Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 | /* * Copyright (c) 2019 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <device.h> #include <init.h> #include <kernel.h> #include <kernel_structs.h> #include <toolchain.h> #include <sys/__assert.h> #include <sys/sys_io.h> #include <xtensa/config/core-isa.h> #include <logging/log.h> LOG_MODULE_REGISTER(soc_mp, CONFIG_SOC_LOG_LEVEL); #include <cavs-idc.h> #include <soc.h> #include <arch/xtensa/cache.h> #include <adsp/io.h> #include <soc/shim.h> #include <drivers/ipm.h> #include <ipm/ipm_cavs_idc.h> extern void z_sched_ipi(void); extern void z_smp_start_cpu(int id); extern void z_reinit_idle_thread(int i); /* ROM wake version parsed by ROM during core wake up. */ #define IDC_ROM_WAKE_VERSION 0x2 /* IDC message type. */ #define IDC_TYPE_SHIFT 24 #define IDC_TYPE_MASK 0x7f #define IDC_TYPE(x) (((x) & IDC_TYPE_MASK) << IDC_TYPE_SHIFT) /* IDC message header. */ #define IDC_HEADER_MASK 0xffffff #define IDC_HEADER(x) ((x) & IDC_HEADER_MASK) /* IDC message extension. */ #define IDC_EXTENSION_MASK 0x3fffffff #define IDC_EXTENSION(x) ((x) & IDC_EXTENSION_MASK) /* IDC power up message. */ #define IDC_MSG_POWER_UP \ (IDC_TYPE(0x1) | IDC_HEADER(IDC_ROM_WAKE_VERSION)) #define IDC_MSG_POWER_UP_EXT(x) IDC_EXTENSION((x) >> 2) struct cpustart_rec { uint32_t cpu; arch_cpustart_t fn; void *arg; uint32_t vecbase; uint32_t alive; }; static struct k_spinlock mplock; char *z_mp_stack_top; #ifdef CONFIG_KERNEL_COHERENCE /* Coherence guarantees that normal .data will be coherent and that it * won't overlap any cached memory. */ static struct { struct cpustart_rec cpustart; } cpustart_mem; #else /* If .data RAM is by default incoherent, then the start record goes * into its own dedicated cache line(s) */ static __aligned(XCHAL_DCACHE_LINESIZE) union { struct cpustart_rec cpustart; char pad[XCHAL_DCACHE_LINESIZE]; } cpustart_mem; #endif #define start_rec \ (*((volatile struct cpustart_rec *) \ z_soc_uncached_ptr(&cpustart_mem.cpustart))) /* Simple array of CPUs that are active and available for an IPI. The * IDC interrupt is ALSO used to bring a CPU out of reset, so we need * to be absolutely sure we don't try to IPI a CPU that isn't ready to * start, or else we'll launch it into garbage and crash the DSP. */ static bool cpus_active[CONFIG_MP_NUM_CPUS]; /* Tiny assembly stub for calling z_mp_entry() on the auxiliary CPUs. * Mask interrupts, clear the register window state and set the stack * pointer. This represents the minimum work required to run C code * safely. * * Note that alignment is absolutely required: the IDC protocol passes * only the upper 30 bits of the address to the second CPU. */ void z_soc_mp_asm_entry(void); __asm__(".align 4 \n\t" ".global z_soc_mp_asm_entry \n\t" "z_soc_mp_asm_entry: \n\t" " movi a0, 0x40025 \n\t" /* WOE | UM | INTLEVEL(5) */ " wsr a0, PS \n\t" " movi a0, 0 \n\t" " wsr a0, WINDOWBASE \n\t" " movi a0, 1 \n\t" " wsr a0, WINDOWSTART \n\t" " rsync \n\t" " movi a1, z_mp_stack_top \n\t" " l32i a1, a1, 0 \n\t" " call4 z_mp_entry \n\t"); BUILD_ASSERT(XCHAL_EXCM_LEVEL == 5); int cavs_idc_smp_init(const struct device *dev); #define CxL1CCAP (*(volatile uint32_t *)0x9F080080) #define CxL1CCFG (*(volatile uint32_t *)0x9F080084) #define CxL1PCFG (*(volatile uint32_t *)0x9F080088) /* "Data/Instruction Cache Memory Way Count" fields */ #define CxL1CCAP_DCMWC ((CxL1CCAP >> 16) & 7) #define CxL1CCAP_ICMWC ((CxL1CCAP >> 20) & 7) static ALWAYS_INLINE void enable_l1_cache(void) { uint32_t reg; #ifdef CONFIG_SOC_SERIES_INTEL_CAVS_V25 /* First, on cAVS 2.5 we need to power the cache SRAM banks * on! Write a bit for each cache way in the bottom half of * the L1CCFG register and poll the top half for them to turn * on. */ uint32_t dmask = BIT(CxL1CCAP_DCMWC) - 1; uint32_t imask = BIT(CxL1CCAP_ICMWC) - 1; uint32_t waymask = (imask << 8) | dmask; CxL1CCFG = waymask; while (((CxL1CCFG >> 16) & waymask) != waymask) { } /* Prefetcher also power gates, same interface */ CxL1PCFG = 1; while ((CxL1PCFG & 0x10000) == 0) { } #endif /* Now set up the Xtensa CPU to enable the cache logic. The * details of the fields are somewhat complicated, but per the * ISA ref: "Turning on caches at power-up usually consists of * writing a constant with bits[31:8] all 1’s to MEMCTL.". * Also set bit 0 to enable the LOOP extension instruction * fetch buffer. */ #ifdef XCHAL_HAVE_ICACHE_DYN_ENABLE reg = 0xffffff01; __asm__ volatile("wsr %0, MEMCTL; rsync" :: "r"(reg)); #endif /* Likewise enable prefetching. Sadly these values are not * architecturally defined by Xtensa (they're just documented * as priority hints), so this constant is just copied from * SOF for now. If we care about prefetch priority tuning * we're supposed to ask Cadence I guess. */ reg = IS_ENABLED(CONFIG_SOC_SERIES_INTEL_CAVS_V25) ? 0x1038 : 0; __asm__ volatile("wsr %0, PREFCTL; rsync" :: "r"(reg)); /* Finally we need to enable the cache in the Region * Protection Option "TLB" entries. The hardware defaults * have this set to RW/uncached (2) everywhere. We want * writeback caching (4) in the sixth mapping (the second of * two RAM mappings) and to mark all unused regions * inaccessible (15) for safety. Note that there is a HAL * routine that does this (by emulating the older "cacheattr" * hardware register), but it generates significantly larger * code. */ #ifdef CONFIG_SOC_SERIES_INTEL_CAVS_V25 /* Already set up by the ROM on older hardware. */ const uint8_t attribs[] = { 2, 15, 15, 15, 2, 4, 15, 15 }; for (int region = 0; region < 8; region++) { reg = 0x20000000 * region; __asm__ volatile("wdtlb %0, %1" :: "r"(attribs[region]), "r"(reg)); } #endif } void z_mp_entry(void) { volatile int ie; uint32_t reg; enable_l1_cache(); /* Fix ATOMCTL to match CPU0. Hardware defaults for S32C1I * use internal operations (and are thus presumably atomic * only WRT the local CPU!). We need external transactions on * the shared bus. */ reg = 0x15; __asm__ volatile("wsr %0, ATOMCTL" :: "r"(reg)); /* We don't know what the boot ROM (on pre-2.5 DSPs) might * have touched and we don't care. Make sure it's not in our * local cache to be flushed accidentally later. * * Note that technically this is dropping our own (cached) * stack memory, which we don't have a guarantee the compiler * isn't using yet. Manual inspection of generated code says * we're safe, but really we need a better solution here. */ #ifndef CONFIG_SOC_SERIES_INTEL_CAVS_V25 z_xtensa_cache_flush_inv_all(); #endif /* Copy over VECBASE from the main CPU for an initial value * (will need to revisit this if we ever allow a user API to * change interrupt vectors at runtime). */ ie = 0; __asm__ volatile("wsr.INTENABLE %0" : : "r"(ie)); __asm__ volatile("wsr.VECBASE %0" : : "r"(start_rec.vecbase)); __asm__ volatile("rsync"); /* Set up the CPU pointer. */ _cpu_t *cpu = &_kernel.cpus[start_rec.cpu]; __asm__ volatile( "wsr." CONFIG_XTENSA_KERNEL_CPU_PTR_SR " %0" : : "r"(cpu)); /* We got here via an IDC interrupt. Clear the TFC high bit * (by writing a one!) to acknowledge and clear the latched * hardware interrupt (so we don't have to service it as a * spurious IPI when we enter user code). Remember: this * could have come from any core, clear all of them. */ for (int i = 0; i < CONFIG_MP_NUM_CPUS; i++) { IDC[start_rec.cpu].core[i].tfc = BIT(31); } /* Interrupt must be enabled while running on current core */ irq_enable(DT_IRQN(DT_INST(0, intel_cavs_idc))); #ifdef CONFIG_SMP_BOOT_DELAY cavs_idc_smp_init(NULL); #endif cpus_active[start_rec.cpu] = true; start_rec.alive = 1; start_rec.fn(start_rec.arg); #if CONFIG_MP_NUM_CPUS == 1 /* CPU#1 can be under manual control running custom functions * instead of participating in general thread execution. * Put the CPU into idle after those functions return * so this won't return. */ for (;;) { k_cpu_idle(); } #endif } bool arch_cpu_active(int cpu_num) { return cpus_active[cpu_num]; } static ALWAYS_INLINE uint32_t prid(void) { uint32_t prid; __asm__ volatile("rsr %0, PRID" : "=r"(prid)); return prid; } void arch_start_cpu(int cpu_num, k_thread_stack_t *stack, int sz, arch_cpustart_t fn, void *arg) { uint32_t vecbase, curr_cpu = prid(); #ifdef CONFIG_SOC_SERIES_INTEL_CAVS_V25 /* On cAVS v2.5, MP startup works differently. The core has * no ROM, and starts running immediately upon receipt of an * IDC interrupt at the start of LPSRAM at 0xbe800000. Note * that means we don't need to bother constructing a "message" * below, it will be ignored. But it's left in place for * simplicity and compatibility. * * All we need to do is place a single jump at that address to * our existing MP entry point. Unfortunately Xtensa makes * this difficult, as the region is beyond the range of a * relative jump instruction, so we need an immediate, which * can only be backwards-referenced. So we hand-assemble a * tiny trampoline here ("jump over the immediate address, * load it, jump to it"). * * Long term we want to have this in linkable LP-SRAM memory * such that the standard system bootstrap out of IMR can * place it there. But this is fine for now. */ void **lpsram = z_soc_uncached_ptr((void *)LP_SRAM_BASE); uint8_t tramp[] = { 0x06, 0x01, 0x00, /* J <PC+8> (jump to L32R) */ 0, /* (padding to align entry_addr) */ 0, 0, 0, 0, /* (entry_addr goes here) */ 0x01, 0xff, 0xff, /* L32R a0, <entry_addr> */ 0xa0, 0x00, 0x00, /* JX a0 */ }; memcpy(lpsram, tramp, ARRAY_SIZE(tramp)); lpsram[1] = z_soc_mp_asm_entry; #endif __asm__ volatile("rsr.VECBASE %0\n\t" : "=r"(vecbase)); start_rec.cpu = cpu_num; start_rec.fn = fn; start_rec.arg = arg; start_rec.vecbase = vecbase; start_rec.alive = 0; z_mp_stack_top = Z_THREAD_STACK_BUFFER(stack) + sz; /* Pre-2.x cAVS delivers the IDC to ROM code, so unmask it */ CAVS_INTCTRL[cpu_num].l2.clear = CAVS_L2_IDC; /* Disable automatic power and clock gating for that CPU, so * it won't just go back to sleep. Note that after startup, * the cores are NOT power gated even if they're configured to * be, so by default a core will launch successfully but then * turn itself off when it gets to the WAITI instruction in * the idle thread. */ volatile struct soc_dsp_shim_regs *shim = (void *)SOC_DSP_SHIM_REG_BASE; shim->pwrctl |= BIT(cpu_num); if (!IS_ENABLED(CONFIG_SOC_SERIES_INTEL_CAVS_V15)) { shim->clkctl |= BIT(16 + cpu_num); } /* Send power up message to the other core */ uint32_t ietc = IDC_MSG_POWER_UP_EXT((long) z_soc_mp_asm_entry); IDC[curr_cpu].core[cpu_num].ietc = ietc; IDC[curr_cpu].core[cpu_num].itc = IDC_MSG_POWER_UP | IPC_IDCITC_BUSY; #ifndef CONFIG_SOC_SERIES_INTEL_CAVS_V25 /* Early DSPs have a ROM that actually receives the startup * IDC as an interrupt, and we don't want that to be confused * by IPIs sent by the OS elsewhere. Mask the IDC interrupt * on other core so IPI won't cause them to jump to ISR until * the core is fully initialized. */ uint32_t idc_reg = idc_read(IPC_IDCCTL, cpu_num); idc_reg &= ~IPC_IDCCTL_IDCTBIE(0); idc_write(IPC_IDCCTL, cpu_num, idc_reg); sys_set_bit(DT_REG_ADDR(DT_NODELABEL(cavs0)) + 0x00 + CAVS_ICTL_INT_CPU_OFFSET(cpu_num), 8); k_busy_wait(100); #ifdef CONFIG_SMP_BOOT_DELAY cavs_idc_smp_init(NULL); #endif #endif while (!start_rec.alive) ; } void arch_sched_ipi(void) { #ifdef CONFIG_SOC_SERIES_INTEL_CAVS_V25 uint32_t curr = prid(); for (int c = 0; c < CONFIG_MP_NUM_CPUS; c++) { if (c != curr && cpus_active[c]) { IDC[curr].core[c].itc = BIT(31); } } #else /* Legacy implementation for cavs15 based on the 2-core-only * IPM driver. To be replaced with the general one when * validated. */ const struct device *idcdev = device_get_binding(DT_LABEL(DT_INST(0, intel_cavs_idc))); ipm_send(idcdev, 0, IPM_CAVS_IDC_MSG_SCHED_IPI_ID, IPM_CAVS_IDC_MSG_SCHED_IPI_DATA, 0); #endif } void idc_isr(void *param) { ARG_UNUSED(param); #ifdef CONFIG_SMP /* Right now this interrupt is only used for IPIs */ z_sched_ipi(); #endif /* ACK the interrupt to all the possible sources. This is a * level-sensitive interrupt triggered by a logical OR of each * of the ITC/TFC high bits, INCLUDING the one "from this * CPU". */ for (int i = 0; i < CONFIG_MP_NUM_CPUS; i++) { IDC[prid()].core[i].tfc = BIT(31); } } #ifndef CONFIG_IPM_CAVS_IDC /* Fallback stub for external SOF code */ int cavs_idc_smp_init(const struct device *dev) { ARG_UNUSED(dev); return 0; } #endif void soc_idc_init(void) { #ifndef CONFIG_IPM_CAVS_IDC IRQ_CONNECT(DT_IRQN(DT_NODELABEL(idc)), 0, idc_isr, NULL, 0); #endif /* Every CPU should be able to receive an IDC interrupt from * every other CPU, but not to be back-interrupted when the * target core clears the busy bit. */ for (int core = 0; core < CONFIG_MP_NUM_CPUS; core++) { uint32_t coremask = BIT(CONFIG_MP_NUM_CPUS) - 1; IDC[core].busy_int |= coremask; IDC[core].done_int &= ~coremask; /* Also unmask the IDC interrupt for every core in the * L2 mask register. */ CAVS_INTCTRL[core].l2.clear = CAVS_L2_IDC; } /* Clear out any existing pending interrupts that might be present */ for (int i = 0; i < CONFIG_MP_NUM_CPUS; i++) { for (int j = 0; j < CONFIG_MP_NUM_CPUS; j++) { IDC[i].core[j].tfc = BIT(31); } } cpus_active[0] = true; } /** * @brief Restart halted SMP CPU * * Relaunches a CPU that has entered an idle power state via * soc_halt_cpu(). Returns -EINVAL if the CPU is not in a power-gated * idle state. Upon successful return, the CPU is online and * available to run any Zephyr thread. * * @param id CPU to start, in the range [1:CONFIG_MP_NUM_CPUS) */ int soc_relaunch_cpu(int id) { volatile struct soc_dsp_shim_regs *shim = (void *)SOC_DSP_SHIM_REG_BASE; int ret = 0; k_spinlock_key_t k = k_spin_lock(&mplock); if (id < 1 || id >= CONFIG_MP_NUM_CPUS) { ret = -EINVAL; goto out; } if (shim->pwrsts & BIT(id)) { ret = -EINVAL; goto out; } CAVS_INTCTRL[id].l2.clear = CAVS_L2_IDC; z_reinit_idle_thread(id); z_smp_start_cpu(id); out: k_spin_unlock(&mplock, k); return ret; } /** * @brief Halts and offlines a running CPU * * Enables power gating on the specified CPU, which cannot be the * current CPU or CPU 0. The CPU must be idle; no application threads * may be runnable on it when this function is called (or at least the * CPU must be guaranteed to reach idle in finite time without * deadlock). Actual CPU shutdown can only happen in the context of * the idle thread, and synchronization is an application * responsibility. This function will hang if the other CPU fails to * reach idle. * * @param id CPU to halt, not current cpu or cpu 0 * @return 0 on success, -EINVAL on error */ int soc_halt_cpu(int id) { volatile struct soc_dsp_shim_regs *shim = (void *)SOC_DSP_SHIM_REG_BASE; int ret = 0; k_spinlock_key_t k = k_spin_lock(&mplock); if (id == 0 || id == _current_cpu->id) { ret = -EINVAL; goto out; } /* Turn off the "prevent power/clock gating" bits, enabling * low power idle, and mask off IDC interrupts so it will not * be woken up by scheduler IPIs */ CAVS_INTCTRL[id].l2.set = CAVS_L2_IDC; shim->pwrctl &= ~BIT(id); shim->clkctl &= ~BIT(16 + id); /* Wait for the CPU to reach an idle state before returing */ while (shim->pwrsts & BIT(id)) { } out: k_spin_unlock(&mplock, k); return ret; } |