Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 | /*
* Copyright (c) 2016, Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
*
* @brief Public kernel APIs.
*/
#ifndef ZEPHYR_INCLUDE_KERNEL_H_
#define ZEPHYR_INCLUDE_KERNEL_H_
#if !defined(_ASMLANGUAGE)
#include <kernel_includes.h>
#include <errno.h>
#include <limits.h>
#include <stdbool.h>
#include <toolchain.h>
#include <tracing/tracing_macros.h>
#ifdef CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS
#include <timing/timing.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Kernel APIs
* @defgroup kernel_apis Kernel APIs
* @{
* @}
*/
#define K_ANY NULL
#define K_END NULL
#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
#error Zero available thread priorities defined!
#endif
#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
#define K_PRIO_PREEMPT(x) (x)
#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
#ifdef CONFIG_POLL
#define _POLL_EVENT_OBJ_INIT(obj) \
.poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
#define _POLL_EVENT sys_dlist_t poll_events
#else
#define _POLL_EVENT_OBJ_INIT(obj)
#define _POLL_EVENT
#endif
struct k_thread;
struct k_mutex;
struct k_sem;
struct k_msgq;
struct k_mbox;
struct k_pipe;
struct k_queue;
struct k_fifo;
struct k_lifo;
struct k_stack;
struct k_mem_slab;
struct k_mem_pool;
struct k_timer;
struct k_poll_event;
struct k_poll_signal;
struct k_mem_domain;
struct k_mem_partition;
struct k_futex;
enum execution_context_types {
K_ISR = 0,
K_COOP_THREAD,
K_PREEMPT_THREAD,
};
/* private, used by k_poll and k_work_poll */
struct k_work_poll;
typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
/**
* @addtogroup thread_apis
* @{
*/
typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
void *user_data);
/**
* @brief Iterate over all the threads in the system.
*
* This routine iterates over all the threads in the system and
* calls the user_cb function for each thread.
*
* @param user_cb Pointer to the user callback function.
* @param user_data Pointer to user data.
*
* @note @kconfig{CONFIG_THREAD_MONITOR} must be set for this function
* to be effective.
* @note This API uses @ref k_spin_lock to protect the _kernel.threads
* list which means creation of new threads and terminations of existing
* threads are blocked until this API returns.
*
* @return N/A
*/
extern void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
/**
* @brief Iterate over all the threads in the system without locking.
*
* This routine works exactly the same like @ref k_thread_foreach
* but unlocks interrupts when user_cb is executed.
*
* @param user_cb Pointer to the user callback function.
* @param user_data Pointer to user data.
*
* @note @kconfig{CONFIG_THREAD_MONITOR} must be set for this function
* to be effective.
* @note This API uses @ref k_spin_lock only when accessing the _kernel.threads
* queue elements. It unlocks it during user callback function processing.
* If a new task is created when this @c foreach function is in progress,
* the added new task would not be included in the enumeration.
* If a task is aborted during this enumeration, there would be a race here
* and there is a possibility that this aborted task would be included in the
* enumeration.
* @note If the task is aborted and the memory occupied by its @c k_thread
* structure is reused when this @c k_thread_foreach_unlocked is in progress
* it might even lead to the system behave unstable.
* This function may never return, as it would follow some @c next task
* pointers treating given pointer as a pointer to the k_thread structure
* while it is something different right now.
* Do not reuse the memory that was occupied by k_thread structure of aborted
* task if it was aborted after this function was called in any context.
*/
extern void k_thread_foreach_unlocked(
k_thread_user_cb_t user_cb, void *user_data);
/** @} */
/**
* @defgroup thread_apis Thread APIs
* @ingroup kernel_apis
* @{
*/
#endif /* !_ASMLANGUAGE */
/*
* Thread user options. May be needed by assembly code. Common part uses low
* bits, arch-specific use high bits.
*/
/**
* @brief system thread that must not abort
* */
#define K_ESSENTIAL (BIT(0))
#if defined(CONFIG_FPU_SHARING)
/**
* @brief FPU registers are managed by context switch
*
* @details
* This option indicates that the thread uses the CPU's floating point
* registers. This instructs the kernel to take additional steps to save
* and restore the contents of these registers when scheduling the thread.
* No effect if @kconfig{CONFIG_FPU_SHARING} is not enabled.
*/
#define K_FP_REGS (BIT(1))
#endif
/**
* @brief user mode thread
*
* This thread has dropped from supervisor mode to user mode and consequently
* has additional restrictions
*/
#define K_USER (BIT(2))
/**
* @brief Inherit Permissions
*
* @details
* Indicates that the thread being created should inherit all kernel object
* permissions from the thread that created it. No effect if
* @kconfig{CONFIG_USERSPACE} is not enabled.
*/
#define K_INHERIT_PERMS (BIT(3))
/**
* @brief Callback item state
*
* @details
* This is a single bit of state reserved for "callback manager"
* utilities (p4wq initially) who need to track operations invoked
* from within a user-provided callback they have been invoked.
* Effectively it serves as a tiny bit of zero-overhead TLS data.
*/
#define K_CALLBACK_STATE (BIT(4))
#ifdef CONFIG_X86
/* x86 Bitmask definitions for threads user options */
#if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
/**
* @brief FP and SSE registers are managed by context switch on x86
*
* @details
* This option indicates that the thread uses the x86 CPU's floating point
* and SSE registers. This instructs the kernel to take additional steps to
* save and restore the contents of these registers when scheduling
* the thread. No effect if @kconfig{CONFIG_X86_SSE} is not enabled.
*/
#define K_SSE_REGS (BIT(7))
#endif
#endif
/* end - thread options */
#if !defined(_ASMLANGUAGE)
/**
* @brief Create a thread.
*
* This routine initializes a thread, then schedules it for execution.
*
* The new thread may be scheduled for immediate execution or a delayed start.
* If the newly spawned thread does not have a delayed start the kernel
* scheduler may preempt the current thread to allow the new thread to
* execute.
*
* Thread options are architecture-specific, and can include K_ESSENTIAL,
* K_FP_REGS, and K_SSE_REGS. Multiple options may be specified by separating
* them using "|" (the logical OR operator).
*
* Stack objects passed to this function must be originally defined with
* either of these macros in order to be portable:
*
* - K_THREAD_STACK_DEFINE() - For stacks that may support either user or
* supervisor threads.
* - K_KERNEL_STACK_DEFINE() - For stacks that may support supervisor
* threads only. These stacks use less memory if CONFIG_USERSPACE is
* enabled.
*
* The stack_size parameter has constraints. It must either be:
*
* - The original size value passed to K_THREAD_STACK_DEFINE() or
* K_KERNEL_STACK_DEFINE()
* - The return value of K_THREAD_STACK_SIZEOF(stack) if the stack was
* defined with K_THREAD_STACK_DEFINE()
* - The return value of K_KERNEL_STACK_SIZEOF(stack) if the stack was
* defined with K_KERNEL_STACK_DEFINE().
*
* Using other values, or sizeof(stack) may produce undefined behavior.
*
* @param new_thread Pointer to uninitialized struct k_thread
* @param stack Pointer to the stack space.
* @param stack_size Stack size in bytes.
* @param entry Thread entry function.
* @param p1 1st entry point parameter.
* @param p2 2nd entry point parameter.
* @param p3 3rd entry point parameter.
* @param prio Thread priority.
* @param options Thread options.
* @param delay Scheduling delay, or K_NO_WAIT (for no delay).
*
* @return ID of new thread.
*
*/
__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
k_thread_stack_t *stack,
size_t stack_size,
k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, uint32_t options, k_timeout_t delay);
/**
* @brief Drop a thread's privileges permanently to user mode
*
* This allows a supervisor thread to be re-used as a user thread.
* This function does not return, but control will transfer to the provided
* entry point as if this was a new user thread.
*
* The implementation ensures that the stack buffer contents are erased.
* Any thread-local storage will be reverted to a pristine state.
*
* Memory domain membership, resource pool assignment, kernel object
* permissions, priority, and thread options are preserved.
*
* A common use of this function is to re-use the main thread as a user thread
* once all supervisor mode-only tasks have been completed.
*
* @param entry Function to start executing from
* @param p1 1st entry point parameter
* @param p2 2nd entry point parameter
* @param p3 3rd entry point parameter
*/
extern FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
void *p1, void *p2,
void *p3);
/**
* @brief Grant a thread access to a set of kernel objects
*
* This is a convenience function. For the provided thread, grant access to
* the remaining arguments, which must be pointers to kernel objects.
*
* The thread object must be initialized (i.e. running). The objects don't
* need to be.
* Note that NULL shouldn't be passed as an argument.
*
* @param thread Thread to grant access to objects
* @param ... list of kernel object pointers
*/
#define k_thread_access_grant(thread, ...) \
FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
/**
* @brief Assign a resource memory pool to a thread
*
* By default, threads have no resource pool assigned unless their parent
* thread has a resource pool, in which case it is inherited. Multiple
* threads may be assigned to the same memory pool.
*
* Changing a thread's resource pool will not migrate allocations from the
* previous pool.
*
* @param thread Target thread to assign a memory pool for resource requests.
* @param heap Heap object to use for resources,
* or NULL if the thread should no longer have a memory pool.
*/
static inline void k_thread_heap_assign(struct k_thread *thread,
struct k_heap *heap)
{
thread->resource_pool = heap;
}
#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
/**
* @brief Obtain stack usage information for the specified thread
*
* User threads will need to have permission on the target thread object.
*
* Some hardware may prevent inspection of a stack buffer currently in use.
* If this API is called from supervisor mode, on the currently running thread,
* on a platform which selects @kconfig{CONFIG_NO_UNUSED_STACK_INSPECTION}, an
* error will be generated.
*
* @param thread Thread to inspect stack information
* @param unused_ptr Output parameter, filled in with the unused stack space
* of the target thread in bytes.
* @return 0 on success
* @return -EBADF Bad thread object (user mode only)
* @return -EPERM No permissions on thread object (user mode only)
* #return -ENOTSUP Forbidden by hardware policy
* @return -EINVAL Thread is uninitialized or exited (user mode only)
* @return -EFAULT Bad memory address for unused_ptr (user mode only)
*/
__syscall int k_thread_stack_space_get(const struct k_thread *thread,
size_t *unused_ptr);
#endif
#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
/**
* @brief Assign the system heap as a thread's resource pool
*
* Similar to z_thread_heap_assign(), but the thread will use
* the kernel heap to draw memory.
*
* Use with caution, as a malicious thread could perform DoS attacks on the
* kernel heap.
*
* @param thread Target thread to assign the system heap for resource requests
*
*/
void k_thread_system_pool_assign(struct k_thread *thread);
#endif /* (CONFIG_HEAP_MEM_POOL_SIZE > 0) */
/**
* @brief Sleep until a thread exits
*
* The caller will be put to sleep until the target thread exits, either due
* to being aborted, self-exiting, or taking a fatal error. This API returns
* immediately if the thread isn't running.
*
* This API may only be called from ISRs with a K_NO_WAIT timeout,
* where it can be useful as a predicate to detect when a thread has
* aborted.
*
* @param thread Thread to wait to exit
* @param timeout upper bound time to wait for the thread to exit.
* @retval 0 success, target thread has exited or wasn't running
* @retval -EBUSY returned without waiting
* @retval -EAGAIN waiting period timed out
* @retval -EDEADLK target thread is joining on the caller, or target thread
* is the caller
*/
__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
/**
* @brief Put the current thread to sleep.
*
* This routine puts the current thread to sleep for @a duration,
* specified as a k_timeout_t object.
*
* @note if @a timeout is set to K_FOREVER then the thread is suspended.
*
* @param timeout Desired duration of sleep.
*
* @return Zero if the requested time has elapsed or the number of milliseconds
* left to sleep, if thread was woken up by \ref k_wakeup call.
*/
__syscall int32_t k_sleep(k_timeout_t timeout);
/**
* @brief Put the current thread to sleep.
*
* This routine puts the current thread to sleep for @a duration milliseconds.
*
* @param ms Number of milliseconds to sleep.
*
* @return Zero if the requested time has elapsed or the number of milliseconds
* left to sleep, if thread was woken up by \ref k_wakeup call.
*/
static inline int32_t k_msleep(int32_t ms)
{
return k_sleep(Z_TIMEOUT_MS(ms));
}
/**
* @brief Put the current thread to sleep with microsecond resolution.
*
* This function is unlikely to work as expected without kernel tuning.
* In particular, because the lower bound on the duration of a sleep is
* the duration of a tick, @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC} must be
* adjusted to achieve the resolution desired. The implications of doing
* this must be understood before attempting to use k_usleep(). Use with
* caution.
*
* @param us Number of microseconds to sleep.
*
* @return Zero if the requested time has elapsed or the number of microseconds
* left to sleep, if thread was woken up by \ref k_wakeup call.
*/
__syscall int32_t k_usleep(int32_t us);
/**
* @brief Cause the current thread to busy wait.
*
* This routine causes the current thread to execute a "do nothing" loop for
* @a usec_to_wait microseconds.
*
* @note The clock used for the microsecond-resolution delay here may
* be skewed relative to the clock used for system timeouts like
* k_sleep(). For example k_busy_wait(1000) may take slightly more or
* less time than k_sleep(K_MSEC(1)), with the offset dependent on
* clock tolerances.
*
* @return N/A
*/
__syscall void k_busy_wait(uint32_t usec_to_wait);
/**
* @brief Yield the current thread.
*
* This routine causes the current thread to yield execution to another
* thread of the same or higher priority. If there are no other ready threads
* of the same or higher priority, the routine returns immediately.
*
* @return N/A
*/
__syscall void k_yield(void);
/**
* @brief Wake up a sleeping thread.
*
* This routine prematurely wakes up @a thread from sleeping.
*
* If @a thread is not currently sleeping, the routine has no effect.
*
* @param thread ID of thread to wake.
*
* @return N/A
*/
__syscall void k_wakeup(k_tid_t thread);
/**
* @brief Get thread ID of the current thread.
*
* This unconditionally queries the kernel via a system call.
*
* @return ID of current thread.
*/
__attribute_const__
__syscall k_tid_t z_current_get(void);
#ifdef CONFIG_THREAD_LOCAL_STORAGE
/* Thread-local cache of current thread ID, set in z_thread_entry() */
extern __thread k_tid_t z_tls_current;
#endif
/**
* @brief Get thread ID of the current thread.
*
* @return ID of current thread.
*
*/
__attribute_const__
static inline k_tid_t k_current_get(void)
{
#ifdef CONFIG_THREAD_LOCAL_STORAGE
return z_tls_current;
#else
return z_current_get();
#endif
}
/**
* @brief Abort a thread.
*
* This routine permanently stops execution of @a thread. The thread is taken
* off all kernel queues it is part of (i.e. the ready queue, the timeout
* queue, or a kernel object wait queue). However, any kernel resources the
* thread might currently own (such as mutexes or memory blocks) are not
* released. It is the responsibility of the caller of this routine to ensure
* all necessary cleanup is performed.
*
* After k_thread_abort() returns, the thread is guaranteed not to be
* running or to become runnable anywhere on the system. Normally
* this is done via blocking the caller (in the same manner as
* k_thread_join()), but in interrupt context on SMP systems the
* implementation is required to spin for threads that are running on
* other CPUs. Note that as specified, this means that on SMP
* platforms it is possible for application code to create a deadlock
* condition by simultaneously aborting a cycle of threads using at
* least one termination from interrupt context. Zephyr cannot detect
* all such conditions.
*
* @param thread ID of thread to abort.
*
* @return N/A
*/
__syscall void k_thread_abort(k_tid_t thread);
/**
* @brief Start an inactive thread
*
* If a thread was created with K_FOREVER in the delay parameter, it will
* not be added to the scheduling queue until this function is called
* on it.
*
* @param thread thread to start
*/
__syscall void k_thread_start(k_tid_t thread);
extern k_ticks_t z_timeout_expires(const struct _timeout *timeout);
extern k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
#ifdef CONFIG_SYS_CLOCK_EXISTS
/**
* @brief Get time when a thread wakes up, in system ticks
*
* This routine computes the system uptime when a waiting thread next
* executes, in units of system ticks. If the thread is not waiting,
* it returns current system time.
*/
__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t);
static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
const struct k_thread *t)
{
return z_timeout_expires(&t->base.timeout);
}
/**
* @brief Get time remaining before a thread wakes up, in system ticks
*
* This routine computes the time remaining before a waiting thread
* next executes, in units of system ticks. If the thread is not
* waiting, it returns zero.
*/
__syscall k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t);
static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
const struct k_thread *t)
{
return z_timeout_remaining(&t->base.timeout);
}
#endif /* CONFIG_SYS_CLOCK_EXISTS */
/**
* @cond INTERNAL_HIDDEN
*/
/* timeout has timed out and is not on _timeout_q anymore */
#define _EXPIRED (-2)
struct _static_thread_data {
struct k_thread *init_thread;
k_thread_stack_t *init_stack;
unsigned int init_stack_size;
k_thread_entry_t init_entry;
void *init_p1;
void *init_p2;
void *init_p3;
int init_prio;
uint32_t init_options;
int32_t init_delay;
void (*init_abort)(void);
const char *init_name;
};
#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
entry, p1, p2, p3, \
prio, options, delay, abort, tname) \
{ \
.init_thread = (thread), \
.init_stack = (stack), \
.init_stack_size = (stack_size), \
.init_entry = (k_thread_entry_t)entry, \
.init_p1 = (void *)p1, \
.init_p2 = (void *)p2, \
.init_p3 = (void *)p3, \
.init_prio = (prio), \
.init_options = (options), \
.init_delay = (delay), \
.init_abort = (abort), \
.init_name = STRINGIFY(tname), \
}
/**
* INTERNAL_HIDDEN @endcond
*/
/**
* @brief Statically define and initialize a thread.
*
* The thread may be scheduled for immediate execution or a delayed start.
*
* Thread options are architecture-specific, and can include K_ESSENTIAL,
* K_FP_REGS, and K_SSE_REGS. Multiple options may be specified by separating
* them using "|" (the logical OR operator).
*
* The ID of the thread can be accessed using:
*
* @code extern const k_tid_t <name>; @endcode
*
* @param name Name of the thread.
* @param stack_size Stack size in bytes.
* @param entry Thread entry function.
* @param p1 1st entry point parameter.
* @param p2 2nd entry point parameter.
* @param p3 3rd entry point parameter.
* @param prio Thread priority.
* @param options Thread options.
* @param delay Scheduling delay (in milliseconds), zero for no delay.
*
*
* @internal It has been observed that the x86 compiler by default aligns
* these _static_thread_data structures to 32-byte boundaries, thereby
* wasting space. To work around this, force a 4-byte alignment.
*
*/
#define K_THREAD_DEFINE(name, stack_size, \
entry, p1, p2, p3, \
prio, options, delay) \
K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
struct k_thread _k_thread_obj_##name; \
STRUCT_SECTION_ITERABLE(_static_thread_data, _k_thread_data_##name) = \
Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
_k_thread_stack_##name, stack_size, \
entry, p1, p2, p3, prio, options, delay, \
NULL, name); \
const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
/**
* @brief Get a thread's priority.
*
* This routine gets the priority of @a thread.
*
* @param thread ID of thread whose priority is needed.
*
* @return Priority of @a thread.
*/
__syscall int k_thread_priority_get(k_tid_t thread);
/**
* @brief Set a thread's priority.
*
* This routine immediately changes the priority of @a thread.
*
* Rescheduling can occur immediately depending on the priority @a thread is
* set to:
*
* - If its priority is raised above the priority of the caller of this
* function, and the caller is preemptible, @a thread will be scheduled in.
*
* - If the caller operates on itself, it lowers its priority below that of
* other threads in the system, and the caller is preemptible, the thread of
* highest priority will be scheduled in.
*
* Priority can be assigned in the range of -CONFIG_NUM_COOP_PRIORITIES to
* CONFIG_NUM_PREEMPT_PRIORITIES-1, where -CONFIG_NUM_COOP_PRIORITIES is the
* highest priority.
*
* @param thread ID of thread whose priority is to be set.
* @param prio New priority.
*
* @warning Changing the priority of a thread currently involved in mutex
* priority inheritance may result in undefined behavior.
*
* @return N/A
*/
__syscall void k_thread_priority_set(k_tid_t thread, int prio);
#ifdef CONFIG_SCHED_DEADLINE
/**
* @brief Set deadline expiration time for scheduler
*
* This sets the "deadline" expiration as a time delta from the
* current time, in the same units used by k_cycle_get_32(). The
* scheduler (when deadline scheduling is enabled) will choose the
* next expiring thread when selecting between threads at the same
* static priority. Threads at different priorities will be scheduled
* according to their static priority.
*
* @note Deadlines are stored internally using 32 bit unsigned
* integers. The number of cycles between the "first" deadline in the
* scheduler queue and the "last" deadline must be less than 2^31 (i.e
* a signed non-negative quantity). Failure to adhere to this rule
* may result in scheduled threads running in an incorrect dealine
* order.
*
* @note Despite the API naming, the scheduler makes no guarantees the
* the thread WILL be scheduled within that deadline, nor does it take
* extra metadata (like e.g. the "runtime" and "period" parameters in
* Linux sched_setattr()) that allows the kernel to validate the
* scheduling for achievability. Such features could be implemented
* above this call, which is simply input to the priority selection
* logic.
*
* @note You should enable @kconfig{CONFIG_SCHED_DEADLINE} in your project
* configuration.
*
* @param thread A thread on which to set the deadline
* @param deadline A time delta, in cycle units
*
*/
__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
#endif
#ifdef CONFIG_SCHED_CPU_MASK
/**
* @brief Sets all CPU enable masks to zero
*
* After this returns, the thread will no longer be schedulable on any
* CPUs. The thread must not be currently runnable.
*
* @note You should enable @kconfig{CONFIG_SCHED_DEADLINE} in your project
* configuration.
*
* @param thread Thread to operate upon
* @return Zero on success, otherwise error code
*/
int k_thread_cpu_mask_clear(k_tid_t thread);
/**
* @brief Sets all CPU enable masks to one
*
* After this returns, the thread will be schedulable on any CPU. The
* thread must not be currently runnable.
*
* @note You should enable @kconfig{CONFIG_SCHED_DEADLINE} in your project
* configuration.
*
* @param thread Thread to operate upon
* @return Zero on success, otherwise error code
*/
int k_thread_cpu_mask_enable_all(k_tid_t thread);
/**
* @brief Enable thread to run on specified CPU
*
* The thread must not be currently runnable.
*
* @note You should enable @kconfig{CONFIG_SCHED_DEADLINE} in your project
* configuration.
*
* @param thread Thread to operate upon
* @param cpu CPU index
* @return Zero on success, otherwise error code
*/
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu);
/**
* @brief Prevent thread to run on specified CPU
*
* The thread must not be currently runnable.
*
* @note You should enable @kconfig{CONFIG_SCHED_DEADLINE} in your project
* configuration.
*
* @param thread Thread to operate upon
* @param cpu CPU index
* @return Zero on success, otherwise error code
*/
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu);
#endif
/**
* @brief Suspend a thread.
*
* This routine prevents the kernel scheduler from making @a thread
* the current thread. All other internal operations on @a thread are
* still performed; for example, kernel objects it is waiting on are
* still handed to it. Note that any existing timeouts
* (e.g. k_sleep(), or a timeout argument to k_sem_take() et. al.)
* will be canceled. On resume, the thread will begin running
* immediately and return from the blocked call.
*
* If @a thread is already suspended, the routine has no effect.
*
* @param thread ID of thread to suspend.
*
* @return N/A
*/
__syscall void k_thread_suspend(k_tid_t thread);
/**
* @brief Resume a suspended thread.
*
* This routine allows the kernel scheduler to make @a thread the current
* thread, when it is next eligible for that role.
*
* If @a thread is not currently suspended, the routine has no effect.
*
* @param thread ID of thread to resume.
*
* @return N/A
*/
__syscall void k_thread_resume(k_tid_t thread);
/**
* @brief Set time-slicing period and scope.
*
* This routine specifies how the scheduler will perform time slicing of
* preemptible threads.
*
* To enable time slicing, @a slice must be non-zero. The scheduler
* ensures that no thread runs for more than the specified time limit
* before other threads of that priority are given a chance to execute.
* Any thread whose priority is higher than @a prio is exempted, and may
* execute as long as desired without being preempted due to time slicing.
*
* Time slicing only limits the maximum amount of time a thread may continuously
* execute. Once the scheduler selects a thread for execution, there is no
* minimum guaranteed time the thread will execute before threads of greater or
* equal priority are scheduled.
*
* When the current thread is the only one of that priority eligible
* for execution, this routine has no effect; the thread is immediately
* rescheduled after the slice period expires.
*
* To disable timeslicing, set both @a slice and @a prio to zero.
*
* @param slice Maximum time slice length (in milliseconds).
* @param prio Highest thread priority level eligible for time slicing.
*
* @return N/A
*/
extern void k_sched_time_slice_set(int32_t slice, int prio);
/** @} */
/**
* @addtogroup isr_apis
* @{
*/
/**
* @brief Determine if code is running at interrupt level.
*
* This routine allows the caller to customize its actions, depending on
* whether it is a thread or an ISR.
*
* @funcprops \isr_ok
*
* @return false if invoked by a thread.
* @return true if invoked by an ISR.
*/
extern bool k_is_in_isr(void);
/**
* @brief Determine if code is running in a preemptible thread.
*
* This routine allows the caller to customize its actions, depending on
* whether it can be preempted by another thread. The routine returns a 'true'
* value if all of the following conditions are met:
*
* - The code is running in a thread, not at ISR.
* - The thread's priority is in the preemptible range.
* - The thread has not locked the scheduler.
*
* @funcprops \isr_ok
*
* @return 0 if invoked by an ISR or by a cooperative thread.
* @return Non-zero if invoked by a preemptible thread.
*/
__syscall int k_is_preempt_thread(void);
/**
* @brief Test whether startup is in the before-main-task phase.
*
* This routine allows the caller to customize its actions, depending on
* whether it being invoked before the kernel is fully active.
*
* @funcprops \isr_ok
*
* @return true if invoked before post-kernel initialization
* @return false if invoked during/after post-kernel initialization
*/
static inline bool k_is_pre_kernel(void)
{
extern bool z_sys_post_kernel; /* in init.c */
return !z_sys_post_kernel;
}
/**
* @}
*/
/**
* @addtogroup thread_apis
* @{
*/
/**
* @brief Lock the scheduler.
*
* This routine prevents the current thread from being preempted by another
* thread by instructing the scheduler to treat it as a cooperative thread.
* If the thread subsequently performs an operation that makes it unready,
* it will be context switched out in the normal manner. When the thread
* again becomes the current thread, its non-preemptible status is maintained.
*
* This routine can be called recursively.
*
* @note k_sched_lock() and k_sched_unlock() should normally be used
* when the operation being performed can be safely interrupted by ISRs.
* However, if the amount of processing involved is very small, better
* performance may be obtained by using irq_lock() and irq_unlock().
*
* @return N/A
*/
extern void k_sched_lock(void);
/**
* @brief Unlock the scheduler.
*
* This routine reverses the effect of a previous call to k_sched_lock().
* A thread must call the routine once for each time it called k_sched_lock()
* before the thread becomes preemptible.
*
* @return N/A
*/
extern void k_sched_unlock(void);
/**
* @brief Set current thread's custom data.
*
* This routine sets the custom data for the current thread to @ value.
*
* Custom data is not used by the kernel itself, and is freely available
* for a thread to use as it sees fit. It can be used as a framework
* upon which to build thread-local storage.
*
* @param value New custom data value.
*
* @return N/A
*
*/
__syscall void k_thread_custom_data_set(void *value);
/**
* @brief Get current thread's custom data.
*
* This routine returns the custom data for the current thread.
*
* @return Current custom data value.
*/
__syscall void *k_thread_custom_data_get(void);
/**
* @brief Set current thread name
*
* Set the name of the thread to be used when @kconfig{CONFIG_THREAD_MONITOR}
* is enabled for tracing and debugging.
*
* @param thread Thread to set name, or NULL to set the current thread
* @param str Name string
* @retval 0 on success
* @retval -EFAULT Memory access error with supplied string
* @retval -ENOSYS Thread name configuration option not enabled
* @retval -EINVAL Thread name too long
*/
__syscall int k_thread_name_set(k_tid_t thread, const char *str);
/**
* @brief Get thread name
*
* Get the name of a thread
*
* @param thread Thread ID
* @retval Thread name, or NULL if configuration not enabled
*/
const char *k_thread_name_get(k_tid_t thread);
/**
* @brief Copy the thread name into a supplied buffer
*
* @param thread Thread to obtain name information
* @param buf Destination buffer
* @param size Destination buffer size
* @retval -ENOSPC Destination buffer too small
* @retval -EFAULT Memory access error
* @retval -ENOSYS Thread name feature not enabled
* @retval 0 Success
*/
__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
size_t size);
/**
* @brief Get thread state string
*
* Get the human friendly thread state string
*
* @param thread_id Thread ID
* @retval Thread state string, empty if no state flag is set
*/
const char *k_thread_state_str(k_tid_t thread_id);
/**
* @}
*/
/**
* @addtogroup clock_apis
* @{
*/
/**
* @brief Generate null timeout delay.
*
* This macro generates a timeout delay that instructs a kernel API
* not to wait if the requested operation cannot be performed immediately.
*
* @return Timeout delay value.
*/
#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
/**
* @brief Generate timeout delay from nanoseconds.
*
* This macro generates a timeout delay that instructs a kernel API to
* wait up to @a t nanoseconds to perform the requested operation.
* Note that timer precision is limited to the tick rate, not the
* requested value.
*
* @param t Duration in nanoseconds.
*
* @return Timeout delay value.
*/
#define K_NSEC(t) Z_TIMEOUT_NS(t)
/**
* @brief Generate timeout delay from microseconds.
*
* This macro generates a timeout delay that instructs a kernel API
* to wait up to @a t microseconds to perform the requested operation.
* Note that timer precision is limited to the tick rate, not the
* requested value.
*
* @param t Duration in microseconds.
*
* @return Timeout delay value.
*/
#define K_USEC(t) Z_TIMEOUT_US(t)
/**
* @brief Generate timeout delay from cycles.
*
* This macro generates a timeout delay that instructs a kernel API
* to wait up to @a t cycles to perform the requested operation.
*
* @param t Duration in cycles.
*
* @return Timeout delay value.
*/
#define K_CYC(t) Z_TIMEOUT_CYC(t)
/**
* @brief Generate timeout delay from system ticks.
*
* This macro generates a timeout delay that instructs a kernel API
* to wait up to @a t ticks to perform the requested operation.
*
* @param t Duration in system ticks.
*
* @return Timeout delay value.
*/
#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
/**
* @brief Generate timeout delay from milliseconds.
*
* This macro generates a timeout delay that instructs a kernel API
* to wait up to @a ms milliseconds to perform the requested operation.
*
* @param ms Duration in milliseconds.
*
* @return Timeout delay value.
*/
#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
/**
* @brief Generate timeout delay from seconds.
*
* This macro generates a timeout delay that instructs a kernel API
* to wait up to @a s seconds to perform the requested operation.
*
* @param s Duration in seconds.
*
* @return Timeout delay value.
*/
#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
/**
* @brief Generate timeout delay from minutes.
* This macro generates a timeout delay that instructs a kernel API
* to wait up to @a m minutes to perform the requested operation.
*
* @param m Duration in minutes.
*
* @return Timeout delay value.
*/
#define K_MINUTES(m) K_SECONDS((m) * 60)
/**
* @brief Generate timeout delay from hours.
*
* This macro generates a timeout delay that instructs a kernel API
* to wait up to @a h hours to perform the requested operation.
*
* @param h Duration in hours.
*
* @return Timeout delay value.
*/
#define K_HOURS(h) K_MINUTES((h) * 60)
/**
* @brief Generate infinite timeout delay.
*
* This macro generates a timeout delay that instructs a kernel API
* to wait as long as necessary to perform the requested operation.
*
* @return Timeout delay value.
*/
#define K_FOREVER Z_FOREVER
#ifdef CONFIG_TIMEOUT_64BIT
/**
* @brief Generates an absolute/uptime timeout value from system ticks
*
* This macro generates a timeout delay that represents an expiration
* at the absolute uptime value specified, in system ticks. That is, the
* timeout will expire immediately after the system uptime reaches the
* specified tick count.
*
* @param t Tick uptime value
* @return Timeout delay value
*/
#define K_TIMEOUT_ABS_TICKS(t) \
Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
/**
* @brief Generates an absolute/uptime timeout value from milliseconds
*
* This macro generates a timeout delay that represents an expiration
* at the absolute uptime value specified, in milliseconds. That is,
* the timeout will expire immediately after the system uptime reaches
* the specified tick count.
*
* @param t Millisecond uptime value
* @return Timeout delay value
*/
#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
/**
* @brief Generates an absolute/uptime timeout value from microseconds
*
* This macro generates a timeout delay that represents an expiration
* at the absolute uptime value specified, in microseconds. That is,
* the timeout will expire immediately after the system uptime reaches
* the specified time. Note that timer precision is limited by the
* system tick rate and not the requested timeout value.
*
* @param t Microsecond uptime value
* @return Timeout delay value
*/
#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
/**
* @brief Generates an absolute/uptime timeout value from nanoseconds
*
* This macro generates a timeout delay that represents an expiration
* at the absolute uptime value specified, in nanoseconds. That is,
* the timeout will expire immediately after the system uptime reaches
* the specified time. Note that timer precision is limited by the
* system tick rate and not the requested timeout value.
*
* @param t Nanosecond uptime value
* @return Timeout delay value
*/
#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
/**
* @brief Generates an absolute/uptime timeout value from system cycles
*
* This macro generates a timeout delay that represents an expiration
* at the absolute uptime value specified, in cycles. That is, the
* timeout will expire immediately after the system uptime reaches the
* specified time. Note that timer precision is limited by the system
* tick rate and not the requested timeout value.
*
* @param t Cycle uptime value
* @return Timeout delay value
*/
#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
#endif
/**
* @}
*/
/**
* @cond INTERNAL_HIDDEN
*/
struct k_timer {
/*
* _timeout structure must be first here if we want to use
* dynamic timer allocation. timeout.node is used in the double-linked
* list of free timers
*/
struct _timeout timeout;
/* wait queue for the (single) thread waiting on this timer */
_wait_q_t wait_q;
/* runs in ISR context */
void (*expiry_fn)(struct k_timer *timer);
/* runs in the context of the thread that calls k_timer_stop() */
void (*stop_fn)(struct k_timer *timer);
/* timer period */
k_timeout_t period;
/* timer status */
uint32_t status;
/* user-specific data, also used to support legacy features */
void *user_data;
};
#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
{ \
.timeout = { \
.node = {},\
.fn = z_timer_expiration_handler, \
.dticks = 0, \
}, \
.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
.expiry_fn = expiry, \
.stop_fn = stop, \
.status = 0, \
.user_data = 0, \
}
/**
* INTERNAL_HIDDEN @endcond
*/
/**
* @defgroup timer_apis Timer APIs
* @ingroup kernel_apis
* @{
*/
/**
* @typedef k_timer_expiry_t
* @brief Timer expiry function type.
*
* A timer's expiry function is executed by the system clock interrupt handler
* each time the timer expires. The expiry function is optional, and is only
* invoked if the timer has been initialized with one.
*
* @param timer Address of timer.
*
* @return N/A
*/
typedef void (*k_timer_expiry_t)(struct k_timer *timer);
/**
* @typedef k_timer_stop_t
* @brief Timer stop function type.
*
* A timer's stop function is executed if the timer is stopped prematurely.
* The function runs in the context of call that stops the timer. As
* k_timer_stop() can be invoked from an ISR, the stop function must be
* callable from interrupt context (isr-ok).
*
* The stop function is optional, and is only invoked if the timer has been
* initialized with one.
*
* @param timer Address of timer.
*
* @return N/A
*/
typedef void (*k_timer_stop_t)(struct k_timer *timer);
/**
* @brief Statically define and initialize a timer.
*
* The timer can be accessed outside the module where it is defined using:
*
* @code extern struct k_timer <name>; @endcode
*
* @param name Name of the timer variable.
* @param expiry_fn Function to invoke each time the timer expires.
* @param stop_fn Function to invoke if the timer is stopped while running.
*/
#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
STRUCT_SECTION_ITERABLE(k_timer, name) = \
Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
/**
* @brief Initialize a timer.
*
* This routine initializes a timer, prior to its first use.
*
* @param timer Address of timer.
* @param expiry_fn Function to invoke each time the timer expires.
* @param stop_fn Function to invoke if the timer is stopped while running.
*
* @return N/A
*/
extern void k_timer_init(struct k_timer *timer,
k_timer_expiry_t expiry_fn,
k_timer_stop_t stop_fn);
/**
* @brief Start a timer.
*
* This routine starts a timer, and resets its status to zero. The timer
* begins counting down using the specified duration and period values.
*
* Attempting to start a timer that is already running is permitted.
* The timer's status is reset to zero and the timer begins counting down
* using the new duration and period values.
*
* @param timer Address of timer.
* @param duration Initial timer duration.
* @param period Timer period.
*
* @return N/A
*/
__syscall void k_timer_start(struct k_timer *timer,
k_timeout_t duration, k_timeout_t period);
/**
* @brief Stop a timer.
*
* This routine stops a running timer prematurely. The timer's stop function,
* if one exists, is invoked by the caller.
*
* Attempting to stop a timer that is not running is permitted, but has no
* effect on the timer.
*
* @note The stop handler has to be callable from ISRs if @a k_timer_stop is to
* be called from ISRs.
*
* @funcprops \isr_ok
*
* @param timer Address of timer.
*
* @return N/A
*/
__syscall void k_timer_stop(struct k_timer *timer);
/**
* @brief Read timer status.
*
* This routine reads the timer's status, which indicates the number of times
* it has expired since its status was last read.
*
* Calling this routine resets the timer's status to zero.
*
* @param timer Address of timer.
*
* @return Timer status.
*/
__syscall uint32_t k_timer_status_get(struct k_timer *timer);
/**
* @brief Synchronize thread to timer expiration.
*
* This routine blocks the calling thread until the timer's status is non-zero
* (indicating that it has expired at least once since it was last examined)
* or the timer is stopped. If the timer status is already non-zero,
* or the timer is already stopped, the caller continues without waiting.
*
* Calling this routine resets the timer's status to zero.
*
* This routine must not be used by interrupt handlers, since they are not
* allowed to block.
*
* @param timer Address of timer.
*
* @return Timer status.
*/
__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
#ifdef CONFIG_SYS_CLOCK_EXISTS
/**
* @brief Get next expiration time of a timer, in system ticks
*
* This routine returns the future system uptime reached at the next
* time of expiration of the timer, in units of system ticks. If the
* timer is not running, current system time is returned.
*
* @param timer The timer object
* @return Uptime of expiration, in ticks
*/
__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
static inline k_ticks_t z_impl_k_timer_expires_ticks(
const struct k_timer *timer)
{
return z_timeout_expires(&timer->timeout);
}
/**
* @brief Get time remaining before a timer next expires, in system ticks
*
* This routine computes the time remaining before a running timer
* next expires, in units of system ticks. If the timer is not
* running, it returns zero.
*/
__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
static inline k_ticks_t z_impl_k_timer_remaining_ticks(
const struct k_timer *timer)
{
return z_timeout_remaining(&timer->timeout);
}
/**
* @brief Get time remaining before a timer next expires.
*
* This routine computes the (approximate) time remaining before a running
* timer next expires. If the timer is not running, it returns zero.
*
* @param timer Address of timer.
*
* @return Remaining time (in milliseconds).
*/
static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
{
return k_ticks_to_ms_floor32(k_timer_remaining_ticks(timer));
}
#endif /* CONFIG_SYS_CLOCK_EXISTS */
/**
* @brief Associate user-specific data with a timer.
*
* This routine records the @a user_data with the @a timer, to be retrieved
* later.
*
* It can be used e.g. in a timer handler shared across multiple subsystems to
* retrieve data specific to the subsystem this timer is associated with.
*
* @param timer Address of timer.
* @param user_data User data to associate with the timer.
*
* @return N/A
*/
__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
/**
* @internal
*/
static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
void *user_data)
{
timer->user_data = user_data;
}
/**
* @brief Retrieve the user-specific data from a timer.
*
* @param timer Address of timer.
*
* @return The user data.
*/
__syscall void *k_timer_user_data_get(const struct k_timer *timer);
static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
{
return timer->user_data;
}
/** @} */
/**
* @addtogroup clock_apis
* @ingroup kernel_apis
* @{
*/
/**
* @brief Get system uptime, in system ticks.
*
* This routine returns the elapsed time since the system booted, in
* ticks (c.f. @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC}), which is the
* fundamental unit of resolution of kernel timekeeping.
*
* @return Current uptime in ticks.
*/
__syscall int64_t k_uptime_ticks(void);
/**
* @brief Get system uptime.
*
* This routine returns the elapsed time since the system booted,
* in milliseconds.
*
* @note
* While this function returns time in milliseconds, it does
* not mean it has millisecond resolution. The actual resolution depends on
* @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC} config option.
*
* @return Current uptime in milliseconds.
*/
static inline int64_t k_uptime_get(void)
{
return k_ticks_to_ms_floor64(k_uptime_ticks());
}
/**
* @brief Get system uptime (32-bit version).
*
* This routine returns the lower 32 bits of the system uptime in
* milliseconds.
*
* Because correct conversion requires full precision of the system
* clock there is no benefit to using this over k_uptime_get() unless
* you know the application will never run long enough for the system
* clock to approach 2^32 ticks. Calls to this function may involve
* interrupt blocking and 64-bit math.
*
* @note
* While this function returns time in milliseconds, it does
* not mean it has millisecond resolution. The actual resolution depends on
* @kconfig{CONFIG_SYS_CLOCK_TICKS_PER_SEC} config option
*
* @return The low 32 bits of the current uptime, in milliseconds.
*/
static inline uint32_t k_uptime_get_32(void)
{
return (uint32_t)k_uptime_get();
}
/**
* @brief Get elapsed time.
*
* This routine computes the elapsed time between the current system uptime
* and an earlier reference time, in milliseconds.
*
* @param reftime Pointer to a reference time, which is updated to the current
* uptime upon return.
*
* @return Elapsed time.
*/
static inline int64_t k_uptime_delta(int64_t *reftime)
{
int64_t uptime, delta;
uptime = k_uptime_get();
delta = uptime - *reftime;
*reftime = uptime;
return delta;
}
/**
* @brief Read the hardware clock.
*
* This routine returns the current time, as measured by the system's hardware
* clock.
*
* @return Current hardware clock up-counter (in cycles).
*/
static inline uint32_t k_cycle_get_32(void)
{
return arch_k_cycle_get_32();
}
/**
* @}
*/
/**
* @cond INTERNAL_HIDDEN
*/
struct k_queue {
sys_sflist_t data_q;
struct k_spinlock lock;
_wait_q_t wait_q;
_POLL_EVENT;
};
#define Z_QUEUE_INITIALIZER(obj) \
{ \
.data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
.lock = { }, \
.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
_POLL_EVENT_OBJ_INIT(obj) \
}
extern void *z_queue_node_peek(sys_sfnode_t *node, bool needs_free);
/**
* INTERNAL_HIDDEN @endcond
*/
/**
* @defgroup queue_apis Queue APIs
* @ingroup kernel_apis
* @{
*/
/**
* @brief Initialize a queue.
*
* This routine initializes a queue object, prior to its first use.
*
* @param queue Address of the queue.
*
* @return N/A
*/
__syscall void k_queue_init(struct k_queue *queue);
/**
* @brief Cancel waiting on a queue.
*
* This routine causes first thread pending on @a queue, if any, to
* return from k_queue_get() call with NULL value (as if timeout expired).
* If the queue is being waited on by k_poll(), it will return with
* -EINTR and K_POLL_STATE_CANCELLED state (and per above, subsequent
* k_queue_get() will return NULL).
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
*
* @return N/A
*/
__syscall void k_queue_cancel_wait(struct k_queue *queue);
/**
* @brief Append an element to the end of a queue.
*
* This routine appends a data item to @a queue. A queue data item must be
* aligned on a word boundary, and the first word of the item is reserved
* for the kernel's use.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
* @param data Address of the data item.
*
* @return N/A
*/
extern void k_queue_append(struct k_queue *queue, void *data);
/**
* @brief Append an element to a queue.
*
* This routine appends a data item to @a queue. There is an implicit memory
* allocation to create an additional temporary bookkeeping data structure from
* the calling thread's resource pool, which is automatically freed when the
* item is removed. The data itself is not copied.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
* @param data Address of the data item.
*
* @retval 0 on success
* @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
*/
__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
/**
* @brief Prepend an element to a queue.
*
* This routine prepends a data item to @a queue. A queue data item must be
* aligned on a word boundary, and the first word of the item is reserved
* for the kernel's use.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
* @param data Address of the data item.
*
* @return N/A
*/
extern void k_queue_prepend(struct k_queue *queue, void *data);
/**
* @brief Prepend an element to a queue.
*
* This routine prepends a data item to @a queue. There is an implicit memory
* allocation to create an additional temporary bookkeeping data structure from
* the calling thread's resource pool, which is automatically freed when the
* item is removed. The data itself is not copied.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
* @param data Address of the data item.
*
* @retval 0 on success
* @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
*/
__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
/**
* @brief Inserts an element to a queue.
*
* This routine inserts a data item to @a queue after previous item. A queue
* data item must be aligned on a word boundary, and the first word of
* the item is reserved for the kernel's use.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
* @param prev Address of the previous data item.
* @param data Address of the data item.
*
* @return N/A
*/
extern void k_queue_insert(struct k_queue *queue, void *prev, void *data);
/**
* @brief Atomically append a list of elements to a queue.
*
* This routine adds a list of data items to @a queue in one operation.
* The data items must be in a singly-linked list, with the first word
* in each data item pointing to the next data item; the list must be
* NULL-terminated.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
* @param head Pointer to first node in singly-linked list.
* @param tail Pointer to last node in singly-linked list.
*
* @retval 0 on success
* @retval -EINVAL on invalid supplied data
*
*/
extern int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
/**
* @brief Atomically add a list of elements to a queue.
*
* This routine adds a list of data items to @a queue in one operation.
* The data items must be in a singly-linked list implemented using a
* sys_slist_t object. Upon completion, the original list is empty.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
* @param list Pointer to sys_slist_t object.
*
* @retval 0 on success
* @retval -EINVAL on invalid data
*/
extern int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
/**
* @brief Get an element from a queue.
*
* This routine removes first data item from @a queue. The first word of the
* data item is reserved for the kernel's use.
*
* @note @a timeout must be set to K_NO_WAIT if called from ISR.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
* @param timeout Non-negative waiting period to obtain a data item
* or one of the special values K_NO_WAIT and
* K_FOREVER.
*
* @return Address of the data item if successful; NULL if returned
* without waiting, or waiting period timed out.
*/
__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
/**
* @brief Remove an element from a queue.
*
* This routine removes data item from @a queue. The first word of the
* data item is reserved for the kernel's use. Removing elements from k_queue
* rely on sys_slist_find_and_remove which is not a constant time operation.
*
* @note @a timeout must be set to K_NO_WAIT if called from ISR.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
* @param data Address of the data item.
*
* @return true if data item was removed
*/
bool k_queue_remove(struct k_queue *queue, void *data);
/**
* @brief Append an element to a queue only if it's not present already.
*
* This routine appends data item to @a queue. The first word of the data
* item is reserved for the kernel's use. Appending elements to k_queue
* relies on sys_slist_is_node_in_list which is not a constant time operation.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
* @param data Address of the data item.
*
* @return true if data item was added, false if not
*/
bool k_queue_unique_append(struct k_queue *queue, void *data);
/**
* @brief Query a queue to see if it has data available.
*
* Note that the data might be already gone by the time this function returns
* if other threads are also trying to read from the queue.
*
* @funcprops \isr_ok
*
* @param queue Address of the queue.
*
* @return Non-zero if the queue is empty.
* @return 0 if data is available.
*/
__syscall int k_queue_is_empty(struct k_queue *queue);
static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
{
return (int)sys_sflist_is_empty(&queue->data_q);
}
/**
* @brief Peek element at the head of queue.
*
* Return element from the head of queue without removing it.
*
* @param queue Address of the queue.
*
* @return Head element, or NULL if queue is empty.
*/
__syscall void *k_queue_peek_head(struct k_queue *queue);
/**
* @brief Peek element at the tail of queue.
*
* Return element from the tail of queue without removing it.
*
* @param queue Address of the queue.
*
* @return Tail element, or NULL if queue is empty.
*/
__syscall void *k_queue_peek_tail(struct k_queue *queue);
/**
* @brief Statically define and initialize a queue.
*
* The queue can be accessed outside the module where it is defined using:
*
* @code extern struct k_queue <name>; @endcode
*
* @param name Name of the queue.
*/
#define K_QUEUE_DEFINE(name) \
STRUCT_SECTION_ITERABLE(k_queue, name) = \
Z_QUEUE_INITIALIZER(name)
/** @} */
#ifdef CONFIG_USERSPACE
/**
* @brief futex structure
*
* A k_futex is a lightweight mutual exclusion primitive designed
* to minimize kernel involvement. Uncontended operation relies
* only on atomic access to shared memory. k_futex are tracked as
* kernel objects and can live in user memory so that any access
* bypasses the kernel object permission management mechanism.
*/
struct k_futex {
atomic_t val;
};
/**
* @brief futex kernel data structure
*
* z_futex_data are the helper data structure for k_futex to complete
* futex contended operation on kernel side, structure z_futex_data
* of every futex object is invisible in user mode.
*/
struct z_futex_data {
_wait_q_t wait_q;
struct k_spinlock lock;
};
#define Z_FUTEX_DATA_INITIALIZER(obj) \
{ \
.wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
}
/**
* @defgroup futex_apis FUTEX APIs
* @ingroup kernel_apis
* @{
*/
/**
* @brief Pend the current thread on a futex
*
* Tests that the supplied futex contains the expected value, and if so,
* goes to sleep until some other thread calls k_futex_wake() on it.
*
* @param futex Address of the futex.
* @param expected Expected value of the futex, if it is different the caller
* will not wait on it.
* @param timeout Non-negative waiting period on the futex, or
* one of the special values K_NO_WAIT or K_FOREVER.
* @retval -EACCES Caller does not have read access to futex address.
* @retval -EAGAIN If the futex value did not match the expected parameter.
* @retval -EINVAL Futex parameter address not recognized by the kernel.
* @retval -ETIMEDOUT Thread woke up due to timeout and not a futex wakeup.
* @retval 0 if the caller went to sleep and was woken up. The caller
* should check the futex's value on wakeup to determine if it needs
* to block again.
*/
__syscall int k_futex_wait(struct k_futex *futex, int expected,
k_timeout_t timeout);
/**
* @brief Wake one/all threads pending on a futex
*
* Wake up the highest priority thread pending on the supplied futex, or
* wakeup all the threads pending on the supplied futex, and the behavior
* depends on wake_all.
*
* @param futex Futex to wake up pending threads.
* @param wake_all If true, wake up all pending threads; If false,
* wakeup the highest priority thread.
* @retval -EACCES Caller does not have access to the futex address.
* @retval -EINVAL Futex parameter address not recognized by the kernel.
* @retval Number of threads that were woken up.
*/
__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
/** @} */
#endif
struct k_fifo {
struct k_queue _queue;
};
/**
* @cond INTERNAL_HIDDEN
*/
#define Z_FIFO_INITIALIZER(obj) \
{ \
._queue = Z_QUEUE_INITIALIZER(obj._queue) \
}
/**
* INTERNAL_HIDDEN @endcond
*/
/**
* @defgroup fifo_apis FIFO APIs
* @ingroup kernel_apis
* @{
*/
/**
* @brief Initialize a FIFO queue.
*
* This routine initializes a FIFO queue, prior to its first use.
*
* @param fifo Address of the FIFO queue.
*
* @return N/A
*/
#define k_fifo_init(fifo) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
k_queue_init(&(fifo)->_queue); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
})
/**
* @brief Cancel waiting on a FIFO queue.
*
* This routine causes first thread pending on @a fifo, if any, to
* return from k_fifo_get() call with NULL value (as if timeout
* expired).
*
* @funcprops \isr_ok
*
* @param fifo Address of the FIFO queue.
*
* @return N/A
*/
#define k_fifo_cancel_wait(fifo) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
k_queue_cancel_wait(&(fifo)->_queue); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
})
/**
* @brief Add an element to a FIFO queue.
*
* This routine adds a data item to @a fifo. A FIFO data item must be
* aligned on a word boundary, and the first word of the item is reserved
* for the kernel's use.
*
* @funcprops \isr_ok
*
* @param fifo Address of the FIFO.
* @param data Address of the data item.
*
* @return N/A
*/
#define k_fifo_put(fifo, data) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
k_queue_append(&(fifo)->_queue, data); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
})
/**
* @brief Add an element to a FIFO queue.
*
* This routine adds a data item to @a fifo. There is an implicit memory
* allocation to create an additional temporary bookkeeping data structure from
* the calling thread's resource pool, which is automatically freed when the
* item is removed. The data itself is not copied.
*
* @funcprops \isr_ok
*
* @param fifo Address of the FIFO.
* @param data Address of the data item.
*
* @retval 0 on success
* @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
*/
#define k_fifo_alloc_put(fifo, data) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
int ret = k_queue_alloc_append(&(fifo)->_queue, data); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, ret); \
ret; \
})
/**
* @brief Atomically add a list of elements to a FIFO.
*
* This routine adds a list of data items to @a fifo in one operation.
* The data items must be in a singly-linked list, with the first word of
* each data item pointing to the next data item; the list must be
* NULL-terminated.
*
* @funcprops \isr_ok
*
* @param fifo Address of the FIFO queue.
* @param head Pointer to first node in singly-linked list.
* @param tail Pointer to last node in singly-linked list.
*
* @return N/A
*/
#define k_fifo_put_list(fifo, head, tail) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
k_queue_append_list(&(fifo)->_queue, head, tail); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
})
/**
* @brief Atomically add a list of elements to a FIFO queue.
*
* This routine adds a list of data items to @a fifo in one operation.
* The data items must be in a singly-linked list implemented using a
* sys_slist_t object. Upon completion, the sys_slist_t object is invalid
* and must be re-initialized via sys_slist_init().
*
* @funcprops \isr_ok
*
* @param fifo Address of the FIFO queue.
* @param list Pointer to sys_slist_t object.
*
* @return N/A
*/
#define k_fifo_put_slist(fifo, list) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
k_queue_merge_slist(&(fifo)->_queue, list); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
})
/**
* @brief Get an element from a FIFO queue.
*
* This routine removes a data item from @a fifo in a "first in, first out"
* manner. The first word of the data item is reserved for the kernel's use.
*
* @note @a timeout must be set to K_NO_WAIT if called from ISR.
*
* @funcprops \isr_ok
*
* @param fifo Address of the FIFO queue.
* @param timeout Waiting period to obtain a data item,
* or one of the special values K_NO_WAIT and K_FOREVER.
*
* @return Address of the data item if successful; NULL if returned
* without waiting, or waiting period timed out.
*/
#define k_fifo_get(fifo, timeout) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
void *ret = k_queue_get(&(fifo)->_queue, timeout); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, ret); \
ret; \
})
/**
* @brief Query a FIFO queue to see if it has data available.
*
* Note that the data might be already gone by the time this function returns
* if other threads is also trying to read from the FIFO.
*
* @funcprops \isr_ok
*
* @param fifo Address of the FIFO queue.
*
* @return Non-zero if the FIFO queue is empty.
* @return 0 if data is available.
*/
#define k_fifo_is_empty(fifo) \
k_queue_is_empty(&(fifo)->_queue)
/**
* @brief Peek element at the head of a FIFO queue.
*
* Return element from the head of FIFO queue without removing it. A usecase
* for this is if elements of the FIFO object are themselves containers. Then
* on each iteration of processing, a head container will be peeked,
* and some data processed out of it, and only if the container is empty,
* it will be completely remove from the FIFO queue.
*
* @param fifo Address of the FIFO queue.
*
* @return Head element, or NULL if the FIFO queue is empty.
*/
#define k_fifo_peek_head(fifo) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
void *ret = k_queue_peek_head(&(fifo)->_queue); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, ret); \
ret; \
})
/**
* @brief Peek element at the tail of FIFO queue.
*
* Return element from the tail of FIFO queue (without removing it). A usecase
* for this is if elements of the FIFO queue are themselves containers. Then
* it may be useful to add more data to the last container in a FIFO queue.
*
* @param fifo Address of the FIFO queue.
*
* @return Tail element, or NULL if a FIFO queue is empty.
*/
#define k_fifo_peek_tail(fifo) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
void *ret = k_queue_peek_tail(&(fifo)->_queue); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, ret); \
ret; \
})
/**
* @brief Statically define and initialize a FIFO queue.
*
* The FIFO queue can be accessed outside the module where it is defined using:
*
* @code extern struct k_fifo <name>; @endcode
*
* @param name Name of the FIFO queue.
*/
#define K_FIFO_DEFINE(name) \
STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_fifo, name) = \
Z_FIFO_INITIALIZER(name)
/** @} */
struct k_lifo {
struct k_queue _queue;
};
/**
* @cond INTERNAL_HIDDEN
*/
#define Z_LIFO_INITIALIZER(obj) \
{ \
._queue = Z_QUEUE_INITIALIZER(obj._queue) \
}
/**
* INTERNAL_HIDDEN @endcond
*/
/**
* @defgroup lifo_apis LIFO APIs
* @ingroup kernel_apis
* @{
*/
/**
* @brief Initialize a LIFO queue.
*
* This routine initializes a LIFO queue object, prior to its first use.
*
* @param lifo Address of the LIFO queue.
*
* @return N/A
*/
#define k_lifo_init(lifo) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
k_queue_init(&(lifo)->_queue); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
})
/**
* @brief Add an element to a LIFO queue.
*
* This routine adds a data item to @a lifo. A LIFO queue data item must be
* aligned on a word boundary, and the first word of the item is
* reserved for the kernel's use.
*
* @funcprops \isr_ok
*
* @param lifo Address of the LIFO queue.
* @param data Address of the data item.
*
* @return N/A
*/
#define k_lifo_put(lifo, data) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
k_queue_prepend(&(lifo)->_queue, data); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
})
/**
* @brief Add an element to a LIFO queue.
*
* This routine adds a data item to @a lifo. There is an implicit memory
* allocation to create an additional temporary bookkeeping data structure from
* the calling thread's resource pool, which is automatically freed when the
* item is removed. The data itself is not copied.
*
* @funcprops \isr_ok
*
* @param lifo Address of the LIFO.
* @param data Address of the data item.
*
* @retval 0 on success
* @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool
*/
#define k_lifo_alloc_put(lifo, data) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
int ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, ret); \
ret; \
})
/**
* @brief Get an element from a LIFO queue.
*
* This routine removes a data item from @a LIFO in a "last in, first out"
* manner. The first word of the data item is reserved for the kernel's use.
*
* @note @a timeout must be set to K_NO_WAIT if called from ISR.
*
* @funcprops \isr_ok
*
* @param lifo Address of the LIFO queue.
* @param timeout Waiting period to obtain a data item,
* or one of the special values K_NO_WAIT and K_FOREVER.
*
* @return Address of the data item if successful; NULL if returned
* without waiting, or waiting period timed out.
*/
#define k_lifo_get(lifo, timeout) \
({ \
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
void *ret = k_queue_get(&(lifo)->_queue, timeout); \
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, ret); \
ret; \
})
/**
* @brief Statically define and initialize a LIFO queue.
*
* The LIFO queue can be accessed outside the module where it is defined using:
*
* @code extern struct k_lifo <name>; @endcode
*
* @param name Name of the fifo.
*/
#define K_LIFO_DEFINE(name) \
STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_lifo, name) = \
Z_LIFO_INITIALIZER(name)
/** @} */
/**
* @cond INTERNAL_HIDDEN
*/
#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
typedef uintptr_t stack_data_t;
struct k_stack {
_wait_q_t wait_q;
struct k_spinlock lock;
stack_data_t *base, *next, *top;
uint8_t flags;
};
#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
{ \
.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
.base = stack_buffer, \
.next = stack_buffer, \
.top = stack_buffer + stack_num_entries, \
}
/**
* INTERNAL_HIDDEN @endcond
*/
/**
* @defgroup stack_apis Stack APIs
* @ingroup kernel_apis
* @{
*/
/**
* @brief Initialize a stack.
*
* This routine initializes a stack object, prior to its first use.
*
* @param stack Address of the stack.
* @param buffer Address of array used to hold stacked values.
* @param num_entries Maximum number of values that can be stacked.
*
* @return N/A
*/
void k_stack_init(struct k_stack *stack,
stack_data_t *buffer, uint32_t num_entries);
/**
* @brief Initialize a stack.
*
* This routine initializes a stack object, prior to its first use. Internal
* buffers will be allocated from the calling thread's resource pool.
* This memory will be released if k_stack_cleanup() is called, or
* userspace is enabled and the stack object loses all references to it.
*
* @param stack Address of the stack.
* @param num_entries Maximum number of values that can be stacked.
*
* @return -ENOMEM if memory couldn't be allocated
*/
__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
uint32_t num_entries);
/**
* @brief Release a stack's allocated buffer
*
* If a stack object was given a dynamically allocated buffer via
* k_stack_alloc_init(), this will free it. This function does nothing
* if the buffer wasn't dynamically allocated.
*
* @param stack Address of the stack.
* @retval 0 on success
* @retval -EAGAIN when object is still in use
*/
int k_stack_cleanup(struct k_stack *stack);
/**
* @brief Push an element onto a stack.
*
* This routine adds a stack_data_t value @a data to @a stack.
*
* @funcprops \isr_ok
*
* @param stack Address of the stack.
* @param data Value to push onto the stack.
*
* @retval 0 on success
* @retval -ENOMEM if stack is full
*/
__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
/**
* @brief Pop an element from a stack.
*
* This routine removes a stack_data_t value from @a stack in a "last in,
* first out" manner and stores the value in @a data.
*
* @note @a timeout must be set to K_NO_WAIT if called from ISR.
*
* @funcprops \isr_ok
*
* @param stack Address of the stack.
* @param data Address of area to hold the value popped from the stack.
* @param timeout Waiting period to obtain a value,
* or one of the special values K_NO_WAIT and
* K_FOREVER.
*
* @retval 0 Element popped from stack.
* @retval -EBUSY Returned without waiting.
* @retval -EAGAIN Waiting period timed out.
*/
__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
k_timeout_t timeout);
/**
* @brief Statically define and initialize a stack
*
* The stack can be accessed outside the module where it is defined using:
*
* @code extern struct k_stack <name>; @endcode
*
* @param name Name of the stack.
* @param stack_num_entries Maximum number of values that can be stacked.
*/
#define K_STACK_DEFINE(name, stack_num_entries) \
stack_data_t __noinit \
_k_stack_buf_##name[stack_num_entries]; \
STRUCT_SECTION_ITERABLE(k_stack, name) = \
Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
stack_num_entries)
/** @} */
/**
* @cond INTERNAL_HIDDEN
*/
struct k_work;
struct k_work_q;
struct k_work_queue_config;
struct k_delayed_work;
extern struct k_work_q k_sys_work_q;
/**
* INTERNAL_HIDDEN @endcond
*/
/**
* @defgroup mutex_apis Mutex APIs
* @ingroup kernel_apis
* @{
*/
/**
* Mutex Structure
* @ingroup mutex_apis
*/
struct k_mutex {
/** Mutex wait queue */
_wait_q_t wait_q;
/** Mutex owner */
struct k_thread *owner;
/** Current lock count */
uint32_t lock_count;
/** Original thread priority */
int owner_orig_prio;
};
/**
* @cond INTERNAL_HIDDEN
*/
#define Z_MUTEX_INITIALIZER(obj) \
{ \
.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
.owner = NULL, \
.lock_count = 0, \
.owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
}
/**
* INTERNAL_HIDDEN @endcond
*/
/**
* @brief Statically define and initialize a mutex.
*
* The mutex can be accessed outside the module where it is defined using:
*
* @code extern struct k_mutex <name>; @endcode
*
* @param name Name of the mutex.
*/
#define K_MUTEX_DEFINE(name) \
STRUCT_SECTION_ITERABLE(k_mutex, name) = \
Z_MUTEX_INITIALIZER(name)
/**
* @brief Initialize a mutex.
*
* This routine initializes a mutex object, prior to its first use.
*
* Upon completion, the mutex is available and does not have an owner.
*
* @param mutex Address of the mutex.
*
* @retval 0 Mutex object created
*
*/
__syscall int k_mutex_init(struct k_mutex *mutex);
/**
* @brief Lock a mutex.
*
* This routine locks @a mutex. If the mutex is locked by another thread,
* the calling thread waits until the mutex becomes available or until
* a timeout occurs.
*
* A thread is permitted to lock a mutex it has already locked. The operation
* completes immediately and the lock count is increased by 1.
*
* Mutexes may not be locked in ISRs.
*
* @param mutex Address of the mutex.
* @param timeout Waiting period to lock the mutex,
* or one of the special values K_NO_WAIT and
* K_FOREVER.
*
* @retval 0 Mutex locked.
* @retval -EBUSY Returned without waiting.
* @retval -EAGAIN Waiting period timed out.
*/
__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
/**
* @brief Unlock a mutex.
*
* This routine unlocks @a mutex. The mutex must already be locked by the
* calling thread.
*
* The mutex cannot be claimed by another thread until it has been unlocked by
* the calling thread as many times as it was previously locked by that
* thread.
*
* Mutexes may not be unlocked in ISRs, as mutexes must only be manipulated
* in thread context due to ownership and priority inheritance semantics.
*
* @param mutex Address of the mutex.
*
* @retval 0 Mutex unlocked.
* @retval -EPERM The current thread does not own the mutex
* @retval -EINVAL The mutex is not locked
*
*/
__syscall int k_mutex_unlock(struct k_mutex *mutex);
/**
* @}
*/
struct k_condvar {
_wait_q_t wait_q;
};
#define Z_CONDVAR_INITIALIZER(obj) \
{ \
.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
}
/**
* @defgroup condvar_apis Condition Variables APIs
* @ingroup kernel_apis
* @{
*/
/**
* @brief Initialize a condition variable
*
* @param condvar pointer to a @p k_condvar structure
* @retval 0 Condition variable created successfully
*/
__syscall int k_condvar_init(struct k_condvar *condvar);
/**
* @brief Signals one thread that is pending on the condition variable
*
* @param condvar pointer to a @p k_condvar structure
* @retval 0 On success
*/
__syscall int k_condvar_signal(struct k_condvar *condvar);
/**
* @brief Unblock all threads that are pending on the condition
* variable
*
* @param condvar pointer to a @p k_condvar structure
* @return An integer with number of woken threads on success
*/
__syscall int k_condvar_broadcast(struct k_condvar *condvar);
/**
* @brief Waits on the condition variable releasing the mutex lock
*
* Automically releases the currently owned mutex, blocks the current thread
* waiting on the condition variable specified by @a condvar,
* and finally acquires the mutex again.
*
* The waiting thread unblocks only after another thread calls
* k_condvar_signal, or k_condvar_broadcast with the same condition variable.
*
* @param condvar pointer to a @p k_condvar structure
* @param mutex Address of the mutex.
* @param timeout Waiting period for the condition variable
* or one of the special values K_NO_WAIT and K_FOREVER.
* @retval 0 On success
* @retval -EAGAIN Waiting period timed out.
*/
__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
k_timeout_t timeout);
/**
* @brief Statically define and initialize a condition variable.
*
* The condition variable can be accessed outside the module where it is
* defined using:
*
* @code extern struct k_condvar <name>; @endcode
*
* @param name Name of the condition variable.
*/
#define K_CONDVAR_DEFINE(name) \
STRUCT_SECTION_ITERABLE(k_condvar, name) = \
Z_CONDVAR_INITIALIZER(name)
/**
* @}
*/
/**
* @cond INTERNAL_HIDDEN
*/
struct k_sem {
_wait_q_t wait_q;
unsigned int count;
unsigned int limit;
_POLL_EVENT;
};
#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
{ \
.wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
.count = initial_count, \
.limit = count_limit, \
_POLL_EVENT_OBJ_INIT(obj) \
}
/**
* INTERNAL_HIDDEN @endcond
*/
/**
* @defgroup semaphore_apis Semaphore APIs
* @ingroup kernel_apis
* @{
*/
/**
* @brief Maximum limit value allowed for a semaphore.
*
* This is intended for use when a semaphore does not have
* an explicit maximum limit, and instead is just used for
* counting purposes.
*
*/
#define K_SEM_MAX_LIMIT UINT_MAX
/**
* @brief Initialize a semaphore.
*
* This routine initializes a semaphore object, prior to its first use.
*
* @param sem Address of the semaphore.
* @param initial_count Initial semaphore count.
* @param limit Maximum permitted semaphore count.
*
* @see K_SEM_MAX_LIMIT
*
* @retval 0 Semaphore created successfully
* @retval -EINVAL Invalid values
*
*/
__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
unsigned int limit);
/**
* @brief Take a semaphore.
*
* This routine takes @a sem.
*
* @note @a timeout must be set to K_NO_WAIT if called from ISR.
*
* @funcprops \isr_ok
*
* @param sem Address of the semaphore.
* @param timeout Waiting period to take the semaphore,
* or one of the special values K_NO_WAIT and K_FOREVER.
*
* @retval 0 Semaphore taken.
* @retval -EBUSY Returned without waiting.
* @retval -EAGAIN Waiting period timed out,
* or the semaphore was reset during the waiting period.
*/
__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
/**
* @brief Give a semaphore.
*
* This routine gives @a sem, unless the semaphore is already at its maximum
* permitted count.
*
* @funcprops \isr_ok
*
* @param sem Address of the semaphore.
*
* @return N/A
*/
__syscall void k_sem_give(struct k_sem *sem);
/**
* @brief Resets a semaphore's count to zero.
*
* This routine sets the count of @a sem to zero.
* Any outstanding semaphore takes will be aborted
* with -EAGAIN.
*
* @param sem Address of the semaphore.
*
* @return N/A
*/
__syscall void k_sem_reset(struct k_sem *sem);
/**
* @brief Get a semaphore's count.
*
* This routine returns the current count of @a sem.
*
* @param sem Address of the semaphore.
*
* @return Current semaphore count.
*/
__syscall unsigned int k_sem_count_get(struct k_sem *sem);
/**
* @internal
*/
static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
{
return sem->count;
}
/**
* @brief Statically define and initialize a semaphore.
*
* The semaphore can be accessed outside the module where it is defined using:
*
* @code extern struct k_sem <name>; @endcode
*
* @param name Name of the semaphore.
* @param initial_count Initial semaphore count.
* @param count_limit Maximum permitted semaphore count.
*/
#define K_SEM_DEFINE(name, initial_count, count_limit) \
STRUCT_SECTION_ITERABLE(k_sem, name) = \
Z_SEM_INITIALIZER(name, initial_count, count_limit); \
BUILD_ASSERT(((count_limit) != 0) && \
((initial_count) <= (count_limit)) && \
((count_limit) <= K_SEM_MAX_LIMIT));
/** @} */
/**
* @cond INTERNAL_HIDDEN
*/
struct k_work_delayable;
struct k_work_sync;
/**
* INTERNAL_HIDDEN @endcond
*/
/**
* @defgroup workqueue_apis Work Queue APIs
* @ingroup kernel_apis
* @{
*/
/** @brief The signature for a work item handler function.
*
* The function will be invoked by the thread animating a work queue.
*
* @param work the work item that provided the handler.
*/
typedef void (*k_work_handler_t)(struct k_work *work);
/** @brief Initialize a (non-delayable) work structure.
*
* This must be invoked before submitting a work structure for the first time.
* It need not be invoked again on the same work structure. It can be
* re-invoked to change the associated handler, but this must be done when the
* work item is idle.
*
* @funcprops \isr_ok
*
* @param work the work structure to be initialized.
*
* @param handler the handler to be invoked by the work item.
*/
void k_work_init(struct k_work *work,
k_work_handler_t handler);
/** @brief Busy state flags from the work item.
*
* A zero return value indicates the work item appears to be idle.
*
* @note This is a live snapshot of state, which may change before the result
* is checked. Use locks where appropriate.
*
* @funcprops \isr_ok
*
* @param work pointer to the work item.
*
* @return a mask of flags K_WORK_DELAYED, K_WORK_QUEUED,
* K_WORK_RUNNING, and K_WORK_CANCELING.
*/
int k_work_busy_get(const struct k_work *work);
/** @brief Test whether a work item is currently pending.
*
* Wrapper to determine whether a work item is in a non-idle dstate.
*
* @note This is a live snapshot of state, which may change before the result
* is checked. Use locks where appropriate.
*
* @funcprops \isr_ok
*
* @param work pointer to the work item.
*
* @return true if and only if k_work_busy_get() returns a non-zero value.
*/
static inline bool k_work_is_pending(const struct k_work *work);
/** @brief Submit a work item to a queue.
*
* @param queue pointer to the work queue on which the item should run. If
* NULL the queue from the most recent submission will be used.
*
* @funcprops \isr_ok
*
* @param work pointer to the work item.
*
* @retval 0 if work was already submitted to a queue
* @retval 1 if work was not submitted and has been queued to @p queue
* @retval 2 if work was running and has been queued to the queue that was
* running it
* @retval -EBUSY
* * if work submission was rejected because the work item is cancelling; or
* * @p queue is draining; or
* * @p queue is plugged.
* @retval -EINVAL if @p queue is null and the work item has never been run.
* @retval -ENODEV if @p queue has not been started.
*/
int k_work_submit_to_queue(struct k_work_q *queue,
struct k_work *work);
/** @brief Submit a work item to the system queue.
*
* @funcprops \isr_ok
*
* @param work pointer to the work item.
*
* @return as with k_work_submit_to_queue().
*/
extern int k_work_submit(struct k_work *work);
/** @brief Wait for last-submitted instance to complete.
*
* Resubmissions may occur while waiting, including chained submissions (from
* within the handler).
*
* @note Be careful of caller and work queue thread relative priority. If
* this function sleeps it will not return until the work queue thread
* completes the tasks that allow this thread to resume.
*
* @note Behavior is undefined if this function is invoked on @p work from a
* work queue running @p work.
*
* @param work pointer to the work item.
*
* @param sync pointer to an opaque item containing state related to the
* pending cancellation. The object must persist until the call returns, and
* be accessible from both the caller thread and the work queue thread. The
* object must not be used for any other flush or cancel operation until this
* one completes. On architectures with CONFIG_KERNEL_COHERENCE the object
* must be allocated in coherent memory.
*
* @retval true if call had to wait for completion
* @retval false if work was already idle
*/
bool k_work_flush(struct k_work *work,
struct k_work_sync *sync);
/** @brief Cancel a work item.
*
* This attempts to prevent a pending (non-delayable) work item from being
* processed by removing it from the work queue. If the item is being
* processed, the work item will continue to be processed, but resubmissions
* are rejected until cancellation completes.
*
* If this returns zero cancellation is complete, otherwise something
* (probably a work queue thread) is still referencing the item.
*
* See also k_work_cancel_sync().
*
* @funcprops \isr_ok
*
* @param work pointer to the work item.
*
* @return the k_work_busy_get() status indicating the state of the item after all
* cancellation steps performed by this call are completed.
*/
int k_work_cancel(struct k_work *work);
/** @brief Cancel a work item and wait for it to complete.
*
* Same as k_work_cancel() but does not return until cancellation is complete.
* This can be invoked by a thread after k_work_cancel() to synchronize with a
* previous cancellation.
*
* On return the work structure will be idle unless something submits it after
* the cancellation was complete.
*
* @note Be careful of caller and work queue thread relative priority. If
* this function sleeps it will not return until the work queue thread
* completes the tasks that allow this thread to resume.
*
* @note Behavior is undefined if this function is invoked on @p work from a
* work queue running @p work.
*
* @param work pointer to the work item.
*
* @param sync pointer to an opaque item containing state related to the
* pending cancellation. The object must persist until the call returns, and
* be accessible from both the caller thread and the work queue thread. The
* object must not be used for any other flush or cancel operation until this
* one completes. On architectures with CONFIG_KERNEL_COHERENCE the object
* must be allocated in coherent memory.
*
* @retval true if work was pending (call had to wait for cancellation of a
* running handler to complete, or scheduled or submitted operations were
* cancelled);
* @retval false otherwise
*/
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
/** @brief Initialize a work queue structure.
*
* This must be invoked before starting a work queue structure for the first time.
* It need not be invoked again on the same work queue structure.
*
* @funcprops \isr_ok
*
* @param queue the queue structure to be initialized.
*/
void k_work_queue_init(struct k_work_q *queue);
/** @brief Initialize a work queue.
*
* This configures the work queue thread and starts it running. The function
* should not be re-invoked on a queue.
*
* @param queue pointer to the queue structure. It must be initialized
* in zeroed/bss memory or with @ref k_work_queue_init before
* use.
*
* @param stack pointer to the work thread stack area.
*
* @param stack_size size of the the work thread stack area, in bytes.
*
* @param prio initial thread priority
*
* @param cfg optional additional configuration parameters. Pass @c
* NULL if not required, to use the defaults documented in
* k_work_queue_config.
*/
void k_work_queue_start(struct k_work_q *queue,
k_thread_stack_t *stack, size_t stack_size,
int prio, const struct k_work_queue_config *cfg);
/** @brief Access the thread that animates a work queue.
*
* This is necessary to grant a work queue thread access to things the work
* items it will process are expected to use.
*
* @param queue pointer to the queue structure.
*
* @return the thread associated with the work queue.
*/
static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
/** @brief Wait until the work queue has drained, optionally plugging it.
*
* This blocks submission to the work queue except when coming from queue
* thread, and blocks the caller until no more work items are available in the
* queue.
*
* If @p plug is true then submission will continue to be blocked after the
* drain operation completes until k_work_queue_unplug() is invoked.
*
* Note that work items that are delayed are not yet associated with their
* work queue. They must be cancelled externally if a goal is to ensure the
* work queue remains empty. The @p plug feature can be used to prevent
* delayed items from being submitted after the drain completes.
*
* @param queue pointer to the queue structure.
*
* @param plug if true the work queue will continue to block new submissions
* after all items have drained.
*
* @retval 1 if call had to wait for the drain to complete
* @retval 0 if call did not have to wait
* @retval negative if wait was interrupted or failed
*/
int k_work_queue_drain(struct k_work_q *queue, bool plug);
/** @brief Release a work queue to accept new submissions.
*
* This releases the block on new submissions placed when k_work_queue_drain()
* is invoked with the @p plug option enabled. If this is invoked before the
* drain completes new items may be submitted as soon as the drain completes.
*
* @funcprops \isr_ok
*
* @param queue pointer to the queue structure.
*
* @retval 0 if successfully unplugged
* @retval -EALREADY if the work queue was not plugged.
*/
int k_work_queue_unplug(struct k_work_q *queue);
/** @brief Initialize a delayable work structure.
*
* This must be invoked before scheduling a delayable work structure for the
* first time. It need not be invoked again on the same work structure. It
* can be re-invoked to change the associated handler, but this must be done
* when the work item is idle.
*
* @funcprops \isr_ok
*
* @param dwork the delayable work structure to be initialized.
*
* @param handler the handler to be invoked by the work item.
*/
void k_work_init_delayable(struct k_work_delayable *dwork,
k_work_handler_t handler);
/**
* @brief Get the parent delayable work structure from a work pointer.
*
* This function is necessary when a @c k_work_handler_t function is passed to
* k_work_schedule_for_queue() and the handler needs to access data from the
* container of the containing `k_work_delayable`.
*
* @param work Address passed to the work handler
*
* @return Address of the containing @c k_work_delayable structure.
*/
static inline struct k_work_delayable *
k_work_delayable_from_work(struct k_work *work);
/** @brief Busy state flags from the delayable work item.
*
* @funcprops \isr_ok
*
* @note This is a live snapshot of state, which may change before the result
* can be inspected. Use locks where appropriate.
*
* @param dwork pointer to the delayable work item.
*
* @return a mask of flags K_WORK_DELAYED, K_WORK_QUEUED, K_WORK_RUNNING, and
* K_WORK_CANCELING. A zero return value indicates the work item appears to
* be idle.
*/
int k_work_delayable_busy_get(const struct k_work_delayable *dwork);
/** @brief Test whether a delayed work item is currently pending.
*
* Wrapper to determine whether a delayed work item is in a non-idle state.
*
* @note This is a live snapshot of state, which may change before the result
* can be inspected. Use locks where appropriate.
*
* @funcprops \isr_ok
*
* @param dwork pointer to the delayable work item.
*
* @return true if and only if k_work_delayable_busy_get() returns a non-zero
* value.
*/
static inline bool k_work_delayable_is_pending(
const struct k_work_delayable *dwork);
/** @brief Get the absolute tick count at which a scheduled delayable work
* will be submitted.
*
* @note This is a live snapshot of state, which may change before the result
* can be inspected. Use locks where appropriate.
*
* @funcprops \isr_ok
*
* @param dwork pointer to the delayable work item.
*
* @return the tick count when the timer that will schedule the work item will
* expire, or the current tick count if the work is not scheduled.
*/
static inline k_ticks_t k_work_delayable_expires_get(
const struct k_work_delayable *dwork);
/** @brief Get the number of ticks until a scheduled delayable work will be
* submitted.
*
* @note This is a live snapshot of state, which may change before the result
* can be inspected. Use locks where appropriate.
*
* @funcprops \isr_ok
*
* @param dwork pointer to the delayable work item.
*
* @return the number of ticks until the timer that will schedule the work
* item will expire, or zero if the item is not scheduled.
*/
static inline k_ticks_t k_work_delayable_remaining_get(
const struct k_work_delayable *dwork);
/** @brief Submit an idle work item to a queue after a delay.
*
* Unlike k_work_reschedule_for_queue() this is a no-op if the work item is
* already scheduled or submitted, even if @p delay is @c K_NO_WAIT.
*
* @funcprops \isr_ok
*
* @param queue the queue on which the work item should be submitted after the
* delay.
*
* @param dwork pointer to the delayable work item.
*
* @param delay the time to wait before submitting the work item. If @c
* K_NO_WAIT and the work is not pending this is equivalent to
* k_work_submit_to_queue().
*
* @retval 0 if work was already scheduled or submitted.
* @retval 1 if work has been scheduled.
* @retval -EBUSY if @p delay is @c K_NO_WAIT and
* k_work_submit_to_queue() fails with this code.
* @retval -EINVAL if @p delay is @c K_NO_WAIT and
* k_work_submit_to_queue() fails with this code.
* @retval -ENODEV if @p delay is @c K_NO_WAIT and
* k_work_submit_to_queue() fails with this code.
*/
int k_work_schedule_for_queue(struct k_work_q *queue,
struct k_work_delayable *dwork,
k_timeout_t delay);
/** @brief Submit an idle work item to the system work queue after a
* delay.
*
* This is a thin wrapper around k_work_schedule_for_queue(), with all the API
* characteristcs of that function.
*
* @param dwork pointer to the delayable work item.
*
* @param delay the time to wait before submitting the work item. If @c
* K_NO_WAIT this is equivalent to k_work_submit_to_queue().
*
* @return as with k_work_schedule_for_queue().
*/
extern int k_work_schedule(struct k_work_delayable *dwork,
k_timeout_t delay);
/** @brief Reschedule a work item to a queue after a delay.
*
* Unlike k_work_schedule_for_queue() this function can change the deadline of
* a scheduled work item, and will schedule a work item that isn't idle
* (e.g. is submitted or running). This function does not affect ("unsubmit")
* a work item that has been submitted to a queue.
*
* @funcprops \isr_ok
*
* @param queue the queue on which the work item should be submitted after the
* delay.
*
* @param dwork pointer to the delayable work item.
*
* @param delay the time to wait before submitting the work item. If @c
* K_NO_WAIT this is equivalent to k_work_submit_to_queue() after canceling
* any previous scheduled submission.
*
* @note If delay is @c K_NO_WAIT ("no delay") the return values are as with
* k_work_submit_to_queue().
*
* @retval 0 if delay is @c K_NO_WAIT and work was already on a queue
* @retval 1 if
* * delay is @c K_NO_WAIT and work was not submitted but has now been queued
* to @p queue; or
* * delay not @c K_NO_WAIT and work has been scheduled
* @retval 2 if delay is @c K_NO_WAIT and work was running and has been queued
* to the queue that was running it
* @retval -EBUSY if @p delay is @c K_NO_WAIT and
* k_work_submit_to_queue() fails with this code.
* @retval -EINVAL if @p delay is @c K_NO_WAIT and
* k_work_submit_to_queue() fails with this code.
* @retval -ENODEV if @p delay is @c K_NO_WAIT and
* k_work_submit_to_queue() fails with this code.
*/
int k_work_reschedule_for_queue(struct k_work_q *queue,
struct k_work_delayable *dwork,
k_timeout_t delay);
/** @brief Reschedule a work item to the system work queue after a
* delay.
*
* This is a thin wrapper around k_work_reschedule_for_queue(), with all the
* API characteristcs of that function.
*
* @param dwork pointer to the delayable work item.
*
* @param delay the time to wait before submitting the work item.
*
* @return as with k_work_reschedule_for_queue().
*/
extern int k_work_reschedule(struct k_work_delayable *dwork,
k_timeout_t delay);
/** @brief Flush delayable work.
*
* If the work is scheduled, it is immediately submitted. Then the caller
* blocks until the work completes, as with k_work_flush().
*
* @note Be careful of caller and work queue thread relative priority. If
* this function sleeps it will not return until the work queue thread
* completes the tasks that allow this thread to resume.
*
* @note Behavior is undefined if this function is invoked on @p dwork from a
* work queue running @p dwork.
*
* @param dwork pointer to the delayable work item.
*
* @param sync pointer to an opaque item containing state related to the
* pending cancellation. The object must persist until the call returns, and
* be accessible from both the caller thread and the work queue thread. The
* object must not be used for any other flush or cancel operation until this
* one completes. On architectures with CONFIG_KERNEL_COHERENCE the object
* must be allocated in coherent memory.
*
* @retval true if call had to wait for completion
* @retval false if work was already idle
*/
bool k_work_flush_delayable(struct k_work_delayable *dwork,
struct k_work_sync *sync);
/** @brief Cancel delayable work.
*
* Similar to k_work_cancel() but for delayable work. If the work is
* scheduled or submitted it is canceled. This function does not wait for the
* cancellation to complete.
*
* @note The work may still be running when this returns. Use
* k_work_flush_delayable() or k_work_cancel_delayable_sync() to ensure it is
* not running.
*
* @note Canceling delayable work does not prevent rescheduling it. It does
* prevent submitting it until the cancellation completes.
*
* @funcprops \isr_ok
*
* @param dwork pointer to the delayable work item.
*
* @return the k_work_delayable_busy_get() status indicating the state of the
* item after all cancellation steps performed by this call are completed.
*/
int k_work_cancel_delayable(struct k_work_delayable *dwork);
/** @brief Cancel delayable work and wait.
*
* Like k_work_cancel_delayable() but waits until the work becomes idle.
*
* @note Canceling delayable work does not prevent rescheduling it. It does
* prevent submitting it until the cancellation completes.
*
* @note Be careful of caller and work queue thread relative priority. If
* this function sleeps it will not return until the work queue thread
* completes the tasks that allow this thread to resume.
*
* @note Behavior is undefined if this function is invoked on @p dwork from a
* work queue running @p dwork.
*
* @param dwork pointer to the delayable work item.
*
* @param sync pointer to an opaque item containing state related to the
* pending cancellation. The object must persist until the call returns, and
* be accessible from both the caller thread and the work queue thread. The
* object must not be used for any other flush or cancel operation until this
* one completes. On architectures with CONFIG_KERNEL_COHERENCE the object
* must be allocated in coherent memory.
*
* @retval true if work was not idle (call had to wait for cancellation of a
* running handler to complete, or scheduled or submitted operations were
* cancelled);
* @retval false otherwise
*/
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork,
struct k_work_sync *sync);
enum {
/**
* @cond INTERNAL_HIDDEN
*/
/* The atomic API is used for all work and queue flags fields to
* enforce sequential consistency in SMP environments.
*/
/* Bits that represent the work item states. At least nine of the
* combinations are distinct valid stable states.
*/
K_WORK_RUNNING_BIT = 0,
K_WORK_CANCELING_BIT = 1,
K_WORK_QUEUED_BIT = 2,
K_WORK_DELAYED_BIT = 3,
K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
| BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT),
/* Static work flags */
K_WORK_DELAYABLE_BIT = 8,
K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
/* Dynamic work queue flags */
K_WORK_QUEUE_STARTED_BIT = 0,
K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
K_WORK_QUEUE_BUSY_BIT = 1,
K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
K_WORK_QUEUE_DRAIN_BIT = 2,
K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
K_WORK_QUEUE_PLUGGED_BIT = 3,
K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
/* Static work queue flags */
K_WORK_QUEUE_NO_YIELD_BIT = 8,
K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
/**
* INTERNAL_HIDDEN @endcond
*/
/* Transient work flags */
/** @brief Flag indicating a work item that is running under a work
* queue thread.
*
* Accessed via k_work_busy_get(). May co-occur with other flags.
*/
K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
/** @brief Flag indicating a work item that is being canceled.
*
* Accessed via k_work_busy_get(). May co-occur with other flags.
*/
K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
/** @brief Flag indicating a work item that has been submitted to a
* queue but has not started running.
*
* Accessed via k_work_busy_get(). May co-occur with other flags.
*/
K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
/** @brief Flag indicating a delayed work item that is scheduled for
* submission to a queue.
*
* Accessed via k_work_busy_get(). May co-occur with other flags.
*/
K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
};
/** @brief A structure used to submit work. */
struct k_work {
/* All fields are protected by the work module spinlock. No fields
* are to be accessed except through kernel API.
*/
/* Node to link into k_work_q pending list. */
sys_snode_t node;
/* The function to be invoked by the work queue thread. */
k_work_handler_t handler;
/* The queue on which the work item was last submitted. */
struct k_work_q *queue;
/* State of the work item.
*
* The item can be DELAYED, QUEUED, and RUNNING simultaneously.
*
* It can be RUNNING and CANCELING simultaneously.
*/
uint32_t flags;
};
#define Z_WORK_INITIALIZER(work_handler) { \
.handler = work_handler, \
}
/** @brief A structure used to submit work after a delay. */
struct k_work_delayable {
/* The work item. */
struct k_work work;
/* Timeout used to submit work after a delay. */
struct _timeout timeout;
/* The queue to which the work should be submitted. */
struct k_work_q *queue;
};
#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
.work = { \
.handler = work_handler, \
.flags = K_WORK_DELAYABLE, \
}, \
}
/**
* @brief Initialize a statically-defined delayable work item.
*
* This macro can be used to initialize a statically-defined delayable
* work item, prior to its first use. For example,
*
* @code static K_WORK_DELAYABLE_DEFINE(<dwork>, <work_handler>); @endcode
*
* Note that if the runtime dependencies support initialization with
* k_work_init_delayable() using that will eliminate the initialized
* object in ROM that is produced by this macro and copied in at
* system startup.
*
* @param work Symbol name for delayable work item object
* @param work_handler Function to invoke each time work item is processed.
*/
#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
struct k_work_delayable work \
= Z_WORK_DELAYABLE_INITIALIZER(work_handler)
/**
* @cond INTERNAL_HIDDEN
*/
/* Record used to wait for work to flush.
*
* The work item is inserted into the queue that will process (or is
* processing) the item, and will be processed as soon as the item
* completes. When the flusher is processed the semaphore will be
* signaled, releasing the thread waiting for the flush.
*/
struct z_work_flusher {
struct k_work work;
struct k_sem sem;
};
/* Record used to wait for work to complete a cancellation.
*
* The work item is inserted into a global queue of pending cancels.
* When a cancelling work item goes idle any matching waiters are
* removed from pending_cancels and are woken.
*/
struct z_work_canceller {
sys_snode_t node;
struct k_work *work;
struct k_sem sem;
};
/**
* INTERNAL_HIDDEN @endcond
*/
/** @brief A structure holding internal state for a pending synchronous
* operation on a work item or queue.
*
* Instances of this type are provided by the caller for invocation of
* k_work_flush(), k_work_cancel_sync() and sibling flush and cancel APIs. A
* referenced object must persist until the call returns, and be accessible
* from both the caller thread and the work queue thread.
*
* @note If CONFIG_KERNEL_COHERENCE is enabled the object must be allocated in
* coherent memory; see arch_mem_coherent(). The stack on these architectures
* is generally not coherent. be stack-allocated. Violations are detected by
* runtime assertion.
*/
struct k_work_sync {
union {
struct z_work_flusher flusher;
struct z_work_canceller canceller;
};
};
/** @brief A structure holding optional configuration items for a work
* queue.
*
* This structure, and values it references, are not retained by
* k_work_queue_start().
*/
struct k_work_queue_config {
/** The name to be given to the work queue thread.
*
* If left null the thread will not have a name.
*/
const char *name;
/** Control whether the work queue thread should yield between
* items.
*
* Yielding between items helps guarantee the work queue
* thread does not starve other threads, including cooperative
* ones released by a work item. This is the default behavior.
*
* Set this to @c true to prevent the work queue thread from
* yielding between items. This may be appropriate when a
* sequence of items should complete without yielding
* control.
*/
bool no_yield;
};
/** @brief A structure used to hold work until it can be processed. */
struct k_work_q {
/* The thread that animates the work. */
struct k_thread thread;
/* All the following fields must be accessed only while the
* work module spinlock is held.
*/
/* List of k_work items to be worked. */
sys_slist_t pending;
/* Wait queue for idle work thread. */
_wait_q_t notifyq;
/* Wait queue for threads waiting for the queue to drain. */
_wait_q_t drainq;
/* Flags describing queue state. */
uint32_t flags;
};
/* Provide the implementation for inline functions declared above */
static inline bool k_work_is_pending(const struct k_work *work)
{
return k_work_busy_get(work) != 0;
}
static inline struct k_work_delayable *
k_work_delayable_from_work(struct k_work *work)
{
return CONTAINER_OF(work, struct k_work_delayable, work);
}
static inline bool k_work_delayable_is_pending(
const struct k_work_delayable *dwork)
{
return k_work_delayable_busy_get(dwork) != 0;
}
static inline k_ticks_t k_work_delayable_expires_get(
const struct k_work_delayable *dwork)
{
return z_timeout_expires(&dwork->timeout);
}
static inline k_ticks_t k_work_delayable_remaining_get(
const struct k_work_delayable *dwork)
{
return z_timeout_remaining(&dwork->timeout);
}
static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
{
return &queue->thread;
}
/* Legacy wrappers */
__deprecated
static inline bool k_work_pending(const struct k_work *work)
{
return k_work_is_pending(work);
}
__deprecated
static inline void k_work_q_start(struct k_work_q *work_q,
k_thread_stack_t *stack,
size_t stack_size, int prio)
{
k_work_queue_start(work_q, stack, stack_size, prio, NULL);
}
/* deprecated, remove when corresponding deprecated API is removed. */
struct k_delayed_work {
struct k_work_delayable work;
};
#define Z_DELAYED_WORK_INITIALIZER(work_handler) __DEPRECATED_MACRO { \
.work = Z_WORK_DELAYABLE_INITIALIZER(work_handler), \
}
__deprecated
static inline void k_delayed_work_init(struct k_delayed_work *work,
k_work_handler_t handler)
{
k_work_init_delayable(&work->work, handler);
}
__deprecated
static inline int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
struct k_delayed_work *work,
k_timeout_t delay)
{
int rc = k_work_reschedule_for_queue(work_q, &work->work, delay);
/* Legacy API doesn't distinguish success cases. */
return (rc >= 0) ? 0 : rc;
}
__deprecated
static inline int k_delayed_work_submit(struct k_delayed_work *work,
k_timeout_t delay)
{
int rc = k_work_reschedule(&work->work, delay);
/* Legacy API doesn't distinguish success cases. */
return (rc >= 0) ? 0 : rc;
}
__deprecated
static inline int k_delayed_work_cancel(struct k_delayed_work *work)
{
bool pending = k_work_delayable_is_pending(&work->work);
int rc = k_work_cancel_delayable(&work->work);
/* Old return value rules:
*
* 0 if:
* * Work item countdown cancelled before the item was submitted to
* its queue; or
* * Work item was removed from its queue before it was processed.
*
* -EINVAL if:
* * Work item has never been submitted; or
* * Work item has been successfully cancelled; or
* * Timeout handler is in the process of submitting the work item to
* its queue; or
* * Work queue thread has removed the work item from the queue but
* has not called its handler.
*
* -EALREADY if:
* * Work queue thread has removed the work item from the queue and
* cleared its pending flag; or
* * Work queue thread is invoking the item handler; or
* * Work item handler has completed.
*
* We can't reconstruct those states, so call it successful only when
* a pending item is no longer pending, -EINVAL if it was pending and
* still is, and cancel, and -EALREADY if it wasn't pending (so
* presumably cancellation should have had no effect, assuming we
* didn't hit a race condition).
*/
if (pending) {
return (rc == 0) ? 0 : -EINVAL;
}
return -EALREADY;
}
__deprecated
static inline bool k_delayed_work_pending(struct k_delayed_work *work)
{
return k_work_delayable_is_pending(&work->work);
}
__deprecated
static inline int32_t k_delayed_work_remaining_get(struct k_delayed_work *work)
{
k_ticks_t rem = k_work_delayable_remaining_get(&work->work);
/* Probably should be ceil32, but was floor32 */
return k_ticks_to_ms_floor32(rem);
}
__deprecated
static inline k_ticks_t k_delayed_work_expires_ticks(
struct k_delayed_work *work)
{
return k_work_delayable_expires_get(&work->work);
}
__deprecated
static inline k_ticks_t k_delayed_work_remaining_ticks(
struct k_delayed_work *work)
{
return k_work_delayable_remaining_get(&work->work);
}
/** @} */
struct k_work_user;
/**
* @addtogroup workqueue_apis
* @{
*/
/**
* @typedef k_work_user_handler_t
* @brief Work item handler function type for user work queues.
*
* A work item's handler function is executed by a user workqueue's thread
* when the work item is processed by the workqueue.
*
* @param work Address of the work item.
*
* @return N/A
*/
typedef void (*k_work_user_handler_t)(struct k_work_user *work);
/**
* @cond INTERNAL_HIDDEN
*/
struct k_work_user_q {
struct k_queue queue;
struct k_thread thread;
};
enum {
K_WORK_USER_STATE_PENDING, /* Work item pending state */
};
struct k_work_user {
void *_reserved; /* Used by k_queue implementation. */
k_work_user_handler_t handler;
atomic_t flags;
};
/**
* INTERNAL_HIDDEN @endcond
*/
#define Z_WORK_USER_INITIALIZER(work_handler) \
{ \
._reserved = NULL, \
.handler = work_handler, \
.flags = 0 \
}
/**
* @brief Initialize a statically-defined user work item.
*
* This macro can be used to initialize a statically-defined user work
* item, prior to its first use. For example,
*
* @code static K_WORK_USER_DEFINE(<work>, <work_handler>); @endcode
*
* @param work Symbol name for work item object
* @param work_handler Function to invoke each time work item is processed.
*/
#define K_WORK_USER_DEFINE(work, work_handler) \
struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
/**
* @brief Initialize a userspace work item.
*
* This routine initializes a user workqueue work item, prior to its
* first use.
*
* @param work Address of work item.
* @param handler Function to invoke each time work item is processed.
*
* @return N/A
*/
static inline void k_work_user_init(struct k_work_user *work,
k_work_user_handler_t handler)
{
*work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
}
/**
* @brief Check if a userspace work item is pending.
*
* This routine indicates if user work item @a work is pending in a workqueue's
* queue.
*
* @note Checking if the work is pending gives no guarantee that the
* work will still be pending when this information is used. It is up to
* the caller to make sure that this information is used in a safe manner.
*
* @funcprops \isr_ok
*
* @param work Address of work item.
*
* @return true if work item is pending, or false if it is not pending.
*/
static inline bool k_work_user_is_pending(struct k_work_user *work)
{
return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
}
/**
* @brief Submit a work item to a user mode workqueue
*
* Submits a work item to a workqueue that runs in user mode. A temporary
* memory allocation is made from the caller's resource pool which is freed
* once the worker thread consumes the k_work item. The workqueue
* thread must have memory access to the k_work item being submitted. The caller
* must have permission granted on the work_q parameter's queue object.
*
* @funcprops \isr_ok
*
* @param work_q Address of workqueue.
* @param work Address of work item.
*
* @retval -EBUSY if the work item was already in some workqueue
* @retval -ENOMEM if no memory for thread resource pool allocation
* @retval 0 Success
*/
static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
struct k_work_user *work)
{
int ret = -EBUSY;
if (!atomic_test_and_set_bit(&work->flags,
K_WORK_USER_STATE_PENDING)) {
ret = k_queue_alloc_append(&work_q->queue, work);
/* Couldn't insert into the queue. Clear the pending bit
* so the work item can be submitted again
*/
if (ret != 0) {
atomic_clear_bit(&work->flags,
K_WORK_USER_STATE_PENDING);
}
}
return ret;
}
/**
* @brief Start a workqueue in user mode
*
* This works identically to k_work_queue_start() except it is callable from
* user mode, and the worker thread created will run in user mode. The caller
* must have permissions granted on both the work_q parameter's thread and
* queue objects, and the same restrictions on priority apply as
* k_thread_create().
*
* @param work_q Address of workqueue.
* @param stack Pointer to work queue thread's stack space, as defined by
* K_THREAD_STACK_DEFINE()
* @param stack_size Size of the work queue thread's stack (in bytes), which
* should either be the same constant passed to
* K_THREAD_STACK_DEFINE() or the value of K_THREAD_STACK_SIZEOF().
* @param prio Priority of the work queue's thread.
* @param name optional thread name. If not null a copy is made into the
* thread's name buffer.
*
* @return N/A
*/
extern void k_work_user_queue_start(struct k_work_user_q *work_q,
k_thread_stack_t *stack,
size_t stack_size, int prio,
const char *name);
/** @} */
/**
* @cond INTERNAL_HIDDEN
*/
struct k_work_poll {
struct k_work work;
struct |