Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
/*
 * Copyright (c) 2010, 2012-2015 Wind River Systems, Inc.
 * Copyright (c) 2020 Intel Corp.
 * Copyright (c) 2021 Microchip Technology Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @brief Microchip XEC UART Serial Driver
 *
 * This is the driver for the Microchip XEC MCU UART. It is NS16550 compatible.
 *
 */

#define DT_DRV_COMPAT microchip_xec_uart

#include <errno.h>
#include <kernel.h>
#include <arch/cpu.h>
#include <zephyr/types.h>
#include <soc.h>

#include <init.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <drivers/clock_control/mchp_xec_clock_control.h>
#include <drivers/interrupt_controller/intc_mchp_xec_ecia.h>
#include <drivers/uart.h>
#include <sys/sys_io.h>
#include <spinlock.h>

BUILD_ASSERT(IS_ENABLED(CONFIG_SOC_SERIES_MEC172X),
	     "XEC UART driver only support MEC172x at this time");

/* Clock source is 1.8432 MHz derived from PLL 48 MHz */
#define XEC_UART_CLK_SRC_1P8M		0
/* Clock source is PLL 48 MHz output */
#define XEC_UART_CLK_SRC_48M		1
/* Clock source is the UART_CLK alternate pin function. */
#define XEC_UART_CLK_SRC_EXT_PIN	2

/* register definitions */

#define REG_THR 0x00  /* Transmitter holding reg.       */
#define REG_RDR 0x00  /* Receiver data reg.             */
#define REG_BRDL 0x00 /* Baud rate divisor (LSB)        */
#define REG_BRDH 0x01 /* Baud rate divisor (MSB)        */
#define REG_IER 0x01  /* Interrupt enable reg.          */
#define REG_IIR 0x02  /* Interrupt ID reg.              */
#define REG_FCR 0x02  /* FIFO control reg.              */
#define REG_LCR 0x03  /* Line control reg.              */
#define REG_MDC 0x04  /* Modem control reg.             */
#define REG_LSR 0x05  /* Line status reg.               */
#define REG_MSR 0x06  /* Modem status reg.              */
#define REG_SCR 0x07  /* scratch register               */
#define REG_LD_ACTV 0x330 /* Logical Device activate    */
#define REG_LD_CFG 0x3f0 /* Logical Device configuration */

/* equates for interrupt enable register */

#define IER_RXRDY 0x01 /* receiver data ready */
#define IER_TBE 0x02   /* transmit bit enable */
#define IER_LSR 0x04   /* line status interrupts */
#define IER_MSI 0x08   /* modem status interrupts */

/* equates for interrupt identification register */

#define IIR_MSTAT 0x00 /* modem status interrupt  */
#define IIR_NIP   0x01 /* no interrupt pending    */
#define IIR_THRE  0x02 /* transmit holding register empty interrupt */
#define IIR_RBRF  0x04 /* receiver buffer register full interrupt */
#define IIR_LS    0x06 /* receiver line status interrupt */
#define IIR_MASK  0x07 /* interrupt id bits mask  */
#define IIR_ID    0x06 /* interrupt ID mask without NIP */

/* equates for FIFO control register */

#define FCR_FIFO 0x01    /* enable XMIT and RCVR FIFO */
#define FCR_RCVRCLR 0x02 /* clear RCVR FIFO */
#define FCR_XMITCLR 0x04 /* clear XMIT FIFO */

/*
 * Per PC16550D (Literature Number: SNLS378B):
 *
 * RXRDY, Mode 0: When in the 16450 Mode (FCR0 = 0) or in
 * the FIFO Mode (FCR0 = 1, FCR3 = 0) and there is at least 1
 * character in the RCVR FIFO or RCVR holding register, the
 * RXRDY pin (29) will be low active. Once it is activated the
 * RXRDY pin will go inactive when there are no more charac-
 * ters in the FIFO or holding register.
 *
 * RXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when the
 * FCR3 = 1 and the trigger level or the timeout has been
 * reached, the RXRDY pin will go low active. Once it is acti-
 * vated it will go inactive when there are no more characters
 * in the FIFO or holding register.
 *
 * TXRDY, Mode 0: In the 16450 Mode (FCR0 = 0) or in the
 * FIFO Mode (FCR0 = 1, FCR3 = 0) and there are no charac-
 * ters in the XMIT FIFO or XMIT holding register, the TXRDY
 * pin (24) will be low active. Once it is activated the TXRDY
 * pin will go inactive after the first character is loaded into the
 * XMIT FIFO or holding register.
 *
 * TXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when
 * FCR3 = 1 and there are no characters in the XMIT FIFO, the
 * TXRDY pin will go low active. This pin will become inactive
 * when the XMIT FIFO is completely full.
 */
#define FCR_MODE0 0x00 /* set receiver in mode 0 */
#define FCR_MODE1 0x08 /* set receiver in mode 1 */

/* RCVR FIFO interrupt levels: trigger interrupt with this bytes in FIFO */
#define FCR_FIFO_1 0x00  /* 1 byte in RCVR FIFO */
#define FCR_FIFO_4 0x40  /* 4 bytes in RCVR FIFO */
#define FCR_FIFO_8 0x80  /* 8 bytes in RCVR FIFO */
#define FCR_FIFO_14 0xC0 /* 14 bytes in RCVR FIFO */

/* constants for line control register */

#define LCR_CS5 0x00   /* 5 bits data size */
#define LCR_CS6 0x01   /* 6 bits data size */
#define LCR_CS7 0x02   /* 7 bits data size */
#define LCR_CS8 0x03   /* 8 bits data size */
#define LCR_2_STB 0x04 /* 2 stop bits */
#define LCR_1_STB 0x00 /* 1 stop bit */
#define LCR_PEN 0x08   /* parity enable */
#define LCR_PDIS 0x00  /* parity disable */
#define LCR_EPS 0x10   /* even parity select */
#define LCR_SP 0x20    /* stick parity select */
#define LCR_SBRK 0x40  /* break control bit */
#define LCR_DLAB 0x80  /* divisor latch access enable */

/* constants for the modem control register */

#define MCR_DTR 0x01  /* dtr output */
#define MCR_RTS 0x02  /* rts output */
#define MCR_OUT1 0x04 /* output #1 */
#define MCR_OUT2 0x08 /* output #2 */
#define MCR_LOOP 0x10 /* loop back */
#define MCR_AFCE 0x20 /* auto flow control enable */

/* constants for line status register */

#define LSR_RXRDY 0x01 /* receiver data available */
#define LSR_OE 0x02    /* overrun error */
#define LSR_PE 0x04    /* parity error */
#define LSR_FE 0x08    /* framing error */
#define LSR_BI 0x10    /* break interrupt */
#define LSR_EOB_MASK 0x1E /* Error or Break mask */
#define LSR_THRE 0x20  /* transmit holding register empty */
#define LSR_TEMT 0x40  /* transmitter empty */

/* constants for modem status register */

#define MSR_DCTS 0x01 /* cts change */
#define MSR_DDSR 0x02 /* dsr change */
#define MSR_DRI 0x04  /* ring change */
#define MSR_DDCD 0x08 /* data carrier change */
#define MSR_CTS 0x10  /* complement of cts */
#define MSR_DSR 0x20  /* complement of dsr */
#define MSR_RI 0x40   /* complement of ring signal */
#define MSR_DCD 0x80  /* complement of dcd */

/* convenience defines */

#define DEV_CFG(dev) \
	((const struct uart_xec_device_config * const)(dev)->config)
#define DEV_DATA(dev) \
	((struct uart_xec_dev_data *)(dev)->data)

#define IIRC(dev) (DEV_DATA(dev)->iir_cache)

/* device config */
struct uart_xec_device_config {
	struct uart_regs *regs;
	uint32_t sys_clk_freq;
	uint8_t girq_id;
	uint8_t girq_pos;
	uint8_t pcr_idx;
	uint8_t pcr_bitpos;
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
	uart_irq_config_func_t	irq_config_func;
#endif
};

/** Device data structure */
struct uart_xec_dev_data {
	struct uart_config uart_config;
	struct k_spinlock lock;

	uint8_t fcr_cache;	/**< cache of FCR write only register */
	uint8_t iir_cache;	/**< cache of IIR since it clears when read */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	uart_irq_callback_user_data_t cb;  /**< Callback function pointer */
	void *cb_data;	/**< Callback function arg */
#endif
};

static const struct uart_driver_api uart_xec_driver_api;

static void set_baud_rate(const struct device *dev, uint32_t baud_rate)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_xec_dev_data * const dev_data = DEV_DATA(dev);
	struct uart_regs *regs = dev_cfg->regs;
	uint32_t divisor; /* baud rate divisor */
	uint8_t lcr_cache;

	if ((baud_rate != 0U) && (dev_cfg->sys_clk_freq != 0U)) {
		/*
		 * calculate baud rate divisor. a variant of
		 * (uint32_t)(dev_cfg->sys_clk_freq / (16.0 * baud_rate) + 0.5)
		 */
		divisor = ((dev_cfg->sys_clk_freq + (baud_rate << 3))
					/ baud_rate) >> 4;

		/* set the DLAB to access the baud rate divisor registers */
		lcr_cache = regs->LCR;
		regs->LCR = LCR_DLAB | lcr_cache;
		regs->RTXB = (unsigned char)(divisor & 0xff);
		/* bit[7]=0 1.8MHz clock source, =1 48MHz clock source */
		regs->IER = (unsigned char)((divisor >> 8) & 0x7f);

		/* restore the DLAB to access the baud rate divisor registers */
		regs->LCR = lcr_cache;

		dev_data->uart_config.baudrate = baud_rate;
	}
}

/*
 * Configure UART.
 * MCHP XEC UART defaults to reset if external Host VCC_PWRGD is inactive.
 * We must change the UART reset signal to XEC VTR_PWRGD. Make sure UART
 * clock source is an internal clock and UART pins are not inverted.
 */
static int uart_xec_configure(const struct device *dev,
			      const struct uart_config *cfg)
{
	struct uart_xec_dev_data * const dev_data = DEV_DATA(dev);
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	uint8_t lcr_cache;

	/* temp for return value if error occurs in this locked region */
	int ret = 0;

	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	ARG_UNUSED(dev_data);

	dev_data->fcr_cache = 0U;
	dev_data->iir_cache = 0U;

	/* XEC UART specific configuration and enable */
	regs->CFG_SEL &= ~(MCHP_UART_LD_CFG_RESET_VCC |
			   MCHP_UART_LD_CFG_EXTCLK | MCHP_UART_LD_CFG_INVERT);
	/* set activate to enable clocks */
	regs->ACTV |= MCHP_UART_LD_ACTIVATE;

	set_baud_rate(dev, cfg->baudrate);

	/* Local structure to hold temporary values */
	struct uart_config uart_cfg;

	switch (cfg->data_bits) {
	case UART_CFG_DATA_BITS_5:
		uart_cfg.data_bits = LCR_CS5;
		break;
	case UART_CFG_DATA_BITS_6:
		uart_cfg.data_bits = LCR_CS6;
		break;
	case UART_CFG_DATA_BITS_7:
		uart_cfg.data_bits = LCR_CS7;
		break;
	case UART_CFG_DATA_BITS_8:
		uart_cfg.data_bits = LCR_CS8;
		break;
	default:
		ret = -ENOTSUP;
		goto out;
	}

	switch (cfg->stop_bits) {
	case UART_CFG_STOP_BITS_1:
		uart_cfg.stop_bits = LCR_1_STB;
		break;
	case UART_CFG_STOP_BITS_2:
		uart_cfg.stop_bits = LCR_2_STB;
		break;
	default:
		ret = -ENOTSUP;
		goto out;
	}

	switch (cfg->parity) {
	case UART_CFG_PARITY_NONE:
		uart_cfg.parity = LCR_PDIS;
		break;
	case UART_CFG_PARITY_EVEN:
		uart_cfg.parity = LCR_EPS;
		break;
	default:
		ret = -ENOTSUP;
		goto out;
	}

	dev_data->uart_config = *cfg;

	/* data bits, stop bits, parity, clear DLAB */
	regs->LCR = uart_cfg.data_bits | uart_cfg.stop_bits | uart_cfg.parity;

	regs->MCR = MCR_OUT2 | MCR_RTS | MCR_DTR;

	/*
	 * Program FIFO: enabled, mode 0
	 * generate the interrupt at 8th byte
	 * Clear TX and RX FIFO
	 */
	dev_data->fcr_cache = FCR_FIFO | FCR_MODE0 | FCR_FIFO_8 | FCR_RCVRCLR |
			      FCR_XMITCLR;
	regs->IIR_FCR = dev_data->fcr_cache;

	/* clear the port */
	lcr_cache = regs->LCR;
	regs->LCR = LCR_DLAB | lcr_cache;
	regs->SCR = regs->RTXB;
	regs->LCR = lcr_cache;

	/* disable interrupts  */
	regs->IER = 0;

out:
	k_spin_unlock(&dev_data->lock, key);
	return ret;
};

#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_xec_config_get(const struct device *dev,
			       struct uart_config *cfg)
{
	struct uart_xec_dev_data *data = DEV_DATA(dev);

	cfg->baudrate = data->uart_config.baudrate;
	cfg->parity = data->uart_config.parity;
	cfg->stop_bits = data->uart_config.stop_bits;
	cfg->data_bits = data->uart_config.data_bits;
	cfg->flow_ctrl = data->uart_config.flow_ctrl;

	return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */

/**
 * @brief Initialize individual UART port
 *
 * This routine is called to reset the chip in a quiescent state.
 *
 * @param dev UART device struct
 *
 * @return 0 if successful, failed otherwise
 */
static int uart_xec_init(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	int ret;

	ret = z_mchp_xec_pcr_periph_sleep(dev_cfg->pcr_idx,
					  dev_cfg->pcr_bitpos, 0);
	if (ret != 0) {
		return ret;
	}

	ret = uart_xec_configure(dev, &DEV_DATA(dev)->uart_config);
	if (ret != 0) {
		return ret;
	}

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	dev_cfg->irq_config_func(dev);
#endif

	return 0;
}

/**
 * @brief Poll the device for input.
 *
 * @param dev UART device struct
 * @param c Pointer to character
 *
 * @return 0 if a character arrived, -1 if the input buffer if empty.
 */
static int uart_xec_poll_in(const struct device *dev, unsigned char *c)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	int ret = -1;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	if ((regs->LSR & LSR_RXRDY) != 0) {
		/* got a character */
		*c = regs->RTXB;
		ret = 0;
	}

	k_spin_unlock(&DEV_DATA(dev)->lock, key);

	return ret;
}

/**
 * @brief Output a character in polled mode.
 *
 * Checks if the transmitter is empty. If empty, a character is written to
 * the data register.
 *
 * If the hardware flow control is enabled then the handshake signal CTS has to
 * be asserted in order to send a character.
 *
 * @param dev UART device struct
 * @param c Character to send
 */
static void uart_xec_poll_out(const struct device *dev, unsigned char c)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	while ((regs->LSR & LSR_THRE) == 0) {
		;
	}

	regs->RTXB = c;

	k_spin_unlock(&DEV_DATA(dev)->lock, key);
}

/**
 * @brief Check if an error was received
 *
 * @param dev UART device struct
 *
 * @return one of UART_ERROR_OVERRUN, UART_ERROR_PARITY, UART_ERROR_FRAMING,
 * UART_BREAK if an error was detected, 0 otherwise.
 */
static int uart_xec_err_check(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);
	int check = regs->LSR & LSR_EOB_MASK;

	k_spin_unlock(&DEV_DATA(dev)->lock, key);

	return check >> 1;
}

#if CONFIG_UART_INTERRUPT_DRIVEN

/**
 * @brief Fill FIFO with data
 *
 * @param dev UART device struct
 * @param tx_data Data to transmit
 * @param size Number of bytes to send
 *
 * @return Number of bytes sent
 */
static int uart_xec_fifo_fill(const struct device *dev, const uint8_t *tx_data,
			      int size)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	int i;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	for (i = 0; (i < size) && (regs->LSR & LSR_THRE) != 0; i++) {
		regs->RTXB = tx_data[i];
	}

	k_spin_unlock(&DEV_DATA(dev)->lock, key);

	return i;
}

/**
 * @brief Read data from FIFO
 *
 * @param dev UART device struct
 * @param rxData Data container
 * @param size Container size
 *
 * @return Number of bytes read
 */
static int uart_xec_fifo_read(const struct device *dev, uint8_t *rx_data,
			      const int size)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	int i;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	for (i = 0; (i < size) && (regs->LSR & LSR_RXRDY) != 0; i++) {
		rx_data[i] = regs->RTXB;
	}

	k_spin_unlock(&DEV_DATA(dev)->lock, key);

	return i;
}

/**
 * @brief Enable TX interrupt in IER
 *
 * @param dev UART device struct
 *
 * @return N/A
 */
static void uart_xec_irq_tx_enable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	regs->IER |= IER_TBE;

	k_spin_unlock(&DEV_DATA(dev)->lock, key);
}

/**
 * @brief Disable TX interrupt in IER
 *
 * @param dev UART device struct
 *
 * @return N/A
 */
static void uart_xec_irq_tx_disable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	regs->IER &= ~(IER_TBE);

	k_spin_unlock(&DEV_DATA(dev)->lock, key);
}

/**
 * @brief Check if Tx IRQ has been raised
 *
 * @param dev UART device struct
 *
 * @return 1 if an IRQ is ready, 0 otherwise
 */
static int uart_xec_irq_tx_ready(const struct device *dev)
{
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	int ret = ((IIRC(dev) & IIR_ID) == IIR_THRE) ? 1 : 0;

	k_spin_unlock(&DEV_DATA(dev)->lock, key);

	return ret;
}

/**
 * @brief Check if nothing remains to be transmitted
 *
 * @param dev UART device struct
 *
 * @return 1 if nothing remains to be transmitted, 0 otherwise
 */
static int uart_xec_irq_tx_complete(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	int ret = ((regs->LSR & (LSR_TEMT | LSR_THRE))
				== (LSR_TEMT | LSR_THRE)) ? 1 : 0;

	k_spin_unlock(&DEV_DATA(dev)->lock, key);

	return ret;
}

/**
 * @brief Enable RX interrupt in IER
 *
 * @param dev UART device struct
 *
 * @return N/A
 */
static void uart_xec_irq_rx_enable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	regs->IER |= IER_RXRDY;

	k_spin_unlock(&DEV_DATA(dev)->lock, key);
}

/**
 * @brief Disable RX interrupt in IER
 *
 * @param dev UART device struct
 *
 * @return N/A
 */
static void uart_xec_irq_rx_disable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	regs->IER &= ~(IER_RXRDY);

	k_spin_unlock(&DEV_DATA(dev)->lock, key);
}

/**
 * @brief Check if Rx IRQ has been raised
 *
 * @param dev UART device struct
 *
 * @return 1 if an IRQ is ready, 0 otherwise
 */
static int uart_xec_irq_rx_ready(const struct device *dev)
{
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	int ret = ((IIRC(dev) & IIR_ID) == IIR_RBRF) ? 1 : 0;

	k_spin_unlock(&DEV_DATA(dev)->lock, key);

	return ret;
}

/**
 * @brief Enable error interrupt in IER
 *
 * @param dev UART device struct
 *
 * @return N/A
 */
static void uart_xec_irq_err_enable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	regs->IER |= IER_LSR;

	k_spin_unlock(&DEV_DATA(dev)->lock, key);
}

/**
 * @brief Disable error interrupt in IER
 *
 * @param dev UART device struct
 *
 * @return 1 if an IRQ is ready, 0 otherwise
 */
static void uart_xec_irq_err_disable(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	regs->IER &= ~(IER_LSR);

	k_spin_unlock(&DEV_DATA(dev)->lock, key);
}

/**
 * @brief Check if any IRQ is pending
 *
 * @param dev UART device struct
 *
 * @return 1 if an IRQ is pending, 0 otherwise
 */
static int uart_xec_irq_is_pending(const struct device *dev)
{
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	int ret = (!(IIRC(dev) & IIR_NIP)) ? 1 : 0;

	k_spin_unlock(&DEV_DATA(dev)->lock, key);

	return ret;
}

/**
 * @brief Update cached contents of IIR
 *
 * @param dev UART device struct
 *
 * @return Always 1
 */
static int uart_xec_irq_update(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock);

	IIRC(dev) = regs->IIR_FCR;

	k_spin_unlock(&DEV_DATA(dev)->lock, key);

	return 1;
}

/**
 * @brief Set the callback function pointer for IRQ.
 *
 * @param dev UART device struct
 * @param cb Callback function pointer.
 *
 * @return N/A
 */
static void uart_xec_irq_callback_set(const struct device *dev,
				      uart_irq_callback_user_data_t cb,
				      void *cb_data)
{
	struct uart_xec_dev_data * const dev_data = DEV_DATA(dev);
	k_spinlock_key_t key = k_spin_lock(&dev_data->lock);

	dev_data->cb = cb;
	dev_data->cb_data = cb_data;

	k_spin_unlock(&dev_data->lock, key);
}

/**
 * @brief Interrupt service routine.
 *
 * This simply calls the callback function, if one exists.
 *
 * @param arg Argument to ISR.
 *
 * @return N/A
 */
static void uart_xec_isr(const struct device *dev)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_xec_dev_data * const dev_data = DEV_DATA(dev);

	if (dev_data->cb) {
		dev_data->cb(dev, dev_data->cb_data);
	}

	/* clear ECIA GIRQ R/W1C status bit after UART status cleared */
	mchp_xec_ecia_girq_src_clr(dev_cfg->girq_id, dev_cfg->girq_pos);
}

#endif /* CONFIG_UART_INTERRUPT_DRIVEN */

#ifdef CONFIG_UART_XEC_LINE_CTRL

/**
 * @brief Manipulate line control for UART.
 *
 * @param dev UART device struct
 * @param ctrl The line control to be manipulated
 * @param val Value to set the line control
 *
 * @return 0 if successful, failed otherwise
 */
static int uart_xec_line_ctrl_set(const struct device *dev,
				  uint32_t ctrl, uint32_t val)
{
	const struct uart_xec_device_config * const dev_cfg = DEV_CFG(dev);
	struct uart_regs *regs = dev_cfg->regs;
	uint32_t mdc, chg;
	k_spinlock_key_t key;

	switch (ctrl) {
	case UART_LINE_CTRL_BAUD_RATE:
		set_baud_rate(dev, val);
		return 0;

	case UART_LINE_CTRL_RTS:
	case UART_LINE_CTRL_DTR:
		key = k_spin_lock(&DEV_DATA(dev)->lock);
		mdc = regs->MCR;

		if (ctrl == UART_LINE_CTRL_RTS) {
			chg = MCR_RTS;
		} else {
			chg = MCR_DTR;
		}

		if (val) {
			mdc |= chg;
		} else {
			mdc &= ~(chg);
		}
		regs->MCR = mdc;
		k_spin_unlock(&DEV_DATA(dev)->lock, key);
		return 0;
	}

	return -ENOTSUP;
}

#endif /* CONFIG_UART_XEC_LINE_CTRL */

static const struct uart_driver_api uart_xec_driver_api = {
	.poll_in = uart_xec_poll_in,
	.poll_out = uart_xec_poll_out,
	.err_check = uart_xec_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
	.configure = uart_xec_configure,
	.config_get = uart_xec_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN

	.fifo_fill = uart_xec_fifo_fill,
	.fifo_read = uart_xec_fifo_read,
	.irq_tx_enable = uart_xec_irq_tx_enable,
	.irq_tx_disable = uart_xec_irq_tx_disable,
	.irq_tx_ready = uart_xec_irq_tx_ready,
	.irq_tx_complete = uart_xec_irq_tx_complete,
	.irq_rx_enable = uart_xec_irq_rx_enable,
	.irq_rx_disable = uart_xec_irq_rx_disable,
	.irq_rx_ready = uart_xec_irq_rx_ready,
	.irq_err_enable = uart_xec_irq_err_enable,
	.irq_err_disable = uart_xec_irq_err_disable,
	.irq_is_pending = uart_xec_irq_is_pending,
	.irq_update = uart_xec_irq_update,
	.irq_callback_set = uart_xec_irq_callback_set,

#endif

#ifdef CONFIG_UART_XEC_LINE_CTRL
	.line_ctrl_set = uart_xec_line_ctrl_set,
#endif
};

#define DEV_CONFIG_REG_INIT(n)						\
	.regs = (struct uart_regs *)(DT_INST_REG_ADDR(n)),

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define DEV_CONFIG_IRQ_FUNC_INIT(n) \
	.irq_config_func = irq_config_func##n,
#define UART_XEC_IRQ_FUNC_DECLARE(n) \
	static void irq_config_func##n(const struct device *dev);
#define UART_XEC_IRQ_FUNC_DEFINE(n)					\
	static void irq_config_func##n(const struct device *dev)	\
	{								\
		ARG_UNUSED(dev);					\
		IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority),	\
			    uart_xec_isr, DEVICE_DT_INST_GET(n),	\
			    0);						\
		irq_enable(DT_INST_IRQN(n));				\
		mchp_xec_ecia_girq_src_en(DT_INST_PROP_BY_IDX(n, girqs, 0), \
					  DT_INST_PROP_BY_IDX(n, girqs, 1)); \
	}
#else
/* !CONFIG_UART_INTERRUPT_DRIVEN */
#define DEV_CONFIG_IRQ_FUNC_INIT(n)
#define UART_XEC_IRQ_FUNC_DECLARE(n)
#define UART_XEC_IRQ_FUNC_DEFINE(n)
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */

#define DEV_DATA_FLOW_CTRL(n)						\
	DT_INST_PROP_OR(n, hw_flow_control, UART_CFG_FLOW_CTRL_NONE)

#define UART_XEC_DEVICE_INIT(n)						\
	UART_XEC_IRQ_FUNC_DECLARE(n);					\
									\
	static const struct uart_xec_device_config uart_xec_dev_cfg_##n = { \
		DEV_CONFIG_REG_INIT(n)					\
		.sys_clk_freq = DT_INST_PROP(n, clock_frequency),	\
		.girq_id = DT_INST_PROP_BY_IDX(n, girqs, 0),		\
		.girq_pos = DT_INST_PROP_BY_IDX(n, girqs, 1),		\
		.pcr_idx = DT_INST_PROP_BY_IDX(n, pcrs, 0),		\
		.pcr_bitpos = DT_INST_PROP_BY_IDX(n, pcrs, 1),		\
		DEV_CONFIG_IRQ_FUNC_INIT(n)				\
	};								\
	static struct uart_xec_dev_data uart_xec_dev_data_##n = {	\
		.uart_config.baudrate = DT_INST_PROP_OR(n, current_speed, 0), \
		.uart_config.parity = UART_CFG_PARITY_NONE,		\
		.uart_config.stop_bits = UART_CFG_STOP_BITS_1,		\
		.uart_config.data_bits = UART_CFG_DATA_BITS_8,		\
		.uart_config.flow_ctrl = DEV_DATA_FLOW_CTRL(n),		\
	};								\
	DEVICE_DT_INST_DEFINE(n, &uart_xec_init, NULL,			\
			      &uart_xec_dev_data_##n,			\
			      &uart_xec_dev_cfg_##n,			\
			      PRE_KERNEL_1,				\
			      CONFIG_KERNEL_INIT_PRIORITY_DEVICE,	\
			      &uart_xec_driver_api);			\
	UART_XEC_IRQ_FUNC_DEFINE(n)

DT_INST_FOREACH_STATUS_OKAY(UART_XEC_DEVICE_INIT)