Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | /* * Copyright (c) 2016 Intel Corporation * Copyright (c) 2011-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file Atomic ops in pure C * * This module provides the atomic operators for processors * which do not support native atomic operations. * * The atomic operations are guaranteed to be atomic with respect * to interrupt service routines, and to operations performed by peer * processors. * * (originally from x86's atomic.c) */ #include <toolchain.h> #include <arch/cpu.h> #include <spinlock.h> #include <sys/atomic.h> #include <kernel_structs.h> /* Single global spinlock for atomic operations. This is fallback * code, not performance sensitive. At least by not using irq_lock() * in SMP contexts we won't content with legitimate users of the * global lock. */ static struct k_spinlock lock; /* For those rare CPUs which support user mode, but not native atomic * operations, the best we can do for them is implement the atomic * functions as system calls, since in user mode locking a spinlock is * forbidden. */ #ifdef CONFIG_USERSPACE #include <syscall_handler.h> #define ATOMIC_SYSCALL_HANDLER_TARGET(name) \ static inline atomic_val_t z_vrfy_##name(atomic_t *target) \ { \ Z_OOPS(Z_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_t))); \ return z_impl_##name((atomic_t *)target); \ } #define ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(name) \ static inline atomic_val_t z_vrfy_##name(atomic_t *target, \ atomic_val_t value) \ { \ Z_OOPS(Z_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_t))); \ return z_impl_##name((atomic_t *)target, value); \ } #else #define ATOMIC_SYSCALL_HANDLER_TARGET(name) #define ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(name) #endif /** * * @brief Atomic compare-and-set primitive * * This routine provides the compare-and-set operator. If the original value at * <target> equals <oldValue>, then <newValue> is stored at <target> and the * function returns true. * * If the original value at <target> does not equal <oldValue>, then the store * is not done and the function returns false. * * The reading of the original value at <target>, the comparison, * and the write of the new value (if it occurs) all happen atomically with * respect to both interrupts and accesses of other processors to <target>. * * @param target address to be tested * @param old_value value to compare against * @param new_value value to compare against * @return Returns true if <new_value> is written, false otherwise. */ bool z_impl_atomic_cas(atomic_t *target, atomic_val_t old_value, atomic_val_t new_value) { k_spinlock_key_t key; int ret = false; key = k_spin_lock(&lock); if (*target == old_value) { *target = new_value; ret = true; } k_spin_unlock(&lock, key); return ret; } #ifdef CONFIG_USERSPACE bool z_vrfy_atomic_cas(atomic_t *target, atomic_val_t old_value, atomic_val_t new_value) { Z_OOPS(Z_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_t))); return z_impl_atomic_cas((atomic_t *)target, old_value, new_value); } #include <syscalls/atomic_cas_mrsh.c> #endif /* CONFIG_USERSPACE */ bool z_impl_atomic_ptr_cas(atomic_ptr_t *target, atomic_ptr_val_t old_value, atomic_ptr_val_t new_value) { k_spinlock_key_t key; int ret = false; key = k_spin_lock(&lock); if (*target == old_value) { *target = new_value; ret = true; } k_spin_unlock(&lock, key); return ret; } #ifdef CONFIG_USERSPACE static inline bool z_vrfy_atomic_ptr_cas(atomic_ptr_t *target, atomic_ptr_val_t old_value, atomic_ptr_val_t new_value) { Z_OOPS(Z_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_ptr_t))); return z_impl_atomic_ptr_cas(target, old_value, new_value); } #include <syscalls/atomic_ptr_cas_mrsh.c> #endif /* CONFIG_USERSPACE */ /** * * @brief Atomic addition primitive * * This routine provides the atomic addition operator. The <value> is * atomically added to the value at <target>, placing the result at <target>, * and the old value from <target> is returned. * * @param target memory location to add to * @param value the value to add * * @return The previous value from <target> */ atomic_val_t z_impl_atomic_add(atomic_t *target, atomic_val_t value) { k_spinlock_key_t key; atomic_val_t ret; key = k_spin_lock(&lock); ret = *target; *target += value; k_spin_unlock(&lock, key); return ret; } ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_add); /** * * @brief Atomic subtraction primitive * * This routine provides the atomic subtraction operator. The <value> is * atomically subtracted from the value at <target>, placing the result at * <target>, and the old value from <target> is returned. * * @param target the memory location to subtract from * @param value the value to subtract * * @return The previous value from <target> */ atomic_val_t z_impl_atomic_sub(atomic_t *target, atomic_val_t value) { k_spinlock_key_t key; atomic_val_t ret; key = k_spin_lock(&lock); ret = *target; *target -= value; k_spin_unlock(&lock, key); return ret; } ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_sub); /** * * @brief Atomic get primitive * * @param target memory location to read from * * This routine provides the atomic get primitive to atomically read * a value from <target>. It simply does an ordinary load. Note that <target> * is expected to be aligned to a 4-byte boundary. * * @return The value read from <target> */ atomic_val_t atomic_get(const atomic_t *target) { return *target; } atomic_ptr_val_t atomic_ptr_get(const atomic_ptr_t *target) { return *target; } /** * * @brief Atomic get-and-set primitive * * This routine provides the atomic set operator. The <value> is atomically * written at <target> and the previous value at <target> is returned. * * @param target the memory location to write to * @param value the value to write * * @return The previous value from <target> */ atomic_val_t z_impl_atomic_set(atomic_t *target, atomic_val_t value) { k_spinlock_key_t key; atomic_val_t ret; key = k_spin_lock(&lock); ret = *target; *target = value; k_spin_unlock(&lock, key); return ret; } ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_set); atomic_ptr_val_t z_impl_atomic_ptr_set(atomic_ptr_t *target, atomic_ptr_val_t value) { k_spinlock_key_t key; atomic_ptr_val_t ret; key = k_spin_lock(&lock); ret = *target; *target = value; k_spin_unlock(&lock, key); return ret; } #ifdef CONFIG_USERSPACE static inline atomic_ptr_val_t z_vrfy_atomic_ptr_set(atomic_ptr_t *target, atomic_ptr_val_t value) { Z_OOPS(Z_SYSCALL_MEMORY_WRITE(target, sizeof(atomic_ptr_t))); return z_impl_atomic_ptr_set(target, value); } #include <syscalls/atomic_ptr_set_mrsh.c> #endif /* CONFIG_USERSPACE */ /** * * @brief Atomic bitwise inclusive OR primitive * * This routine provides the atomic bitwise inclusive OR operator. The <value> * is atomically bitwise OR'ed with the value at <target>, placing the result * at <target>, and the previous value at <target> is returned. * * @param target the memory location to be modified * @param value the value to OR * * @return The previous value from <target> */ atomic_val_t z_impl_atomic_or(atomic_t *target, atomic_val_t value) { k_spinlock_key_t key; atomic_val_t ret; key = k_spin_lock(&lock); ret = *target; *target |= value; k_spin_unlock(&lock, key); return ret; } ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_or); /** * * @brief Atomic bitwise exclusive OR (XOR) primitive * * This routine provides the atomic bitwise exclusive OR operator. The <value> * is atomically bitwise XOR'ed with the value at <target>, placing the result * at <target>, and the previous value at <target> is returned. * * @param target the memory location to be modified * @param value the value to XOR * * @return The previous value from <target> */ atomic_val_t z_impl_atomic_xor(atomic_t *target, atomic_val_t value) { k_spinlock_key_t key; atomic_val_t ret; key = k_spin_lock(&lock); ret = *target; *target ^= value; k_spin_unlock(&lock, key); return ret; } ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_xor); /** * * @brief Atomic bitwise AND primitive * * This routine provides the atomic bitwise AND operator. The <value> is * atomically bitwise AND'ed with the value at <target>, placing the result * at <target>, and the previous value at <target> is returned. * * @param target the memory location to be modified * @param value the value to AND * * @return The previous value from <target> */ atomic_val_t z_impl_atomic_and(atomic_t *target, atomic_val_t value) { k_spinlock_key_t key; atomic_val_t ret; key = k_spin_lock(&lock); ret = *target; *target &= value; k_spin_unlock(&lock, key); return ret; } ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_and); /** * * @brief Atomic bitwise NAND primitive * * This routine provides the atomic bitwise NAND operator. The <value> is * atomically bitwise NAND'ed with the value at <target>, placing the result * at <target>, and the previous value at <target> is returned. * * @param target the memory location to be modified * @param value the value to NAND * * @return The previous value from <target> */ atomic_val_t z_impl_atomic_nand(atomic_t *target, atomic_val_t value) { k_spinlock_key_t key; atomic_val_t ret; key = k_spin_lock(&lock); ret = *target; *target = ~(*target & value); k_spin_unlock(&lock, key); return ret; } ATOMIC_SYSCALL_HANDLER_TARGET_VALUE(atomic_nand); #ifdef CONFIG_USERSPACE #include <syscalls/atomic_add_mrsh.c> #include <syscalls/atomic_sub_mrsh.c> #include <syscalls/atomic_set_mrsh.c> #include <syscalls/atomic_or_mrsh.c> #include <syscalls/atomic_xor_mrsh.c> #include <syscalls/atomic_and_mrsh.c> #include <syscalls/atomic_nand_mrsh.c> #endif |