Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/*
 * Copyright (c) 2019 Intel Corporation
 * SPDX-License-Identifier: Apache-2.0
 */

#include <kernel.h>
#include <ksched.h>
#include <kernel_structs.h>
#include <kernel_internal.h>
#include <exc_handle.h>
#include <logging/log.h>
#include <x86_mmu.h>
#include <mmu.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);

#if defined(CONFIG_BOARD_QEMU_X86) || defined(CONFIG_BOARD_QEMU_X86_64)
FUNC_NORETURN void arch_system_halt(unsigned int reason)
{
	ARG_UNUSED(reason);

	/* Causes QEMU to exit. We passed the following on the command line:
	 * -device isa-debug-exit,iobase=0xf4,iosize=0x04
	 *
	 * For any value of the first argument X, the return value of the
	 * QEMU process is (X * 2) + 1.
	 *
	 * It has been observed that if the emulator exits for a triple-fault
	 * (often due to bad page tables or other CPU structures) it will
	 * terminate with 0 error code.
	 */
	sys_out32(reason, 0xf4);
	CODE_UNREACHABLE;
}
#endif

static inline uintptr_t esf_get_sp(const z_arch_esf_t *esf)
{
#ifdef CONFIG_X86_64
	return esf->rsp;
#else
	return esf->esp;
#endif
}

static inline uintptr_t esf_get_code(const z_arch_esf_t *esf)
{
#ifdef CONFIG_X86_64
	return esf->code;
#else
	return esf->errorCode;
#endif
}

#ifdef CONFIG_THREAD_STACK_INFO
__pinned_func
bool z_x86_check_stack_bounds(uintptr_t addr, size_t size, uint16_t cs)
{
	uintptr_t start, end;

	if (_current == NULL || arch_is_in_isr()) {
		/* We were servicing an interrupt or in early boot environment
		 * and are supposed to be on the interrupt stack */
		int cpu_id;

#ifdef CONFIG_SMP
		cpu_id = arch_curr_cpu()->id;
#else
		cpu_id = 0;
#endif
		start = (uintptr_t)Z_KERNEL_STACK_BUFFER(
		    z_interrupt_stacks[cpu_id]);
		end = start + CONFIG_ISR_STACK_SIZE;
#ifdef CONFIG_USERSPACE
	} else if ((cs & 0x3U) == 0U &&
		   (_current->base.user_options & K_USER) != 0) {
		/* The low two bits of the CS register is the privilege
		 * level. It will be 0 in supervisor mode and 3 in user mode
		 * corresponding to ring 0 / ring 3.
		 *
		 * If we get here, we must have been doing a syscall, check
		 * privilege elevation stack bounds
		 */
		start = _current->stack_info.start - CONFIG_MMU_PAGE_SIZE;
		end = _current->stack_info.start;
#endif /* CONFIG_USERSPACE */
	} else {
		/* Normal thread operation, check its stack buffer */
		start = _current->stack_info.start;
		end = Z_STACK_PTR_ALIGN(_current->stack_info.start +
					_current->stack_info.size);
	}

	return (addr <= start) || (addr + size > end);
}
#endif

#ifdef CONFIG_EXCEPTION_DEBUG
#if defined(CONFIG_X86_EXCEPTION_STACK_TRACE)
struct stack_frame {
	uintptr_t next;
	uintptr_t ret_addr;
#ifndef CONFIG_X86_64
	uintptr_t args;
#endif
};

#define MAX_STACK_FRAMES 8

__pinned_func
static void unwind_stack(uintptr_t base_ptr, uint16_t cs)
{
	struct stack_frame *frame;
	int i;

	if (base_ptr == 0U) {
		LOG_ERR("NULL base ptr");
		return;
	}

	for (i = 0; i < MAX_STACK_FRAMES; i++) {
		if (base_ptr % sizeof(base_ptr) != 0U) {
			LOG_ERR("unaligned frame ptr");
			return;
		}

		frame = (struct stack_frame *)base_ptr;
		if (frame == NULL) {
			break;
		}

#ifdef CONFIG_THREAD_STACK_INFO
		/* Ensure the stack frame is within the faulting context's
		 * stack buffer
		 */
		if (z_x86_check_stack_bounds((uintptr_t)frame,
					     sizeof(*frame), cs)) {
			LOG_ERR("     corrupted? (bp=%p)", frame);
			break;
		}
#endif

		if (frame->ret_addr == 0U) {
			break;
		}
#ifdef CONFIG_X86_64
		LOG_ERR("     0x%016lx", frame->ret_addr);
#else
		LOG_ERR("     0x%08lx (0x%lx)", frame->ret_addr, frame->args);
#endif
		base_ptr = frame->next;
	}
}
#endif /* CONFIG_X86_EXCEPTION_STACK_TRACE */

static inline uintptr_t get_cr3(const z_arch_esf_t *esf)
{
#if defined(CONFIG_USERSPACE) && defined(CONFIG_X86_KPTI)
	/* If the interrupted thread was in user mode, we did a page table
	 * switch when we took the exception via z_x86_trampoline_to_kernel
	 */
	if ((esf->cs & 0x3) != 0) {
		return _current->arch.ptables;
	}
#else
	ARG_UNUSED(esf);
#endif
	/* Return the current CR3 value, it didn't change when we took
	 * the exception
	 */
	return z_x86_cr3_get();
}

static inline pentry_t *get_ptables(const z_arch_esf_t *esf)
{
	return z_mem_virt_addr(get_cr3(esf));
}

#ifdef CONFIG_X86_64
__pinned_func
static void dump_regs(const z_arch_esf_t *esf)
{
	LOG_ERR("RAX: 0x%016lx RBX: 0x%016lx RCX: 0x%016lx RDX: 0x%016lx",
		esf->rax, esf->rbx, esf->rcx, esf->rdx);
	LOG_ERR("RSI: 0x%016lx RDI: 0x%016lx RBP: 0x%016lx RSP: 0x%016lx",
		esf->rsi, esf->rdi, esf->rbp, esf->rsp);
	LOG_ERR(" R8: 0x%016lx  R9: 0x%016lx R10: 0x%016lx R11: 0x%016lx",
		esf->r8, esf->r9, esf->r10, esf->r11);
	LOG_ERR("R12: 0x%016lx R13: 0x%016lx R14: 0x%016lx R15: 0x%016lx",
		esf->r12, esf->r13, esf->r14, esf->r15);
	LOG_ERR("RSP: 0x%016lx RFLAGS: 0x%016lx CS: 0x%04lx CR3: 0x%016lx",
		esf->rsp, esf->rflags, esf->cs & 0xFFFFU, get_cr3(esf));

#ifdef CONFIG_X86_EXCEPTION_STACK_TRACE
	LOG_ERR("call trace:");
#endif
	LOG_ERR("RIP: 0x%016lx", esf->rip);
#ifdef CONFIG_X86_EXCEPTION_STACK_TRACE
	unwind_stack(esf->rbp, esf->cs);
#endif
}
#else /* 32-bit */
__pinned_func
static void dump_regs(const z_arch_esf_t *esf)
{
	LOG_ERR("EAX: 0x%08x, EBX: 0x%08x, ECX: 0x%08x, EDX: 0x%08x",
		esf->eax, esf->ebx, esf->ecx, esf->edx);
	LOG_ERR("ESI: 0x%08x, EDI: 0x%08x, EBP: 0x%08x, ESP: 0x%08x",
		esf->esi, esf->edi, esf->ebp, esf->esp);
	LOG_ERR("EFLAGS: 0x%08x CS: 0x%04x CR3: 0x%08lx", esf->eflags,
		esf->cs & 0xFFFFU, get_cr3(esf));

#ifdef CONFIG_X86_EXCEPTION_STACK_TRACE
	LOG_ERR("call trace:");
#endif
	LOG_ERR("EIP: 0x%08x", esf->eip);
#ifdef CONFIG_X86_EXCEPTION_STACK_TRACE
	unwind_stack(esf->ebp, esf->cs);
#endif
}
#endif /* CONFIG_X86_64 */

__pinned_func
static void log_exception(uintptr_t vector, uintptr_t code)
{
	switch (vector) {
	case IV_DIVIDE_ERROR:
		LOG_ERR("Divide by zero");
		break;
	case IV_DEBUG:
		LOG_ERR("Debug");
		break;
	case IV_NON_MASKABLE_INTERRUPT:
		LOG_ERR("Non-maskable interrupt");
		break;
	case IV_BREAKPOINT:
		LOG_ERR("Breakpoint");
		break;
	case IV_OVERFLOW:
		LOG_ERR("Overflow");
		break;
	case IV_BOUND_RANGE:
		LOG_ERR("Bound range exceeded");
		break;
	case IV_INVALID_OPCODE:
		LOG_ERR("Invalid opcode");
		break;
	case IV_DEVICE_NOT_AVAILABLE:
		LOG_ERR("Floating point unit device not available");
		break;
	case IV_DOUBLE_FAULT:
		LOG_ERR("Double fault (code 0x%lx)", code);
		break;
	case IV_COPROC_SEGMENT_OVERRUN:
		LOG_ERR("Co-processor segment overrun");
		break;
	case IV_INVALID_TSS:
		LOG_ERR("Invalid TSS (code 0x%lx)", code);
		break;
	case IV_SEGMENT_NOT_PRESENT:
		LOG_ERR("Segment not present (code 0x%lx)", code);
		break;
	case IV_STACK_FAULT:
		LOG_ERR("Stack segment fault");
		break;
	case IV_GENERAL_PROTECTION:
		LOG_ERR("General protection fault (code 0x%lx)", code);
		break;
	/* IV_PAGE_FAULT skipped, we have a dedicated handler */
	case IV_X87_FPU_FP_ERROR:
		LOG_ERR("x87 floating point exception");
		break;
	case IV_ALIGNMENT_CHECK:
		LOG_ERR("Alignment check (code 0x%lx)", code);
		break;
	case IV_MACHINE_CHECK:
		LOG_ERR("Machine check");
		break;
	case IV_SIMD_FP:
		LOG_ERR("SIMD floating point exception");
		break;
	case IV_VIRT_EXCEPTION:
		LOG_ERR("Virtualization exception");
		break;
	case IV_SECURITY_EXCEPTION:
		LOG_ERR("Security exception");
		break;
	default:
		LOG_ERR("Exception not handled (code 0x%lx)", code);
		break;
	}
}

__pinned_func
static void dump_page_fault(z_arch_esf_t *esf)
{
	uintptr_t err;
	void *cr2;

	cr2 = z_x86_cr2_get();
	err = esf_get_code(esf);
	LOG_ERR("Page fault at address %p (error code 0x%lx)", cr2, err);

	if ((err & PF_RSVD) != 0) {
		LOG_ERR("Reserved bits set in page tables");
	} else {
		if ((err & PF_P) == 0) {
			LOG_ERR("Linear address not present in page tables");
		}
		LOG_ERR("Access violation: %s thread not allowed to %s",
			(err & PF_US) != 0U ? "user" : "supervisor",
			(err & PF_ID) != 0U ? "execute" : ((err & PF_WR) != 0U ?
							   "write" :
							   "read"));
		if ((err & PF_PK) != 0) {
			LOG_ERR("Protection key disallowed");
		} else if ((err & PF_SGX) != 0) {
			LOG_ERR("SGX access control violation");
		}
	}

#ifdef CONFIG_X86_MMU
	z_x86_dump_mmu_flags(get_ptables(esf), cr2);
#endif /* CONFIG_X86_MMU */
}
#endif /* CONFIG_EXCEPTION_DEBUG */

__pinned_func
FUNC_NORETURN void z_x86_fatal_error(unsigned int reason,
				     const z_arch_esf_t *esf)
{
	if (esf != NULL) {
#ifdef CONFIG_EXCEPTION_DEBUG
		dump_regs(esf);
#endif
#if defined(CONFIG_ASSERT) && defined(CONFIG_X86_64)
		if (esf->rip == 0xb9) {
			/* See implementation of __resume in locore.S. This is
			 * never a valid RIP value. Treat this as a kernel
			 * panic.
			 */
			LOG_ERR("Attempt to resume un-suspended thread object");
			reason = K_ERR_KERNEL_PANIC;
		}
#endif
	}
	z_fatal_error(reason, esf);
	CODE_UNREACHABLE;
}

__pinned_func
FUNC_NORETURN void z_x86_unhandled_cpu_exception(uintptr_t vector,
						 const z_arch_esf_t *esf)
{
#ifdef CONFIG_EXCEPTION_DEBUG
	log_exception(vector, esf_get_code(esf));
#else
	ARG_UNUSED(vector);
#endif
	z_x86_fatal_error(K_ERR_CPU_EXCEPTION, esf);
}

#ifdef CONFIG_USERSPACE
Z_EXC_DECLARE(z_x86_user_string_nlen);

static const struct z_exc_handle exceptions[] = {
	Z_EXC_HANDLE(z_x86_user_string_nlen)
};
#endif

__pinned_func
void z_x86_page_fault_handler(z_arch_esf_t *esf)
{
#ifdef CONFIG_DEMAND_PAGING
	if ((esf->errorCode & PF_P) == 0) {
		/* Page was non-present at time exception happened.
		 * Get faulting virtual address from CR2 register
		 */
		void *virt = z_x86_cr2_get();
		bool was_valid_access;

#ifdef CONFIG_X86_KPTI
		/* Protection ring is lowest 2 bits in interrupted CS */
		bool was_user = ((esf->cs & 0x3) != 0U);

		/* Need to check if the interrupted context was a user thread
		 * that hit a non-present page that was flipped due to KPTI in
		 * the thread's page tables, in which case this is an access
		 * violation and we should treat this as an error.
		 *
		 * We're probably not locked, but if there is a race, we will
		 * be fine, the kernel page fault code will later detect that
		 * the page is present in the kernel's page tables and the
		 * instruction will just be re-tried, producing another fault.
		 */
		if (was_user &&
		    !z_x86_kpti_is_access_ok(virt, get_ptables(esf))) {
			was_valid_access = false;
		} else
#else
		{
			was_valid_access = z_page_fault(virt);
		}
#endif /* CONFIG_X86_KPTI */
		if (was_valid_access) {
			/* Page fault handled, re-try */
			return;
		}
	}
#endif /* CONFIG_DEMAND_PAGING */

#if !defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_COREDUMP)
	z_x86_exception_vector = IV_PAGE_FAULT;
#endif

#ifdef CONFIG_USERSPACE
	int i;

	for (i = 0; i < ARRAY_SIZE(exceptions); i++) {
#ifdef CONFIG_X86_64
		if ((void *)esf->rip >= exceptions[i].start &&
		    (void *)esf->rip < exceptions[i].end) {
			esf->rip = (uint64_t)(exceptions[i].fixup);
			return;
		}
#else
		if ((void *)esf->eip >= exceptions[i].start &&
		    (void *)esf->eip < exceptions[i].end) {
			esf->eip = (unsigned int)(exceptions[i].fixup);
			return;
		}
#endif /* CONFIG_X86_64 */
	}
#endif
#ifdef CONFIG_EXCEPTION_DEBUG
	dump_page_fault(esf);
#endif
#ifdef CONFIG_THREAD_STACK_INFO
	if (z_x86_check_stack_bounds(esf_get_sp(esf), 0, esf->cs)) {
		z_x86_fatal_error(K_ERR_STACK_CHK_FAIL, esf);
	}
#endif
	z_x86_fatal_error(K_ERR_CPU_EXCEPTION, esf);
	CODE_UNREACHABLE;
}

__pinned_func
void z_x86_do_kernel_oops(const z_arch_esf_t *esf)
{
	uintptr_t reason;

#ifdef CONFIG_X86_64
	reason = esf->rax;
#else
	uintptr_t *stack_ptr = (uintptr_t *)esf->esp;

	reason = *stack_ptr;
#endif

#ifdef CONFIG_USERSPACE
	/* User mode is only allowed to induce oopses and stack check
	 * failures via this software interrupt
	 */
	if ((esf->cs & 0x3) != 0 && !(reason == K_ERR_KERNEL_OOPS ||
				      reason == K_ERR_STACK_CHK_FAIL)) {
		reason = K_ERR_KERNEL_OOPS;
	}
#endif

	z_x86_fatal_error(reason, esf);
}