func_disable_spi(spi);

#ifdef CONFIG_SPI_STM32_INTERRUPT
	spi_context_complete(&data->ctx, status);
#endif
}

#ifdef CONFIG_SPI_STM32_INTERRUPT
static void spi_stm32_isr(const struct device *dev)
{
	const struct spi_stm32_config *cfg = dev->config;
	struct spi_stm32_data *data = dev->data;
	SPI_TypeDef *spi = cfg->spi;
	int err;

	err = spi_stm32_get_err(spi);
	if (err) {
		spi_stm32_complete(dev, err);
		return;
	}

	if (spi_stm32_transfer_ongoing(data)) {
		err = spi_stm32_shift_frames(spi, data);
	}

	if (err || !spi_stm32_transfer_ongoing(data)) {
		spi_stm32_complete(dev, err);
	}
}
#endif

static int spi_stm32_configure(const struct device *dev,
			       const struct spi_config *config)
{
	const struct spi_stm32_config *cfg = DEV_CFG(dev);
	struct spi_stm32_data *data = DEV_DATA(dev);
	const uint32_t scaler[] = {
		LL_SPI_BAUDRATEPRESCALER_DIV2,
		LL_SPI_BAUDRATEPRESCALER_DIV4,
		LL_SPI_BAUDRATEPRESCALER_DIV8,
		LL_SPI_BAUDRATEPRESCALER_DIV16,
		LL_SPI_BAUDRATEPRESCALER_DIV32,
		LL_SPI_BAUDRATEPRESCALER_DIV64,
		LL_SPI_BAUDRATEPRESCALER_DIV128,
		LL_SPI_BAUDRATEPRESCALER_DIV256
	};
	SPI_TypeDef *spi = cfg->spi;
	uint32_t clock;
	int br;

	if (spi_context_configured(&data->ctx, config)) {
		/* Nothing to do */
		return 0;
	}

	if ((SPI_WORD_SIZE_GET(config->operation) != 8)
	    && (SPI_WORD_SIZE_GET(config->operation) != 16)) {
		return -ENOTSUP;
	}

	if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
			(clock_control_subsys_t) &cfg->pclken, &clock) < 0) {
		LOG_ERR("Failed call clock_control_get_rate");
		return -EIO;
	}

	for (br = 1 ; br <= ARRAY_SIZE(scaler) ; ++br) {
		uint32_t clk = clock >> br;

		if (clk <= config->frequency) {
			break;
		}
	}

	if (br > ARRAY_SIZE(scaler)) {
		LOG_ERR("Unsupported frequency %uHz, max %uHz, min %uHz",
			    config->frequency,
			    clock >> 1,
			    clock >> ARRAY_SIZE(scaler));
		return -EINVAL;
	}

	LL_SPI_Disable(spi);
	LL_SPI_SetBaudRatePrescaler(spi, scaler[br - 1]);

	if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) {
		LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH);
	} else {
		LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW);
	}

	if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) {
		LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE);
	} else {
		LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE);
	}

	LL_SPI_SetTransferDirection(spi, LL_SPI_FULL_DUPLEX);

	if (config->operation & SPI_TRANSFER_LSB) {
		LL_SPI_SetTransferBitOrder(spi, LL_SPI_LSB_FIRST);
	} else {
		LL_SPI_SetTransferBitOrder(spi, LL_SPI_MSB_FIRST);
	}

	LL_SPI_DisableCRC(spi);

	if (config->cs || !IS_ENABLED(CONFIG_SPI_STM32_USE_HW_SS)) {
#if defined(CONFIG_SOC_SERIES_STM32MP1X) || \
    defined(CONFIG_SOC_SERIES_STM32H7X)
		if (SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_MASTER) {
			if (LL_SPI_GetNSSPolarity(spi) == LL_SPI_NSS_POLARITY_LOW)
				LL_SPI_SetInternalSSLevel(spi, LL_SPI_SS_LEVEL_HIGH);
		}
#endif
		LL_SPI_SetNSSMode(spi, LL_SPI_NSS_SOFT);
	} else {
		if (config->operation & SPI_OP_MODE_SLAVE) {
			LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_INPUT);
		} else {
			LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_OUTPUT);
		}
	}

	if (config->operation & SPI_OP_MODE_SLAVE) {
		LL_SPI_SetMode(spi, LL_SPI_MODE_SLAVE);
	} else {
		LL_SPI_SetMode(spi, LL_SPI_MODE_MASTER);
	}

	if (SPI_WORD_SIZE_GET(config->operation) ==  8) {
		LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_8BIT);
	} else {
		LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_16BIT);
	}

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo)
	ll_func_set_fifo_threshold_8bit(spi);
#endif

#if !defined(CONFIG_SOC_SERIES_STM32F1X) \
	&& (!defined(CONFIG_SOC_SERIES_STM32L1X) || defined(SPI_CR2_FRF))
	LL_SPI_SetStandard(spi, LL_SPI_PROTOCOL_MOTOROLA);
#endif

	/* At this point, it's mandatory to set this on the context! */
	data->ctx.config = config;

	spi_context_cs_configure(&data->ctx);

	LOG_DBG("Installed config %p: freq %uHz (div = %u),"
		    " mode %u/%u/%u, slave %u",
		    config, clock >> br, 1 << br,
		    (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0,
		    (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0,
		    (SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) ? 1 : 0,
		    config->slave);

	return 0;
}

static int spi_stm32_release(const struct device *dev,
			     const struct spi_config *config)
{
	struct spi_stm32_data *data = DEV_DATA(dev);

	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

static int transceive(const struct device *dev,
		      const struct spi_config *config,
		      const struct spi_buf_set *tx_bufs,
		      const struct spi_buf_set *rx_bufs,
		      bool asynchronous, struct k_poll_signal *signal)
{
	const struct spi_stm32_config *cfg = DEV_CFG(dev);
	struct spi_stm32_data *data = DEV_DATA(dev);
	SPI_TypeDef *spi = cfg->spi;
	int ret;

	if (!tx_bufs && !rx_bufs) {
		return 0;
	}

#ifndef CONFIG_SPI_STM32_INTERRUPT
	if (asynchronous) {
		return -ENOTSUP;
	}
#endif

	spi_context_lock(&data->ctx, asynchronous, signal, config);

	ret = spi_stm32_configure(dev, config);
	if (ret) {
		goto end;
	}

	/* Set buffers info */
	spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo)
	/* Flush RX buffer */
	while (ll_func_rx_is_not_empty(spi)) {
		(void) LL_SPI_ReceiveData8(spi);
	}
#endif

	LL_SPI_Enable(spi);

	/* This is turned off in spi_stm32_complete(). */
	spi_stm32_cs_control(dev, true);

#ifdef CONFIG_SPI_STM32_INTERRUPT
	ll_func_enable_int_errors(spi);

	if (rx_bufs) {
		ll_func_enable_int_rx_not_empty(spi);
	}

	ll_func_enable_int_tx_empty(spi);

	ret = spi_context_wait_for_completion(&data->ctx);
#else
	do {
		ret = spi_stm32_shift_frames(spi, data);
	} while (!ret && spi_stm32_transfer_ongoing(data));

	spi_stm32_complete(dev, ret);

#ifdef CONFIG_SPI_SLAVE
	if (spi_context_is_slave(&data->ctx) && !ret) {
		ret = data->ctx.recv_frames;
	}
#endif /* CONFIG_SPI_SLAVE */

#endif

end:
	spi_context_release(&data->ctx, ret);

	return ret;
}

#ifdef CONFIG_SPI_STM32_DMA

static int wait_dma_rx_tx_done(const struct device *dev)
{
	struct spi_stm32_data *data = DEV_DATA(dev);
	int res = -1;

	while (1) {
		res = k_sem_take(&data->status_sem, K_MSEC(1000));
		if (res != 0) {
			return res;
		}

		if (data->status_flags & SPI_STM32_DMA_ERROR_FLAG) {
			return -EIO;
		}

		if (data->status_flags & SPI_STM32_DMA_DONE_FLAG) {
			return 0;
		}
	}

	return res;
}

static int transceive_dma(const struct device *dev,
		      const struct spi_config *config,
		      const struct spi_buf_set *tx_bufs,
		      const struct spi_buf_set *rx_bufs,
		      bool asynchronous, struct k_poll_signal *signal)
{
	const struct spi_stm32_config *cfg = DEV_CFG(dev);
	struct spi_stm32_data *data = DEV_DATA(dev);
	SPI_TypeDef *spi = cfg->spi;
	int ret;

	if (!tx_bufs && !rx_bufs) {
		return 0;
	}

	if (asynchronous) {
		return -ENOTSUP;
	}

	spi_context_lock(&data->ctx, asynchronous, signal, config);

	k_sem_reset(&data->status_sem);

	ret = spi_stm32_configure(dev, config);
	if (ret) {
		goto end;
	}

	/* Set buffers info */
	spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);

	/* This is turned off in spi_stm32_complete(). */
	spi_stm32_cs_control(dev, true);

	LL_SPI_Enable(spi);

	while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) {
		size_t dma_len;

		if (data->ctx.rx_len == 0) {
			dma_len = data->ctx.tx_len;
		} else if (data->ctx.tx_len == 0) {
			dma_len = data->ctx.rx_len;
		} else {
			dma_len = MIN(data->ctx.tx_len, data->ctx.rx_len);
		}

		data->status_flags = 0;

		ret = spi_dma_move_buffers(dev, dma_len);
		if (ret != 0) {
			break;
		}

		LL_SPI_EnableDMAReq_RX(spi);
		LL_SPI_EnableDMAReq_TX(spi);

		ret = wait_dma_rx_tx_done(dev);
		if (ret != 0) {
			break;
		}

#ifdef SPI_SR_FTLVL
		while (LL_SPI_GetTxFIFOLevel(spi) > 0) {
		}
#endif

		/* wait until TX buffer is really empty */
		while (LL_SPI_IsActiveFlag_TXE(spi) == 0) {
		}

		/* wait until hardware is really ready */
		while (LL_SPI_IsActiveFlag_BSY(spi) == 1) {
		}

		LL_SPI_DisableDMAReq_TX(spi);
		LL_SPI_DisableDMAReq_RX(spi);

		spi_context_update_tx(&data->ctx, 1, dma_len);
		spi_context_update_rx(&data->ctx, 1, dma_len);
	}

	LL_SPI_Disable(spi);
	LL_SPI_DisableDMAReq_TX(spi);
	LL_SPI_DisableDMAReq_RX(spi);

	dma_stop(data->dma_rx.dma_dev, data->dma_rx.channel);
	dma_stop(data->dma_tx.dma_dev, data->dma_tx.channel);

	spi_stm32_complete(dev, ret);

end:
	spi_context_release(&data->ctx, ret);

	return ret;
}
#endif /* CONFIG_SPI_STM32_DMA */

static int spi_stm32_transceive(const struct device *dev,
				const struct spi_config *config,
				const struct spi_buf_set *tx_bufs,
				const struct spi_buf_set *rx_bufs)
{
#ifdef CONFIG_SPI_STM32_DMA
	struct spi_stm32_data *data = DEV_DATA(dev);

	if ((data->dma_tx.dma_dev != NULL)
	 && (data->dma_rx.dma_dev != NULL)) {
		return transceive_dma(dev, config, tx_bufs, rx_bufs,
				      false, NULL);
	}
#endif /* CONFIG_SPI_STM32_DMA */
	return transceive(dev, config, tx_bufs, rx_bufs, false, NULL);
}

#ifdef CONFIG_SPI_ASYNC
static int spi_stm32_transceive_async(const struct device *dev,
				      const struct spi_config *config,
				      const struct spi_buf_set *tx_bufs,
				      const struct spi_buf_set *rx_bufs,
				      struct k_poll_signal *async)
{
	return transceive(dev, config, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */

static const struct spi_driver_api api_funcs = {
	.transceive = spi_stm32_transceive,
#ifdef CONFIG_SPI_ASYNC
	.transceive_async = spi_stm32_transceive_async,
#endif
	.release = spi_stm32_release,
};

static int spi_stm32_init(const struct device *dev)
{
	struct spi_stm32_data *data __attribute__((unused)) = dev->data;
	const struct spi_stm32_config *cfg = dev->config;
	int err;

	if (clock_control_on(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
			       (clock_control_subsys_t) &cfg->pclken) != 0) {
		LOG_ERR("Could not enable SPI clock");
		return -EIO;
	}

	/* Configure dt provided device signals when available */
	err = stm32_dt_pinctrl_configure(cfg->pinctrl_list,
					 cfg->pinctrl_list_size,
					 (uint32_t)cfg->spi);
	if (err < 0) {
		LOG_ERR("SPI pinctrl setup failed (%d)", err);
		return err;
	}

#ifdef CONFIG_SPI_STM32_INTERRUPT
	cfg->irq_config(dev);
#endif

#ifdef CONFIG_SPI_STM32_DMA
	if ((data->dma_rx.dma_dev != NULL) &&
				!device_is_ready(data->dma_rx.dma_dev)) {
		LOG_ERR("%s device not ready", data->dma_rx.dma_dev->name);
		return -ENODEV;
	}

	if ((data->dma_tx.dma_dev != NULL) &&
				!device_is_ready(data->dma_tx.dma_dev)) {
		LOG_ERR("%s device not ready", data->dma_tx.dma_dev->name);
		return -ENODEV;
	}
#endif /* CONFIG_SPI_STM32_DMA */
	spi_context_unlock_unconditionally(&data->ctx);

	return 0;
}

#ifdef CONFIG_SPI_STM32_INTERRUPT
#define STM32_SPI_IRQ_HANDLER_DECL(id)					\
	static void spi_stm32_irq_config_func_##id(const struct device *dev)
#define STM32_SPI_IRQ_HANDLER_FUNC(id)					\
	.irq_config = spi_stm32_irq_config_func_##id,
#define STM32_SPI_IRQ_HANDLER(id)					\
static void spi_stm32_irq_config_func_##id(const struct device *dev)		\
{									\
	IRQ_CONNECT(DT_INST_IRQN(id),					\
		    DT_INST_IRQ(id, priority),				\
		    spi_stm32_isr, DEVICE_DT_INST_GET(id), 0);		\
	irq_enable(DT_INST_IRQN(id));					\
}
#else
#define STM32_SPI_IRQ_HANDLER_DECL(id)
#define STM32_SPI_IRQ_HANDLER_FUNC(id)
#define STM32_SPI_IRQ_HANDLER(id)
#endif

#define SPI_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev)	\
	.dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)),			\
	.channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel),	\
	.dma_cfg = {							\
		.dma_slot = STM32_DMA_SLOT(index, dir, slot),\
		.channel_direction = STM32_DMA_CONFIG_DIRECTION(	\
					STM32_DMA_CHANNEL_CONFIG(index, dir)),       \
		.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(    \
					STM32_DMA_CHANNEL_CONFIG(index, dir)),       \
		.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(     \
				STM32_DMA_CHANNEL_CONFIG(index, dir)),	\
		.source_burst_length = 1, /* SINGLE transfer */		\
		.dest_burst_length = 1, /* SINGLE transfer */		\
		.channel_priority = STM32_DMA_CONFIG_PRIORITY(		\
					STM32_DMA_CHANNEL_CONFIG(index, dir)),\
		.dma_callback = dma_callback,				\
		.block_count = 2,					\
	},								\
	.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC(	\
				STM32_DMA_CHANNEL_CONFIG(index, dir)),	\
	.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC(	\
				STM32_DMA_CHANNEL_CONFIG(index, dir)),	\
	.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD(		\
				STM32_DMA_FEATURES(index, dir)),		\


#if CONFIG_SPI_STM32_DMA
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest)			\
	.dma_##dir = {							\
		COND_CODE_1(DT_INST_DMAS_HAS_NAME(id, dir),		\
			(SPI_DMA_CHANNEL_INIT(id, dir, DIR, src, dest)),\
			(NULL))						\
		},
#define SPI_DMA_STATUS_SEM(id)						\
	.status_sem = Z_SEM_INITIALIZER(				\
		spi_stm32_dev_data_##id.status_sem, 0, 1),
#else
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest)
#define SPI_DMA_STATUS_SEM(id)
#endif

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz)
#define STM32_SPI_USE_SUBGHZSPI_NSS_CONFIG(id)				\
	.use_subghzspi_nss = DT_INST_PROP_OR(				\
			id, use_subghzspi_nss, false),
#else
#define STM32_SPI_USE_SUBGHZSPI_NSS_CONFIG(id)
#endif

#define STM32_SPI_INIT(id)						\
STM32_SPI_IRQ_HANDLER_DECL(id);						\
									\
static const struct soc_gpio_pinctrl spi_pins_##id[] =			\
				ST_STM32_DT_INST_PINCTRL(id, 0);	\
									\
static const struct spi_stm32_config spi_stm32_cfg_##id = {		\
	.spi = (SPI_TypeDef *) DT_INST_REG_ADDR(id),			\
	.pclken = {							\
		.enr = DT_INST_CLOCKS_CELL(id, bits),			\
		.bus = DT_INST_CLOCKS_CELL(id, bus)			\
	},								\
	.pinctrl_list = spi_pins_##id,					\
	.pinctrl_list_size = ARRAY_SIZE(spi_pins_##id),			\
	STM32_SPI_IRQ_HANDLER_FUNC(id)					\
	STM32_SPI_USE_SUBGHZSPI_NSS_CONFIG(id)				\
};									\
									\
static struct spi_stm32_data spi_stm32_dev_data_##id = {		\
	SPI_CONTEXT_INIT_LOCK(spi_stm32_dev_data_##id, ctx),		\
	SPI_CONTEXT_INIT_SYNC(spi_stm32_dev_data_##id, ctx),		\
	SPI_DMA_CHANNEL(id, rx, RX, PERIPHERAL, MEMORY)			\
	SPI_DMA_CHANNEL(id, tx, TX, MEMORY, PERIPHERAL)			\
	SPI_DMA_STATUS_SEM(id)						\
};									\
									\
DEVICE_DT_INST_DEFINE(id, &spi_stm32_init, NULL,			\
		    &spi_stm32_dev_data_##id, &spi_stm32_cfg_##id,	\
		    POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,		\
		    &api_funcs);					\
									\
STM32_SPI_IRQ_HANDLER(id)

DT_INST_FOREACH_STATUS_OKAY(STM32_SPI_INIT)