/*
* Copyright (c) 2018-2021 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Driver for Nordic Semiconductor nRF UARTE
*/
#include <drivers/uart.h>
#include <hal/nrf_gpio.h>
#include <hal/nrf_uarte.h>
#include <nrfx_timer.h>
#include <sys/util.h>
#include <kernel.h>
#include <logging/log.h>
#include <helpers/nrfx_gppi.h>
LOG_MODULE_REGISTER(uart_nrfx_uarte, LOG_LEVEL_ERR);
/* Generalize PPI or DPPI channel management */
#if defined(CONFIG_HAS_HW_NRF_PPI)
#include <nrfx_ppi.h>
#define gppi_channel_t nrf_ppi_channel_t
#define gppi_channel_alloc nrfx_ppi_channel_alloc
#define gppi_channel_enable nrfx_ppi_channel_enable
#elif defined(CONFIG_HAS_HW_NRF_DPPIC)
#include <nrfx_dppi.h>
#define gppi_channel_t uint8_t
#define gppi_channel_alloc nrfx_dppi_channel_alloc
#define gppi_channel_enable nrfx_dppi_channel_enable
#else
#error "No PPI or DPPI"
#endif
#if (defined(CONFIG_UART_0_NRF_UARTE) && \
defined(CONFIG_UART_0_INTERRUPT_DRIVEN)) || \
(defined(CONFIG_UART_1_NRF_UARTE) && \
defined(CONFIG_UART_1_INTERRUPT_DRIVEN)) || \
(defined(CONFIG_UART_2_NRF_UARTE) && \
defined(CONFIG_UART_2_INTERRUPT_DRIVEN)) || \
(defined(CONFIG_UART_3_NRF_UARTE) && \
defined(CONFIG_UART_3_INTERRUPT_DRIVEN))
#define UARTE_INTERRUPT_DRIVEN 1
#endif
#if (defined(CONFIG_UART_0_NRF_UARTE) && !defined(CONFIG_UART_0_ASYNC)) || \
(defined(CONFIG_UART_1_NRF_UARTE) && !defined(CONFIG_UART_1_ASYNC)) || \
(defined(CONFIG_UART_2_NRF_UARTE) && !defined(CONFIG_UART_2_ASYNC)) || \
(defined(CONFIG_UART_3_NRF_UARTE) && !defined(CONFIG_UART_3_ASYNC))
#define UARTE_ANY_NONE_ASYNC 1
#endif
/*
* RX timeout is divided into time slabs, this define tells how many divisions
* should be made. More divisions - higher timeout accuracy and processor usage.
*/
#define RX_TIMEOUT_DIV 5
/* Size of hardware fifo in RX path. */
#define UARTE_HW_RX_FIFO_SIZE 5
#ifdef CONFIG_UART_ASYNC_API
struct uarte_async_cb {
uart_callback_t user_callback;
void *user_data;
const uint8_t *tx_buf;
volatile size_t tx_size;
uint8_t *pend_tx_buf;
struct k_timer tx_timeout_timer;
uint8_t *rx_buf;
size_t rx_buf_len;
size_t rx_offset;
uint8_t *rx_next_buf;
size_t rx_next_buf_len;
uint32_t rx_total_byte_cnt; /* Total number of bytes received */
uint32_t rx_total_user_byte_cnt; /* Total number of bytes passed to user */
int32_t rx_timeout; /* Timeout set by user */
int32_t rx_timeout_slab; /* rx_timeout divided by RX_TIMEOUT_DIV */
int32_t rx_timeout_left; /* Current time left until user callback */
struct k_timer rx_timeout_timer;
union {
gppi_channel_t ppi;
uint32_t cnt;
} rx_cnt;
volatile int tx_amount;
atomic_t low_power_mask;
uint8_t rx_flush_buffer[UARTE_HW_RX_FIFO_SIZE];
uint8_t rx_flush_cnt;
bool rx_enabled;
bool hw_rx_counting;
/* Flag to ensure that RX timeout won't be executed during ENDRX ISR */
volatile bool is_in_irq;
};
#endif
#ifdef UARTE_INTERRUPT_DRIVEN
struct uarte_nrfx_int_driven {
uart_irq_callback_user_data_t cb; /**< Callback function pointer */
void *cb_data; /**< Callback function arg */
uint8_t *tx_buffer;
uint16_t tx_buff_size;
volatile bool disable_tx_irq;
#ifdef CONFIG_PM_DEVICE
bool rx_irq_enabled;
#endif
atomic_t fifo_fill_lock;
};
#endif
/* Device data structure */
struct uarte_nrfx_data {
const struct device *dev;
struct uart_config uart_config;
#ifdef UARTE_INTERRUPT_DRIVEN
struct uarte_nrfx_int_driven *int_driven;
#endif
#ifdef CONFIG_UART_ASYNC_API
struct uarte_async_cb *async;
#endif
atomic_val_t poll_out_lock;
uint8_t char_out;
uint8_t rx_data;
gppi_channel_t ppi_ch_endtx;
};
#define UARTE_LOW_POWER_TX BIT(0)
#define UARTE_LOW_POWER_RX BIT(1)
/* Flag indicating that CTS pin is used. */
#define UARTE_CFG_FLAG_CTS_PIN_SET BIT(0)
/* Flag indicating that RTS pin is used. */
#define UARTE_CFG_FLAG_RTS_PIN_SET BIT(1)
/* If enabled, pins are managed when going to low power mode. */
#define UARTE_CFG_FLAG_GPIO_MGMT BIT(2)
/* If enabled then ENDTX is PPI'ed to TXSTOP */
#define UARTE_CFG_FLAG_PPI_ENDTX BIT(3)
/* If enabled then UARTE peripheral is disabled when not used. This allows
* to achieve lowest power consumption in idle.
*/
#define UARTE_CFG_FLAG_LOW_POWER BIT(4)
#define IS_CTS_PIN_SET(flags) (flags & UARTE_CFG_FLAG_CTS_PIN_SET)
#define IS_RTS_PIN_SET(flags) (flags & UARTE_CFG_FLAG_RTS_PIN_SET)
#define IS_HWFC_PINS_USED(flags) \
(IS_CTS_PIN_SET(flags) | IS_RTS_PIN_SET(flags))
/**
* @brief Structure for UARTE configuration.
*/
struct uarte_nrfx_config {
NRF_UARTE_Type *uarte_regs; /* Instance address */
uint32_t flags;
uint32_t pseltxd; /* PSEL.TXD register value */
uint32_t pselrxd; /* PSEL.RXD register value */
uint32_t pselcts; /* PSEL.CTS register value */
uint32_t pselrts; /* PSEL.RTS register value */
nrf_gpio_pin_pull_t rxd_pull; /* RXD pin pull configuration */
nrf_gpio_pin_pull_t cts_pull; /* CTS pin pull configuration */
#ifdef CONFIG_UART_ASYNC_API
nrfx_timer_t timer;
#endif
};
static inline struct uarte_nrfx_data *get_dev_data(const struct device *dev)
{
return dev->data;
}
static inline const struct uarte_nrfx_config *get_dev_config(const struct device *dev)
{
return dev->config;
}
static inline NRF_UARTE_Type *get_uarte_instance(const struct device *dev)
{
const struct uarte_nrfx_config *config = get_dev_config(dev);
return config->uarte_regs;
}
static void endtx_isr(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
int key = irq_lock();
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)) {
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDTX);
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);
}
irq_unlock(key);
}
#ifdef UARTE_ANY_NONE_ASYNC
/**
* @brief Interrupt service routine.
*
* This simply calls the callback function, if one exists.
*
* @param arg Argument to ISR.
*
* @return N/A
*/
static void uarte_nrfx_isr_int(void *arg)
{
const struct device *dev = arg;
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
/* If interrupt driven and asynchronous APIs are disabled then UART
* interrupt is still called to stop TX. Unless it is done using PPI.
*/
if (nrf_uarte_int_enable_check(uarte, NRF_UARTE_INT_ENDTX_MASK) &&
nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)) {
endtx_isr(dev);
}
if (get_dev_config(dev)->flags & UARTE_CFG_FLAG_LOW_POWER) {
int key = irq_lock();
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED)) {
nrf_uarte_disable(uarte);
}
#ifdef UARTE_INTERRUPT_DRIVEN
struct uarte_nrfx_data *data = get_dev_data(dev);
if (!data->int_driven || data->int_driven->fifo_fill_lock == 0)
#endif
{
nrf_uarte_int_disable(uarte,
NRF_UARTE_INT_TXSTOPPED_MASK);
}
irq_unlock(key);
}
#ifdef UARTE_INTERRUPT_DRIVEN
struct uarte_nrfx_data *data = get_dev_data(dev);
if (!data->int_driven) {
return;
}
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED)) {
data->int_driven->fifo_fill_lock = 0;
if (data->int_driven->disable_tx_irq) {
nrf_uarte_int_disable(uarte,
NRF_UARTE_INT_TXSTOPPED_MASK);
data->int_driven->disable_tx_irq = false;
return;
}
}
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ERROR)) {
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ERROR);
}
if (data->int_driven->cb) {
data->int_driven->cb(dev, data->int_driven->cb_data);
}
#endif /* UARTE_INTERRUPT_DRIVEN */
}
#endif /* UARTE_ANY_NONE_ASYNC */
/**
* @brief Set the baud rate
*
* This routine set the given baud rate for the UARTE.
*
* @param dev UARTE device struct
* @param baudrate Baud rate
*
* @return 0 on success or error code
*/
static int baudrate_set(const struct device *dev, uint32_t baudrate)
{
nrf_uarte_baudrate_t nrf_baudrate; /* calculated baudrate divisor */
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
switch (baudrate) {
case 300:
/* value not supported by Nordic HAL */
nrf_baudrate = 0x00014000;
break;
case 600:
/* value not supported by Nordic HAL */
nrf_baudrate = 0x00027000;
break;
case 1200:
nrf_baudrate = NRF_UARTE_BAUDRATE_1200;
break;
case 2400:
nrf_baudrate = NRF_UARTE_BAUDRATE_2400;
break;
case 4800:
nrf_baudrate = NRF_UARTE_BAUDRATE_4800;
break;
case 9600:
nrf_baudrate = NRF_UARTE_BAUDRATE_9600;
break;
case 14400:
nrf_baudrate = NRF_UARTE_BAUDRATE_14400;
break;
case 19200:
nrf_baudrate = NRF_UARTE_BAUDRATE_19200;
break;
case 28800:
nrf_baudrate = NRF_UARTE_BAUDRATE_28800;
break;
case 31250:
nrf_baudrate = NRF_UARTE_BAUDRATE_31250;
break;
case 38400:
nrf_baudrate = NRF_UARTE_BAUDRATE_38400;
break;
case 56000:
nrf_baudrate = NRF_UARTE_BAUDRATE_56000;
break;
case 57600:
nrf_baudrate = NRF_UARTE_BAUDRATE_57600;
break;
case 76800:
nrf_baudrate = NRF_UARTE_BAUDRATE_76800;
break;
case 115200:
nrf_baudrate = NRF_UARTE_BAUDRATE_115200;
break;
case 230400:
nrf_baudrate = NRF_UARTE_BAUDRATE_230400;
break;
case 250000:
nrf_baudrate = NRF_UARTE_BAUDRATE_250000;
break;
case 460800:
nrf_baudrate = NRF_UARTE_BAUDRATE_460800;
break;
case 921600:
nrf_baudrate = NRF_UARTE_BAUDRATE_921600;
break;
case 1000000:
nrf_baudrate = NRF_UARTE_BAUDRATE_1000000;
break;
default:
return -EINVAL;
}
nrf_uarte_baudrate_set(uarte, nrf_baudrate);
return 0;
}
static int uarte_nrfx_configure(const struct device *dev,
const struct uart_config *cfg)
{
nrf_uarte_config_t uarte_cfg;
#if defined(UARTE_CONFIG_STOP_Msk)
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
uarte_cfg.stop = NRF_UARTE_STOP_ONE;
break;
case UART_CFG_STOP_BITS_2:
uarte_cfg.stop = NRF_UARTE_STOP_TWO;
break;
default:
return -ENOTSUP;
}
#else
if (cfg->stop_bits != UART_CFG_STOP_BITS_1) {
return -ENOTSUP;
}
#endif
if (cfg->data_bits != UART_CFG_DATA_BITS_8) {
return -ENOTSUP;
}
switch (cfg->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
uarte_cfg.hwfc = NRF_UARTE_HWFC_DISABLED;
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
if (IS_HWFC_PINS_USED(get_dev_config(dev)->flags)) {
uarte_cfg.hwfc = NRF_UARTE_HWFC_ENABLED;
} else {
return -ENOTSUP;
}
break;
default:
return -ENOTSUP;
}
#if defined(UARTE_CONFIG_PARITYTYPE_Msk)
uarte_cfg.paritytype = NRF_UARTE_PARITYTYPE_EVEN;
#endif
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
uarte_cfg.parity = NRF_UARTE_PARITY_EXCLUDED;
break;
case UART_CFG_PARITY_EVEN:
uarte_cfg.parity = NRF_UARTE_PARITY_INCLUDED;
break;
#if defined(UARTE_CONFIG_PARITYTYPE_Msk)
case UART_CFG_PARITY_ODD:
uarte_cfg.parity = NRF_UARTE_PARITY_INCLUDED;
uarte_cfg.paritytype = NRF_UARTE_PARITYTYPE_ODD;
break;
#endif
default:
return -ENOTSUP;
}
if (baudrate_set(dev, cfg->baudrate) != 0) {
return -ENOTSUP;
}
nrf_uarte_configure(get_uarte_instance(dev), &uarte_cfg);
get_dev_data(dev)->uart_config = *cfg;
return 0;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uarte_nrfx_config_get(const struct device *dev,
struct uart_config *cfg)
{
*cfg = get_dev_data(dev)->uart_config;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
static int uarte_nrfx_err_check(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
/* register bitfields maps to the defines in uart.h */
return nrf_uarte_errorsrc_get_and_clear(uarte);
}
/* Function returns true if new transfer can be started. Since TXSTOPPED
* (and ENDTX) is cleared before triggering new transfer, TX is ready for new
* transfer if any event is set.
*/
static bool is_tx_ready(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
bool ppi_endtx = get_dev_config(dev)->flags & UARTE_CFG_FLAG_PPI_ENDTX;
return nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED) ||
(!ppi_endtx ?
nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX) : 0);
}
/* Wait until the transmitter is in the idle state. When this function returns,
* IRQ's are locked with the returned key.
*/
static int wait_tx_ready(const struct device *dev)
{
int key;
do {
/* wait arbitrary time before back off. */
bool res;
NRFX_WAIT_FOR(is_tx_ready(dev), 100, 1, res);
if (res) {
key = irq_lock();
if (is_tx_ready(dev)) {
break;
}
irq_unlock(key);
}
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_msleep(1);
}
} while (1);
return key;
}
#ifdef CONFIG_UART_ASYNC_API
static inline bool hw_rx_counting_enabled(struct uarte_nrfx_data *data)
{
if (IS_ENABLED(CONFIG_UARTE_NRF_HW_ASYNC)) {
return data->async->hw_rx_counting;
} else {
return false;
}
}
#endif /* CONFIG_UART_ASYNC_API */
static void uarte_enable(const struct device *dev, uint32_t mask)
{
#ifdef CONFIG_UART_ASYNC_API
struct uarte_nrfx_data *data = get_dev_data(dev);
if (data->async) {
bool disabled = data->async->low_power_mask == 0;
data->async->low_power_mask |= mask;
if (hw_rx_counting_enabled(data) && disabled) {
const nrfx_timer_t *timer = &get_dev_config(dev)->timer;
nrfx_timer_enable(timer);
for (int i = 0; i < data->async->rx_flush_cnt; i++) {
nrfx_timer_increment(timer);
}
}
}
#endif
nrf_uarte_enable(get_uarte_instance(dev));
}
/* At this point we should have irq locked and any previous transfer completed.
* Transfer can be started, no need to wait for completion.
*/
static void tx_start(const struct device *dev, const uint8_t *buf, size_t len)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
#if CONFIG_PM_DEVICE
enum pm_device_state state;
(void)pm_device_state_get(dev, &state);
if (state != PM_DEVICE_STATE_ACTIVE) {
return;
}
#endif
nrf_uarte_tx_buffer_set(uarte, buf, len);
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDTX);
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_TXSTOPPED);
if (get_dev_config(dev)->flags & UARTE_CFG_FLAG_LOW_POWER) {
uarte_enable(dev, UARTE_LOW_POWER_TX);
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
}
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTTX);
}
#if defined(CONFIG_UART_ASYNC_API) || defined(CONFIG_PM_DEVICE)
static void uart_disable(const struct device *dev)
{
#ifdef CONFIG_UART_ASYNC_API
struct uarte_nrfx_data *data = get_dev_data(dev);
if (data->async && hw_rx_counting_enabled(data)) {
nrfx_timer_disable(&get_dev_config(dev)->timer);
/* Timer/counter value is reset when disabled. */
data->async->rx_total_byte_cnt = 0;
data->async->rx_total_user_byte_cnt = 0;
}
#endif
nrf_uarte_disable(get_uarte_instance(dev));
}
#endif
#ifdef CONFIG_UART_ASYNC_API
static void timer_handler(nrf_timer_event_t event_type, void *p_context) { }
static void rx_timeout(struct k_timer *timer);
static void tx_timeout(struct k_timer *timer);
static int uarte_nrfx_rx_counting_init(const struct device *dev)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
const struct uarte_nrfx_config *cfg = get_dev_config(dev);
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
int ret;
if (hw_rx_counting_enabled(data)) {
nrfx_timer_config_t tmr_config = NRFX_TIMER_DEFAULT_CONFIG;
tmr_config.mode = NRF_TIMER_MODE_COUNTER;
tmr_config.bit_width = NRF_TIMER_BIT_WIDTH_32;
ret = nrfx_timer_init(&cfg->timer,
&tmr_config,
timer_handler);
if (ret != NRFX_SUCCESS) {
LOG_ERR("Timer already initialized, "
"switching to software byte counting.");
data->async->hw_rx_counting = false;
} else {
nrfx_timer_enable(&cfg->timer);
nrfx_timer_clear(&cfg->timer);
}
}
if (hw_rx_counting_enabled(data)) {
ret = gppi_channel_alloc(&data->async->rx_cnt.ppi);
if (ret != NRFX_SUCCESS) {
LOG_ERR("Failed to allocate PPI Channel, "
"switching to software byte counting.");
data->async->hw_rx_counting = false;
nrfx_timer_uninit(&cfg->timer);
}
}
if (hw_rx_counting_enabled(data)) {
#if CONFIG_HAS_HW_NRF_PPI
ret = nrfx_ppi_channel_assign(
data->async->rx_cnt.ppi,
nrf_uarte_event_address_get(uarte,
NRF_UARTE_EVENT_RXDRDY),
nrfx_timer_task_address_get(&cfg->timer,
NRF_TIMER_TASK_COUNT));
if (ret != NRFX_SUCCESS) {
return -EIO;
}
#else
nrf_uarte_publish_set(uarte,
NRF_UARTE_EVENT_RXDRDY,
data->async->rx_cnt.ppi);
nrf_timer_subscribe_set(cfg->timer.p_reg,
NRF_TIMER_TASK_COUNT,
data->async->rx_cnt.ppi);
#endif
ret = gppi_channel_enable(data->async->rx_cnt.ppi);
if (ret != NRFX_SUCCESS) {
return -EIO;
}
} else {
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_RXDRDY_MASK);
}
return 0;
}
static int uarte_nrfx_init(const struct device *dev)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
int ret = uarte_nrfx_rx_counting_init(dev);
if (ret != 0) {
return ret;
}
data->async->low_power_mask = UARTE_LOW_POWER_TX;
nrf_uarte_int_enable(uarte,
NRF_UARTE_INT_ENDRX_MASK |
NRF_UARTE_INT_RXSTARTED_MASK |
NRF_UARTE_INT_ERROR_MASK |
NRF_UARTE_INT_RXTO_MASK);
nrf_uarte_enable(uarte);
/**
* Stop any currently running RX operations. This can occur when a
* bootloader sets up the UART hardware and does not clean it up
* before jumping to the next application.
*/
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXSTARTED)) {
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPRX);
while (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXTO) &&
!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ERROR)) {
/* Busy wait for event to register */
}
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXTO);
}
k_timer_init(&data->async->rx_timeout_timer, rx_timeout, NULL);
k_timer_user_data_set(&data->async->rx_timeout_timer, data);
k_timer_init(&data->async->tx_timeout_timer, tx_timeout, NULL);
k_timer_user_data_set(&data->async->tx_timeout_timer, data);
return 0;
}
static int uarte_nrfx_tx(const struct device *dev, const uint8_t *buf,
size_t len,
int32_t timeout)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
if (!nrfx_is_in_ram(buf)) {
return -ENOTSUP;
}
int key = irq_lock();
if (data->async->tx_size) {
irq_unlock(key);
return -EBUSY;
}
data->async->tx_size = len;
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
if (!is_tx_ready(dev)) {
/* Active poll out, postpone until it is completed. */
data->async->pend_tx_buf = (uint8_t *)buf;
} else {
data->async->tx_buf = buf;
data->async->tx_amount = -1;
tx_start(dev, buf, len);
}
irq_unlock(key);
if (data->uart_config.flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS
&& timeout != SYS_FOREVER_MS) {
k_timer_start(&data->async->tx_timeout_timer, K_MSEC(timeout),
K_NO_WAIT);
}
return 0;
}
static int uarte_nrfx_tx_abort(const struct device *dev)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
if (data->async->tx_buf == NULL) {
return -EFAULT;
}
k_timer_stop(&data->async->tx_timeout_timer);
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);
return 0;
}
static void user_callback(const struct device *dev, struct uart_event *evt)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
if (data->async->user_callback) {
data->async->user_callback(dev, evt, data->async->user_data);
}
}
static void notify_uart_rx_rdy(const struct device *dev, size_t len)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
struct uart_event evt = {
.type = UART_RX_RDY,
.data.rx.buf = data->async->rx_buf,
.data.rx.len = len,
.data.rx.offset = data->async->rx_offset
};
user_callback(dev, &evt);
}
static void notify_rx_buf_release(const struct device *dev,
uint8_t **buf, bool clear)
{
if (*buf) {
struct uart_event evt = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = *buf,
};
user_callback(dev, &evt);
if (clear) {
*buf = NULL;
}
}
}
static void notify_rx_disable(const struct device *dev)
{
struct uart_event evt = {
.type = UART_RX_DISABLED,
};
user_callback(dev, (struct uart_event *)&evt);
}
static int uarte_nrfx_rx_enable(const struct device *dev, uint8_t *buf,
size_t len,
int32_t timeout)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
if (nrf_uarte_rx_pin_get(uarte) == NRF_UARTE_PSEL_DISCONNECTED) {
__ASSERT(false, "TX only UARTE instance");
return -ENOTSUP;
}
data->async->rx_timeout = timeout;
data->async->rx_timeout_slab =
MAX(timeout / RX_TIMEOUT_DIV,
NRFX_CEIL_DIV(1000, CONFIG_SYS_CLOCK_TICKS_PER_SEC));
data->async->rx_buf = buf;
data->async->rx_buf_len = len;
data->async->rx_offset = 0;
data->async->rx_next_buf = NULL;
data->async->rx_next_buf_len = 0;
if (get_dev_config(dev)->flags & UARTE_CFG_FLAG_LOW_POWER) {
if (data->async->rx_flush_cnt) {
int cpy_len = MIN(len, data->async->rx_flush_cnt);
memcpy(buf, data->async->rx_flush_buffer, cpy_len);
buf += cpy_len;
len -= cpy_len;
/* If flush content filled whole new buffer complete the
* request and indicate rx being disabled.
*/
if (!len) {
data->async->rx_flush_cnt -= cpy_len;
notify_uart_rx_rdy(dev, cpy_len);
notify_rx_buf_release(dev, &data->async->rx_buf,
true);
notify_rx_disable(dev);
return 0;
}
}
}
nrf_uarte_rx_buffer_set(uarte, buf, len);
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
data->async->rx_enabled = true;
if (get_dev_config(dev)->flags & UARTE_CFG_FLAG_LOW_POWER) {
int key = irq_lock();
uarte_enable(dev, UARTE_LOW_POWER_RX);
irq_unlock(key);
}
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
return 0;
}
static int uarte_nrfx_rx_buf_rsp(const struct device *dev, uint8_t *buf,
size_t len)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
int err;
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
int key = irq_lock();
if (data->async->rx_buf == NULL) {
err = -EACCES;
} else if (data->async->rx_next_buf == NULL) {
data->async->rx_next_buf = buf;
data->async->rx_next_buf_len = len;
nrf_uarte_rx_buffer_set(uarte, buf, len);
nrf_uarte_shorts_enable(uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
err = 0;
} else {
err = -EBUSY;
}
irq_unlock(key);
return err;
}
static int uarte_nrfx_callback_set(const struct device *dev,
uart_callback_t callback,
void *user_data)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
if (!data->async) {
return -ENOTSUP;
}
data->async->user_callback = callback;
data->async->user_data = user_data;
return 0;
}
static int uarte_nrfx_rx_disable(const struct device *dev)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
if (data->async->rx_buf == NULL) {
return -EFAULT;
}
if (data->async->rx_next_buf != NULL) {
nrf_uarte_shorts_disable(uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
}
k_timer_stop(&data->async->rx_timeout_timer);
data->async->rx_enabled = false;
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPRX);
return 0;
}
static void tx_timeout(struct k_timer *timer)
{
struct uarte_nrfx_data *data = k_timer_user_data_get(timer);
(void) uarte_nrfx_tx_abort(data->dev);
}
/**
* Whole timeout is divided by RX_TIMEOUT_DIV into smaller units, rx_timeout
* is executed periodically every rx_timeout_slab ms. If between executions
* data was received, then we start counting down time from start, if not, then
* we subtract rx_timeout_slab from rx_timeout_left.
* If rx_timeout_left is less than rx_timeout_slab it means that receiving has
* timed out and we should tell user about that.
*/
static void rx_timeout(struct k_timer *timer)
{
struct uarte_nrfx_data *data = k_timer_user_data_get(timer);
const struct device *dev = data->dev;
const struct uarte_nrfx_config *cfg = get_dev_config(dev);
uint32_t read;
if (data->async->is_in_irq) {
return;
}
/* Disable ENDRX ISR, in case ENDRX event is generated, it will be
* handled after rx_timeout routine is complete.
*/
nrf_uarte_int_disable(get_uarte_instance(dev),
NRF_UARTE_INT_ENDRX_MASK);
if (hw_rx_counting_enabled(data)) {
read = nrfx_timer_capture(&cfg->timer, 0);
} else {
read = data->async->rx_cnt.cnt;
}
/* Check if data was received since last function call */
if (read != data->async->rx_total_byte_cnt) {
data->async->rx_total_byte_cnt = read;
data->async->rx_timeout_left = data->async->rx_timeout;
}
/* Check if there is data that was not sent to user yet
* Note though that 'len' is a count of data bytes received, but not
* necessarily the amount available in the current buffer
*/
int32_t len = data->async->rx_total_byte_cnt
- data->async->rx_total_user_byte_cnt;
if (!hw_rx_counting_enabled(data) &&
(len < 0)) {
/* Prevent too low value of rx_cnt.cnt which may occur due to
* latencies in handling of the RXRDY interrupt.
* At this point, the number of received bytes is at least
* equal to what was reported to the user.
*/
data->async->rx_cnt.cnt = data->async->rx_total_user_byte_cnt;
len = 0;
}
/* Check for current buffer being full.
* if the UART receives characters before the the ENDRX is handled
* and the 'next' buffer is set up, then the SHORT between ENDRX and
* STARTRX will mean that data will be going into to the 'next' buffer
* until the ENDRX event gets a chance to be handled.
*/
bool clipped = false;
if (len + data->async->rx_offset > data->async->rx_buf_len) {
len = data->async->rx_buf_len - data->async->rx_offset;
clipped = true;
}
if (len > 0) {
if (clipped ||
(data->async->rx_timeout_left
< data->async->rx_timeout_slab)) {
/* rx_timeout ms elapsed since last receiving */
notify_uart_rx_rdy(dev, len);
data->async->rx_offset += len;
data->async->rx_total_user_byte_cnt += len;
} else {
data->async->rx_timeout_left -=
data->async->rx_timeout_slab;
}
/* If theres nothing left to report until the buffers are
* switched then the timer can be stopped
*/
if (clipped) {
k_timer_stop(&data->async->rx_timeout_timer);
}
}
nrf_uarte_int_enable(get_uarte_instance(dev),
NRF_UARTE_INT_ENDRX_MASK);
}
#define UARTE_ERROR_FROM_MASK(mask) \
((mask) & NRF_UARTE_ERROR_OVERRUN_MASK ? UART_ERROR_OVERRUN \
: (mask) & NRF_UARTE_ERROR_PARITY_MASK ? UART_ERROR_PARITY \
: (mask) & NRF_UARTE_ERROR_FRAMING_MASK ? UART_ERROR_FRAMING \
: (mask) & NRF_UARTE_ERROR_BREAK_MASK ? UART_BREAK \
: 0)
static void error_isr(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
uint32_t err = nrf_uarte_errorsrc_get_and_clear(uarte);
struct uart_event evt = {
.type = UART_RX_STOPPED,
.data.rx_stop.reason = UARTE_ERROR_FROM_MASK(err),
};
user_callback(dev, &evt);
(void) uarte_nrfx_rx_disable(dev);
}
static void rxstarted_isr(const struct device *dev)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
struct uart_event evt = {
.type = UART_RX_BUF_REQUEST,
};
user_callback(dev, &evt);
if (data->async->rx_timeout != SYS_FOREVER_MS) {
data->async->rx_timeout_left = data->async->rx_timeout;
k_timer_start(&data->async->rx_timeout_timer,
K_MSEC(data->async->rx_timeout_slab),
K_MSEC(data->async->rx_timeout_slab));
}
}
static void endrx_isr(const struct device *dev)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
data->async->is_in_irq = true;
/* ensure rx timer is stopped - it will be restarted in RXSTARTED
* handler if needed
*/
k_timer_stop(&data->async->rx_timeout_timer);
/* this is the amount that the EasyDMA controller has copied into the
* buffer
*/
const int rx_amount = nrf_uarte_rx_amount_get(uarte) +
data->async->rx_flush_cnt;
data->async->rx_flush_cnt = 0;
/* The 'rx_offset' can be bigger than 'rx_amount', so it the length
* of data we report back the the user may need to be clipped.
* This can happen because the 'rx_offset' count derives from RXRDY
* events, which can occur already for the next buffer before we are
* here to handle this buffer. (The next buffer is now already active
* because of the ENDRX_STARTRX shortcut)
*/
int rx_len = rx_amount - data->async->rx_offset;
if (rx_len < 0) {
rx_len = 0;
}
data->async->rx_total_user_byte_cnt += rx_len;
/* Only send the RX_RDY event if there is something to send */
if (rx_len > 0) {
notify_uart_rx_rdy(dev, rx_len);
}
if (!data->async->rx_enabled) {
data->async->is_in_irq = false;
return;
}
notify_rx_buf_release(dev, &data->async->rx_buf, false);
/* If there is a next buffer, then STARTRX will have already been
* invoked by the short (the next buffer will be filling up already)
* and here we just do the swap of which buffer the driver is following,
* the next rx_timeout() will update the rx_offset.
*/
int key = irq_lock();
if (data->async->rx_next_buf) {
data->async->rx_buf = data->async->rx_next_buf;
data->async->rx_buf_len = data->async->rx_next_buf_len;
data->async->rx_next_buf = NULL;
data->async->rx_next_buf_len = 0;
data->async->rx_offset = 0;
/* Check is based on assumption that ISR handler handles
* ENDRX before RXSTARTED so if short was set on time, RXSTARTED
* event will be set.
*/
if (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXSTARTED)) {
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
}
/* Remove the short until the subsequent next buffer is setup */
nrf_uarte_shorts_disable(uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
} else {
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPRX);
}
irq_unlock(key);
data->async->is_in_irq = false;
}
/* Function for flushing internal RX fifo. Function can be called in case
* flushed data is discarded or when data is valid and needs to be retrieved.
*
* However, UARTE does not update RXAMOUNT register if fifo is empty. Old value
* remains. In certain cases it makes it impossible to distinguish between
* case when fifo was empty and not. Function is trying to minimize chances of
* error with following measures:
* - RXAMOUNT is read before flushing and compared against value after flushing
* if they differ it indicates that data was flushed
* - user buffer is dirtied and if RXAMOUNT did not changed it is checked if
* it is still dirty. If not then it indicates that data was flushed
*
* In other cases function indicates that fifo was empty. It means that if
* number of bytes in the fifo equal last rx transfer length and data is equal
* to dirty marker it will be discarded.
*
* @param dev Device.
* @param buf Buffer for flushed data, null indicates that flushed data can be
* dropped.
* @param len Buffer size, not used if @p buf is null.
*
* @return number of bytes flushed from the fifo.
*/
static uint8_t rx_flush(const struct device *dev, uint8_t *buf, uint32_t len)
{
/* Flushing RX fifo requires buffer bigger than 4 bytes to empty fifo*/
static const uint8_t dirty;
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
uint32_t prev_rx_amount = nrf_uarte_rx_amount_get(uarte);
uint8_t tmp_buf[UARTE_HW_RX_FIFO_SIZE];
uint8_t *flush_buf = buf ? buf : tmp_buf;
size_t flush_len = buf ? len : sizeof(tmp_buf);
if (buf) {
memset(buf, dirty, len);
flush_buf = buf;
flush_len = len;
} else {
flush_buf = tmp_buf;
flush_len = sizeof(tmp_buf);
}
nrf_uarte_rx_buffer_set(uarte, flush_buf, flush_len);
/* Final part of handling RXTO event is in ENDRX interrupt
* handler. ENDRX is generated as a result of FLUSHRX task.
*/
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_FLUSHRX);
while (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
/* empty */
}
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
if (!buf) {
return nrf_uarte_rx_amount_get(uarte);
}
uint32_t rx_amount = nrf_uarte_rx_amount_get(uarte);
if (rx_amount != prev_rx_amount) {
return rx_amount;
}
for (int i = 0; i < flush_len; i++) {
if (buf[i] != dirty) {
return rx_amount;
}
}
return 0;
}
static void async_uart_release(const struct device *dev, uint32_t dir_mask)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
int key = irq_lock();
data->async->low_power_mask &= ~dir_mask;
if (!data->async->low_power_mask) {
if (dir_mask == UARTE_LOW_POWER_RX) {
data->async->rx_flush_cnt =
rx_flush(dev, data->async->rx_flush_buffer,
sizeof(data->async->rx_flush_buffer));
}
uart_disable(dev);
}
irq_unlock(key);
}
/* This handler is called when the receiver is stopped. If rx was aborted
* data from fifo is flushed.
*/
static void rxto_isr(const struct device *dev)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
notify_rx_buf_release(dev, &data->async->rx_buf, true);
notify_rx_buf_release(dev, &data->async->rx_next_buf, true);
if (!data->async->rx_enabled) {
(void)rx_flush(dev, NULL, 0);
}
if (get_dev_config(dev)->flags & UARTE_CFG_FLAG_LOW_POWER) {
async_uart_release(dev, UARTE_LOW_POWER_RX);
}
notify_rx_disable(dev);
}
static void txstopped_isr(const struct device *dev)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
int key;
if (get_dev_config(dev)->flags & UARTE_CFG_FLAG_LOW_POWER) {
nrf_uarte_int_disable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
async_uart_release(dev, UARTE_LOW_POWER_TX);
if (!data->async->tx_size) {
return;
}
}
if (!data->async->tx_buf) {
/* If there is a pending tx request, it means that uart_tx()
* was called when there was ongoing uart_poll_out. Handling
* TXSTOPPED interrupt means that uart_poll_out has completed.
*/
if (data->async->pend_tx_buf) {
key = irq_lock();
if (nrf_uarte_event_check(uarte,
NRF_UARTE_EVENT_TXSTOPPED)) {
data->async->tx_buf = data->async->pend_tx_buf;
data->async->pend_tx_buf = NULL;
data->async->tx_amount = -1;
tx_start(dev, data->async->tx_buf,
data->async->tx_size);
}
irq_unlock(key);
}
return;
}
k_timer_stop(&data->async->tx_timeout_timer);
key = irq_lock();
size_t amount = (data->async->tx_amount >= 0) ?
data->async->tx_amount : nrf_uarte_tx_amount_get(uarte);
irq_unlock(key);
struct uart_event evt = {
.data.tx.buf = data->async->tx_buf,
.data.tx.len = amount,
};
if (amount == data->async->tx_size) {
evt.type = UART_TX_DONE;
} else {
evt.type = UART_TX_ABORTED;
}
nrf_uarte_int_disable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
data->async->tx_buf = NULL;
data->async->tx_size = 0;
user_callback(dev, &evt);
}
static void uarte_nrfx_isr_async(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
struct uarte_nrfx_data *data = get_dev_data(dev);
if (!hw_rx_counting_enabled(data)
&& nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXDRDY)) {
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXDRDY);
data->async->rx_cnt.cnt++;
return;
}
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ERROR)) {
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ERROR);
error_isr(dev);
}
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)
&& nrf_uarte_int_enable_check(uarte, NRF_UARTE_INT_ENDRX_MASK)) {
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
endrx_isr(dev);
}
/* RXSTARTED must be handled after ENDRX because it starts the RX timeout
* and if order is swapped then ENDRX will stop this timeout.
* Skip if ENDRX is set when RXSTARTED is set. It means that
* ENDRX occurred after check for ENDRX in isr which may happen when
* UARTE interrupt got preempted. Events are not cleared
* and isr will be called again. ENDRX will be handled first.
*/
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXSTARTED) &&
!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
rxstarted_isr(dev);
}
/* RXTO must be handled after ENDRX which should notify the buffer.
* Skip if ENDRX is set when RXTO is set. It means that
* ENDRX occurred after check for ENDRX in isr which may happen when
* UARTE interrupt got preempted. Events are not cleared
* and isr will be called again. ENDRX will be handled first.
*/
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXTO) &&
!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXTO);
rxto_isr(dev);
}
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)
&& nrf_uarte_int_enable_check(uarte, NRF_UARTE_INT_ENDTX_MASK)) {
endtx_isr(dev);
}
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED)
&& nrf_uarte_int_enable_check(uarte,
NRF_UARTE_INT_TXSTOPPED_MASK)) {
txstopped_isr(dev);
}
}
#endif /* CONFIG_UART_ASYNC_API */
/**
* @brief Poll the device for input.
*
* @param dev UARTE device struct
* @param c Pointer to character
*
* @return 0 if a character arrived, -1 if the input buffer is empty.
*/
static int uarte_nrfx_poll_in(const struct device *dev, unsigned char *c)
{
const struct uarte_nrfx_data *data = get_dev_data(dev);
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
#ifdef CONFIG_UART_ASYNC_API
if (data->async) {
return -ENOTSUP;
}
#endif
if (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
return -1;
}
*c = data->rx_data;
/* clear the interrupt */
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
return 0;
}
/**
* @brief Output a character in polled mode.
*
* @param dev UARTE device struct
* @param c Character to send
*/
static void uarte_nrfx_poll_out(const struct device *dev, unsigned char c)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
bool isr_mode = k_is_in_isr() || k_is_pre_kernel();
int key;
if (isr_mode) {
while (1) {
key = irq_lock();
if (is_tx_ready(dev)) {
#if CONFIG_UART_ASYNC_API
if (data->async && data->async->tx_size &&
data->async->tx_amount < 0) {
data->async->tx_amount =
nrf_uarte_tx_amount_get(
get_uarte_instance(dev));
}
#endif
break;
}
irq_unlock(key);
}
} else {
key = wait_tx_ready(dev);
}
data->char_out = c;
tx_start(dev, &data->char_out, 1);
irq_unlock(key);
}
#ifdef UARTE_INTERRUPT_DRIVEN
/** Interrupt driven FIFO fill function */
static int uarte_nrfx_fifo_fill(const struct device *dev,
const uint8_t *tx_data,
int len)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
len = MIN(len, data->int_driven->tx_buff_size);
if (!atomic_cas(&data->int_driven->fifo_fill_lock, 0, 1)) {
return 0;
}
/* Copy data to RAM buffer for EasyDMA transfer */
for (int i = 0; i < len; i++) {
data->int_driven->tx_buffer[i] = tx_data[i];
}
int key = irq_lock();
if (!is_tx_ready(dev)) {
data->int_driven->fifo_fill_lock = 0;
len = 0;
} else {
tx_start(dev, data->int_driven->tx_buffer, len);
}
irq_unlock(key);
return len;
}
/** Interrupt driven FIFO read function */
static int uarte_nrfx_fifo_read(const struct device *dev,
uint8_t *rx_data,
const int size)
{
int num_rx = 0;
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
const struct uarte_nrfx_data *data = get_dev_data(dev);
if (size > 0 && nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
/* Clear the interrupt */
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
/* Receive a character */
rx_data[num_rx++] = (uint8_t)data->rx_data;
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
}
return num_rx;
}
/** Interrupt driven transfer enabling function */
static void uarte_nrfx_irq_tx_enable(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
struct uarte_nrfx_data *data = get_dev_data(dev);
int key = irq_lock();
data->int_driven->disable_tx_irq = false;
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
irq_unlock(key);
}
/** Interrupt driven transfer disabling function */
static void uarte_nrfx_irq_tx_disable(const struct device *dev)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
/* TX IRQ will be disabled after current transmission is finished */
data->int_driven->disable_tx_irq = true;
}
/** Interrupt driven transfer ready function */
static int uarte_nrfx_irq_tx_ready_complete(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
struct uarte_nrfx_data *data = get_dev_data(dev);
/* ENDTX flag is always on so that ISR is called when we enable TX IRQ.
* Because of that we have to explicitly check if ENDTX interrupt is
* enabled, otherwise this function would always return true no matter
* what would be the source of interrupt.
*/
bool ready = !data->int_driven->disable_tx_irq &&
nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED) &&
nrf_uarte_int_enable_check(uarte,
NRF_UARTE_INT_TXSTOPPED_MASK);
if (ready) {
data->int_driven->fifo_fill_lock = 0;
}
return ready;
}
static int uarte_nrfx_irq_rx_ready(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
return nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX);
}
/** Interrupt driven receiver enabling function */
static void uarte_nrfx_irq_rx_enable(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ENDRX_MASK);
}
/** Interrupt driven receiver disabling function */
static void uarte_nrfx_irq_rx_disable(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
nrf_uarte_int_disable(uarte, NRF_UARTE_INT_ENDRX_MASK);
}
/** Interrupt driven error enabling function */
static void uarte_nrfx_irq_err_enable(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ERROR_MASK);
}
/** Interrupt driven error disabling function */
static void uarte_nrfx_irq_err_disable(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
nrf_uarte_int_disable(uarte, NRF_UARTE_INT_ERROR_MASK);
}
/** Interrupt driven pending status function */
static int uarte_nrfx_irq_is_pending(const struct device *dev)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
return ((nrf_uarte_int_enable_check(uarte,
NRF_UARTE_INT_TXSTOPPED_MASK) &&
uarte_nrfx_irq_tx_ready_complete(dev))
||
(nrf_uarte_int_enable_check(uarte,
NRF_UARTE_INT_ENDRX_MASK) &&
uarte_nrfx_irq_rx_ready(dev)));
}
/** Interrupt driven interrupt update function */
static int uarte_nrfx_irq_update(const struct device *dev)
{
return 1;
}
/** Set the callback function */
static void uarte_nrfx_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uarte_nrfx_data *data = get_dev_data(dev);
data->int_driven->cb = cb;
data->int_driven->cb_data = cb_data;
}
#endif /* UARTE_INTERRUPT_DRIVEN */
static const struct uart_driver_api uart_nrfx_uarte_driver_api = {
.poll_in = uarte_nrfx_poll_in,
.poll_out = uarte_nrfx_poll_out,
.err_check = uarte_nrfx_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uarte_nrfx_configure,
.config_get = uarte_nrfx_config_get,
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_ASYNC_API
.callback_set = uarte_nrfx_callback_set,
.tx = uarte_nrfx_tx,
.tx_abort = uarte_nrfx_tx_abort,
.rx_enable = uarte_nrfx_rx_enable,
.rx_buf_rsp = uarte_nrfx_rx_buf_rsp,
.rx_disable = uarte_nrfx_rx_disable,
#endif /* CONFIG_UART_ASYNC_API */
#ifdef UARTE_INTERRUPT_DRIVEN
.fifo_fill = uarte_nrfx_fifo_fill,
.fifo_read = uarte_nrfx_fifo_read,
.irq_tx_enable = uarte_nrfx_irq_tx_enable,
.irq_tx_disable = uarte_nrfx_irq_tx_disable,
.irq_tx_ready = uarte_nrfx_irq_tx_ready_complete,
.irq_rx_enable = uarte_nrfx_irq_rx_enable,
.irq_rx_disable = uarte_nrfx_irq_rx_disable,
.irq_tx_complete = uarte_nrfx_irq_tx_ready_complete,
.irq_rx_ready = uarte_nrfx_irq_rx_ready,
.irq_err_enable = uarte_nrfx_irq_err_enable,
.irq_err_disable = uarte_nrfx_irq_err_disable,
.irq_is_pending = uarte_nrfx_irq_is_pending,
.irq_update = uarte_nrfx_irq_update,
.irq_callback_set = uarte_nrfx_irq_callback_set,
#endif /* UARTE_INTERRUPT_DRIVEN */
};
static int endtx_stoptx_ppi_init(NRF_UARTE_Type *uarte,
struct uarte_nrfx_data *data)
{
nrfx_err_t ret;
ret = gppi_channel_alloc(&data->ppi_ch_endtx);
if (ret != NRFX_SUCCESS) {
LOG_ERR("Failed to allocate PPI Channel");
return -EIO;
}
nrfx_gppi_channel_endpoints_setup(data->ppi_ch_endtx,
nrf_uarte_event_address_get(uarte, NRF_UARTE_EVENT_ENDTX),
nrf_uarte_task_address_get(uarte, NRF_UARTE_TASK_STOPTX));
nrfx_gppi_channels_enable(BIT(data->ppi_ch_endtx));
return 0;
}
static int uarte_instance_init(const struct device *dev,
uint8_t interrupts_active)
{
int err;
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
struct uarte_nrfx_data *data = get_dev_data(dev);
const struct uarte_nrfx_config *cfg = get_dev_config(dev);
nrf_uarte_disable(uarte);
data->dev = dev;
nrf_gpio_pin_write(cfg->pseltxd, 1);
nrf_gpio_cfg_output(cfg->pseltxd);
if (cfg->pselrxd != NRF_UARTE_PSEL_DISCONNECTED) {
nrf_gpio_cfg_input(cfg->pselrxd, cfg->rxd_pull);
}
nrf_uarte_txrx_pins_set(uarte, cfg->pseltxd, cfg->pselrxd);
if (cfg->pselcts != NRF_UARTE_PSEL_DISCONNECTED) {
nrf_gpio_cfg_input(cfg->pselcts, cfg->cts_pull);
}
if (cfg->pselrts != NRF_UARTE_PSEL_DISCONNECTED) {
nrf_gpio_pin_write(cfg->pselrts, 1);
nrf_gpio_cfg_output(cfg->pselrts);
}
nrf_uarte_hwfc_pins_set(uarte, cfg->pselrts, cfg->pselcts);
err = uarte_nrfx_configure(dev, &get_dev_data(dev)->uart_config);
if (err) {
return err;
}
if (IS_ENABLED(CONFIG_UART_ENHANCED_POLL_OUT) &&
cfg->flags & UARTE_CFG_FLAG_PPI_ENDTX) {
err = endtx_stoptx_ppi_init(uarte, data);
if (err < 0) {
return err;
}
}
#ifdef CONFIG_UART_ASYNC_API
if (data->async) {
err = uarte_nrfx_init(dev);
if (err < 0) {
return err;
}
} else
#endif
{
/* Enable receiver and transmitter */
nrf_uarte_enable(uarte);
if (cfg->pselrxd != NRF_UARTE_PSEL_DISCONNECTED) {
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
nrf_uarte_rx_buffer_set(uarte, &data->rx_data, 1);
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
}
}
if (!(cfg->flags & UARTE_CFG_FLAG_PPI_ENDTX)) {
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ENDTX_MASK);
}
if (cfg->flags & UARTE_CFG_FLAG_LOW_POWER) {
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_TXSTOPPED_MASK);
}
/* Set TXSTOPPED event by requesting fake (zero-length) transfer.
* Pointer to RAM variable (data->tx_buffer) is set because otherwise
* such operation may result in HardFault or RAM corruption.
*/
nrf_uarte_tx_buffer_set(uarte, &data->char_out, 0);
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTTX);
/* switch off transmitter to save an energy */
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);
return 0;
}
#ifdef CONFIG_PM_DEVICE
static void uarte_nrfx_pins_enable(const struct device *dev, bool enable)
{
const struct uarte_nrfx_config *cfg = get_dev_config(dev);
if (!(cfg->flags & UARTE_CFG_FLAG_GPIO_MGMT)) {
return;
}
if (enable) {
nrf_gpio_pin_write(cfg->pseltxd, 1);
nrf_gpio_cfg_output(cfg->pseltxd);
if (cfg->pselrxd != NRF_UARTE_PSEL_DISCONNECTED) {
nrf_gpio_cfg_input(cfg->pselrxd, cfg->rxd_pull);
}
if (IS_RTS_PIN_SET(cfg->flags)) {
nrf_gpio_pin_write(cfg->pselrts, 1);
nrf_gpio_cfg_output(cfg->pselrts);
}
if (IS_CTS_PIN_SET(cfg->flags)) {
nrf_gpio_cfg_input(cfg->pselcts, cfg->cts_pull);
}
} else {
nrf_gpio_cfg_default(cfg->pseltxd);
if (cfg->pselrxd != NRF_UARTE_PSEL_DISCONNECTED) {
nrf_gpio_cfg_default(cfg->pselrxd);
}
if (IS_RTS_PIN_SET(cfg->flags)) {
nrf_gpio_cfg_default(cfg->pselrts);
}
if (IS_CTS_PIN_SET(cfg->flags)) {
nrf_gpio_cfg_default(cfg->pselcts);
}
}
}
/** @brief Pend until TX is stopped.
*
* There are 2 configurations that must be handled:
* - ENDTX->TXSTOPPED PPI enabled - just pend until TXSTOPPED event is set
* - disable ENDTX interrupt and manually trigger STOPTX, pend for TXSTOPPED
*/
static void wait_for_tx_stopped(const struct device *dev)
{
bool ppi_endtx = get_dev_config(dev)->flags & UARTE_CFG_FLAG_PPI_ENDTX;
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
bool res;
if (!ppi_endtx) {
/* We assume here that it can be called from any context,
* including the one that uarte interrupt will not preempt.
* Disable endtx interrupt to ensure that it will not be triggered
* (if in lower priority context) and stop TX if necessary.
*/
nrf_uarte_int_disable(uarte, NRF_UARTE_INT_ENDTX_MASK);
NRFX_WAIT_FOR(is_tx_ready(dev), 1000, 1, res);
if (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED)) {
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDTX);
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);
}
}
NRFX_WAIT_FOR(nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED),
1000, 1, res);
if (!ppi_endtx) {
nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ENDTX_MASK);
}
}
static int uarte_nrfx_pm_control(const struct device *dev,
enum pm_device_action action)
{
NRF_UARTE_Type *uarte = get_uarte_instance(dev);
#if defined(CONFIG_UART_ASYNC_API) || defined(UARTE_INTERRUPT_DRIVEN)
struct uarte_nrfx_data *data = get_dev_data(dev);
#endif
switch (action) {
case PM_DEVICE_ACTION_RESUME:
uarte_nrfx_pins_enable(dev, true);
nrf_uarte_enable(uarte);
#ifdef CONFIG_UART_ASYNC_API
if (hw_rx_counting_enabled(get_dev_data(dev))) {
nrfx_timer_enable(&get_dev_config(dev)->timer);
}
if (get_dev_data(dev)->async) {
return 0;
}
#endif
if (nrf_uarte_rx_pin_get(uarte) != NRF_UARTE_PSEL_DISCONNECTED) {
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
#ifdef UARTE_INTERRUPT_DRIVEN
if (data->int_driven &&
data->int_driven->rx_irq_enabled) {
nrf_uarte_int_enable(uarte,
NRF_UARTE_INT_ENDRX_MASK);
}
#endif
}
break;
case PM_DEVICE_ACTION_SUSPEND:
/* Disabling UART requires stopping RX, but stop RX event is
* only sent after each RX if async UART API is used.
*/
#ifdef CONFIG_UART_ASYNC_API
if (get_dev_data(dev)->async) {
/* Entering inactive state requires device to be no
* active asynchronous calls.
*/
__ASSERT_NO_MSG(!data->async->rx_enabled);
__ASSERT_NO_MSG(!data->async->tx_size);
}
#endif
if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXSTARTED)) {
#ifdef UARTE_INTERRUPT_DRIVEN
if (data->int_driven) {
data->int_driven->rx_irq_enabled =
nrf_uarte_int_enable_check(uarte,
NRF_UARTE_INT_ENDRX_MASK);
if (data->int_driven->rx_irq_enabled) {
nrf_uarte_int_disable(uarte,
NRF_UARTE_INT_ENDRX_MASK);
}
}
#endif
nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPRX);
while (!nrf_uarte_event_check(uarte,
NRF_UARTE_EVENT_RXTO) &&
!nrf_uarte_event_check(uarte,
NRF_UARTE_EVENT_ERROR)) {
/* Busy wait for event to register */
}
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXTO);
nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
}
wait_for_tx_stopped(dev);
uart_disable(dev);
uarte_nrfx_pins_enable(dev, false);
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
#define UARTE(idx) DT_NODELABEL(uart##idx)
#define UARTE_HAS_PROP(idx, prop) DT_NODE_HAS_PROP(UARTE(idx), prop)
#define UARTE_PROP(idx, prop) DT_PROP(UARTE(idx), prop)
#define UARTE_PSEL(idx, pin_prop) \
COND_CODE_1(UARTE_HAS_PROP(idx, pin_prop), \
(UARTE_PROP(idx, pin_prop)), \
(NRF_UARTE_PSEL_DISCONNECTED))
#define UARTE_PULL(idx, pull_up_prop) \
COND_CODE_1(UARTE_PROP(idx, pull_up_prop), \
(NRF_GPIO_PIN_PULLUP), \
(NRF_GPIO_PIN_NOPULL))
#define HWFC_AVAILABLE(idx) \
(UARTE_HAS_PROP(idx, rts_pin) || UARTE_HAS_PROP(idx, cts_pin))
#define UARTE_IRQ_CONFIGURE(idx, isr_handler) \
do { \
IRQ_CONNECT(DT_IRQN(UARTE(idx)), DT_IRQ(UARTE(idx), priority), \
isr_handler, DEVICE_DT_GET(UARTE(idx)), 0); \
irq_enable(DT_IRQN(UARTE(idx))); \
} while (0)
#define HWFC_CONFIG_CHECK(idx) \
BUILD_ASSERT( \
(UARTE_PROP(idx, hw_flow_control) && HWFC_AVAILABLE(idx)) \
|| \
!UARTE_PROP(idx, hw_flow_control) \
)
/* Low power mode is used when rx pin is not defined or in async mode if
* kconfig option is enabled.
*/
#define USE_LOW_POWER(idx) \
((UARTE_HAS_PROP(idx, rx_pin) && \
COND_CODE_1(CONFIG_UART_##idx##_ASYNC, \
(!IS_ENABLED(CONFIG_UART_##idx##_NRF_ASYNC_LOW_POWER)), \
(1))) ? 0 : UARTE_CFG_FLAG_LOW_POWER)
#define UART_NRF_UARTE_DEVICE(idx) \
HWFC_CONFIG_CHECK(idx); \
UARTE_INT_DRIVEN(idx); \
UARTE_ASYNC(idx); \
static struct uarte_nrfx_data uarte_##idx##_data = { \
UARTE_CONFIG(idx), \
IF_ENABLED(CONFIG_UART_##idx##_ASYNC, \
(.async = &uarte##idx##_async,)) \
IF_ENABLED(CONFIG_UART_##idx##_INTERRUPT_DRIVEN, \
(.int_driven = &uarte##idx##_int_driven,)) \
}; \
static const struct uarte_nrfx_config uarte_##idx##z_config = { \
.uarte_regs = (NRF_UARTE_Type *)DT_REG_ADDR(UARTE(idx)), \
.flags = \
(UARTE_HAS_PROP(idx, rts_pin) ? \
UARTE_CFG_FLAG_RTS_PIN_SET : 0) | \
(UARTE_HAS_PROP(idx, cts_pin) ? \
UARTE_CFG_FLAG_CTS_PIN_SET : 0) | \
(IS_ENABLED(CONFIG_UART_##idx##_GPIO_MANAGEMENT) ? \
UARTE_CFG_FLAG_GPIO_MGMT : 0) | \
(IS_ENABLED(CONFIG_UART_##idx##_ENHANCED_POLL_OUT) ? \
UARTE_CFG_FLAG_PPI_ENDTX : 0) | \
USE_LOW_POWER(idx), \
.pseltxd = UARTE_PROP(idx, tx_pin), /* must be set */ \
.pselrxd = UARTE_PSEL(idx, rx_pin), /* optional */ \
.pselcts = UARTE_PSEL(idx, cts_pin), /* optional */ \
.pselrts = UARTE_PSEL(idx, rts_pin), /* optional */ \
.rxd_pull = UARTE_PULL(idx, rx_pull_up), \
.cts_pull = UARTE_PULL(idx, cts_pull_up), \
IF_ENABLED(CONFIG_UART_##idx##_NRF_HW_ASYNC, \
(.timer = NRFX_TIMER_INSTANCE( \
CONFIG_UART_##idx##_NRF_HW_ASYNC_TIMER),)) \
}; \
static int uarte_##idx##_init(const struct device *dev) \
{ \
COND_CODE_1(CONFIG_UART_##idx##_ASYNC, \
(UARTE_IRQ_CONFIGURE(idx, uarte_nrfx_isr_async);), \
(UARTE_IRQ_CONFIGURE(idx, uarte_nrfx_isr_int);)) \
return uarte_instance_init( \
dev, \
IS_ENABLED(CONFIG_UART_##idx##_INTERRUPT_DRIVEN)); \
} \
DEVICE_DT_DEFINE(UARTE(idx), \
uarte_##idx##_init, \
uarte_nrfx_pm_control, \
&uarte_##idx##_data, \
&uarte_##idx##z_config, \
PRE_KERNEL_1, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&uart_nrfx_uarte_driver_api)
#define UARTE_CONFIG(idx) \
.uart_config = { \
.baudrate = UARTE_PROP(idx, current_speed), \
.data_bits = UART_CFG_DATA_BITS_8, \
.stop_bits = UART_CFG_STOP_BITS_1, \
.parity = IS_ENABLED(CONFIG_UART_##idx##_NRF_PARITY_BIT) \
? UART_CFG_PARITY_EVEN \
: UART_CFG_PARITY_NONE, \
.flow_ctrl = UARTE_PROP(idx, hw_flow_control) \
? UART_CFG_FLOW_CTRL_RTS_CTS \
: UART_CFG_FLOW_CTRL_NONE, \
}
#define UARTE_ASYNC(idx) \
IF_ENABLED(CONFIG_UART_##idx##_ASYNC, \
(struct uarte_async_cb uarte##idx##_async = { \
.hw_rx_counting = \
IS_ENABLED(CONFIG_UART_##idx##_NRF_HW_ASYNC), \
}))
#define UARTE_INT_DRIVEN(idx) \
IF_ENABLED(CONFIG_UART_##idx##_INTERRUPT_DRIVEN, \
(static uint8_t uarte##idx##_tx_buffer[\
MIN(CONFIG_UART_##idx##_NRF_TX_BUFFER_SIZE, \
BIT_MASK(UARTE##idx##_EASYDMA_MAXCNT_SIZE))]; \
static struct uarte_nrfx_int_driven \
uarte##idx##_int_driven = { \
.tx_buffer = uarte##idx##_tx_buffer, \
.tx_buff_size = sizeof(uarte##idx##_tx_buffer),\
};))
#ifdef CONFIG_UART_0_NRF_UARTE
UART_NRF_UARTE_DEVICE(0);
#endif
#ifdef CONFIG_UART_1_NRF_UARTE
UART_NRF_UARTE_DEVICE(1);
#endif
#ifdef CONFIG_UART_2_NRF_UARTE
UART_NRF_UARTE_DEVICE(2);
#endif
#ifdef CONFIG_UART_3_NRF_UARTE
UART_NRF_UARTE_DEVICE(3);
#endif