Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
/*
 * Copyright (c) 2018 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr/types.h>
#include <stddef.h>
#include <string.h>
#include <errno.h>
#include <net/net_pkt.h>
#include <net/net_if.h>
#include <net/net_ip.h>
#include <net/ethernet.h>
#include <random/rand32.h>

#include <ztest.h>

static uint8_t mac_addr[sizeof(struct net_eth_addr)];
static struct net_if *eth_if;
static uint8_t small_buffer[512];

/************************\
 * FAKE ETHERNET DEVICE *
\************************/

static void fake_dev_iface_init(struct net_if *iface)
{
	if (mac_addr[2] == 0U) {
		/* 00-00-5E-00-53-xx Documentation RFC 7042 */
		mac_addr[0] = 0x00;
		mac_addr[1] = 0x00;
		mac_addr[2] = 0x5E;
		mac_addr[3] = 0x00;
		mac_addr[4] = 0x53;
		mac_addr[5] = sys_rand32_get();
	}

	net_if_set_link_addr(iface, mac_addr, 6, NET_LINK_ETHERNET);

	eth_if = iface;
}

static int fake_dev_send(const struct device *dev, struct net_pkt *pkt)
{
	return 0;
}

int fake_dev_init(const struct device *dev)
{
	ARG_UNUSED(dev);

	return 0;
}

#if defined(CONFIG_NET_L2_ETHERNET)
static const struct ethernet_api fake_dev_api = {
	.iface_api.init = fake_dev_iface_init,
	.send = fake_dev_send,
};

#define _ETH_L2_LAYER ETHERNET_L2
#define _ETH_L2_CTX_TYPE NET_L2_GET_CTX_TYPE(ETHERNET_L2)
#define L2_HDR_SIZE sizeof(struct net_eth_hdr)
#else
static const struct dummy_api fake_dev_api = {
	.iface_api.init = fake_dev_iface_init,
	.send = fake_dev_send,
};

#define _ETH_L2_LAYER DUMMY_L2
#define _ETH_L2_CTX_TYPE NET_L2_GET_CTX_TYPE(DUMMY_L2)
#define L2_HDR_SIZE 0
#endif

NET_DEVICE_INIT(fake_dev, "fake_dev",
		fake_dev_init, NULL, NULL, NULL,
		CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
		&fake_dev_api, _ETH_L2_LAYER, _ETH_L2_CTX_TYPE,
		NET_ETH_MTU);

/*********************\
 * UTILITY FUNCTIONS *
\*********************/

static bool pkt_is_of_size(struct net_pkt *pkt, size_t size)
{
	return (net_pkt_available_buffer(pkt) == size);
}

static void pkt_print_cursor(struct net_pkt *pkt)
{
	if (!pkt || !pkt->cursor.buf || !pkt->cursor.pos) {
		printk("Unknown position\n");
	} else {
		printk("Position %zu (%p) in net_buf %p (data %p)\n",
		       pkt->cursor.pos - pkt->cursor.buf->data,
		       pkt->cursor.pos, pkt->cursor.buf,
		       pkt->cursor.buf->data);
	}
}


/*****************************\
 * HOW TO ALLOCATE - 2 TESTS *
\*****************************/

static void test_net_pkt_allocate_wo_buffer(void)
{
	struct net_pkt *pkt;

	/* How to allocate a packet, with no buffer */
	pkt = net_pkt_alloc(K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	/* Freeing the packet */
	net_pkt_unref(pkt);
	zassert_true(atomic_get(&pkt->atomic_ref) == 0,
		     "Pkt not properly unreferenced");

	/* Note that, if you already know the iface to which the packet
	 * belongs to, you will be able to use net_pkt_alloc_on_iface().
	 */
	pkt = net_pkt_alloc_on_iface(eth_if, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	net_pkt_unref(pkt);
	zassert_true(atomic_get(&pkt->atomic_ref) == 0,
		     "Pkt not properly unreferenced");
}

static void test_net_pkt_allocate_with_buffer(void)
{
	struct net_pkt *pkt;

	/* How to allocate a packet, with buffer
	 * a) - with a size that will fit MTU, let's say 512 bytes
	 * Note: we don't care of the family/protocol for now
	 */
	pkt = net_pkt_alloc_with_buffer(eth_if, 512,
					AF_UNSPEC, 0, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	/* Did we get the requested size? */
	zassert_true(pkt_is_of_size(pkt, 512), "Pkt size is not right");

	/* Freeing the packet */
	net_pkt_unref(pkt);
	zassert_true(atomic_get(&pkt->atomic_ref) == 0,
		     "Pkt not properly unreferenced");

	/*
	 * b) - with a size that will not fit MTU, let's say 1800 bytes
	 * Note: again we don't care of family/protocol for now.
	 */
	pkt = net_pkt_alloc_with_buffer(eth_if, 1800,
					AF_UNSPEC, 0, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	zassert_false(pkt_is_of_size(pkt, 1800), "Pkt size is not right");
	zassert_true(pkt_is_of_size(pkt, net_if_get_mtu(eth_if) + L2_HDR_SIZE),
		     "Pkt size is not right");

	/* Freeing the packet */
	net_pkt_unref(pkt);
	zassert_true(atomic_get(&pkt->atomic_ref) == 0,
		     "Pkt not properly unreferenced");

	/*
	 * c) - Now with 512 bytes but on IPv4/UDP
	 */
	pkt = net_pkt_alloc_with_buffer(eth_if, 512, AF_INET,
					IPPROTO_UDP, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	/* Because 512 + NET_IPV4UDPH_LEN fits MTU, total must be that one */
	zassert_true(pkt_is_of_size(pkt, 512 + NET_IPV4UDPH_LEN),
		     "Pkt overall size does not match");

	/* Freeing the packet */
	net_pkt_unref(pkt);
	zassert_true(atomic_get(&pkt->atomic_ref) == 0,
		     "Pkt not properly unreferenced");

	/*
	 * c) - Now with 1800 bytes but on IPv4/UDP
	 */
	pkt = net_pkt_alloc_with_buffer(eth_if, 1800, AF_INET,
					IPPROTO_UDP, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	/* Because 1800 + NET_IPV4UDPH_LEN won't fit MTU, payload size
	 * should be MTU
	 */
	zassert_true(net_pkt_available_buffer(pkt) ==
		     net_if_get_mtu(eth_if),
		     "Payload buf size does not match for ipv4/udp");

	/* Freeing the packet */
	net_pkt_unref(pkt);
	zassert_true(atomic_get(&pkt->atomic_ref) == 0,
		     "Pkt not properly unreferenced");
}

/********************************\
 * HOW TO R/W A PACKET -  TESTS *
\********************************/

static void test_net_pkt_basics_of_rw(void)
{
	struct net_pkt_cursor backup;
	struct net_pkt *pkt;
	uint16_t value16;
	int ret;

	pkt = net_pkt_alloc_with_buffer(eth_if, 512,
					AF_UNSPEC, 0, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	/* Once newly allocated with buffer,
	 * a packet has no data accounted for in its buffer
	 */
	zassert_true(net_pkt_get_len(pkt) == 0,
		     "Pkt initial length should be 0");

	/* This is done through net_buf which can distinguish
	 * the size of a buffer from the length of the data in it.
	 */

	/* Let's subsequently write 1 byte, then 2 bytes and 4 bytes
	 * We write values made of 0s
	 */
	ret = net_pkt_write_u8(pkt, 0);
	zassert_true(ret == 0, "Pkt write failed");

	/* Length should be 1 now */
	zassert_true(net_pkt_get_len(pkt) == 1, "Pkt length mismatch");

	ret = net_pkt_write_be16(pkt, 0);
	zassert_true(ret == 0, "Pkt write failed");

	/* Length should be 3 now */
	zassert_true(net_pkt_get_len(pkt) == 3, "Pkt length mismatch");

	/* Verify that the data is properly written to net_buf */
	net_pkt_cursor_backup(pkt, &backup);
	net_pkt_cursor_init(pkt);
	net_pkt_set_overwrite(pkt, true);
	net_pkt_skip(pkt, 1);
	net_pkt_read_be16(pkt, &value16);
	zassert_equal(value16, 0, "Invalid value %d read, expected %d",
		      value16, 0);

	/* Then write new value, overwriting the old one */
	net_pkt_cursor_init(pkt);
	net_pkt_skip(pkt, 1);
	ret = net_pkt_write_be16(pkt, 42);
	zassert_true(ret == 0, "Pkt write failed");

	/* And re-read the value again */
	net_pkt_cursor_init(pkt);
	net_pkt_skip(pkt, 1);
	ret = net_pkt_read_be16(pkt, &value16);
	zassert_true(ret == 0, "Pkt read failed");
	zassert_equal(value16, 42, "Invalid value %d read, expected %d",
		      value16, 42);

	net_pkt_set_overwrite(pkt, false);
	net_pkt_cursor_restore(pkt, &backup);

	ret = net_pkt_write_be32(pkt, 0);
	zassert_true(ret == 0, "Pkt write failed");

	/* Length should be 7 now */
	zassert_true(net_pkt_get_len(pkt) == 7, "Pkt length mismatch");

	/* All these writing functions use net_ptk_write(), which works
	 * this way:
	 */
	ret = net_pkt_write(pkt, small_buffer, 9);
	zassert_true(ret == 0, "Pkt write failed");

	/* Length should be 16 now */
	zassert_true(net_pkt_get_len(pkt) == 16, "Pkt length mismatch");

	/* Now let's say you want to memset some data */
	ret = net_pkt_memset(pkt, 0, 4);
	zassert_true(ret == 0, "Pkt memset failed");

	/* Length should be 20 now */
	zassert_true(net_pkt_get_len(pkt) == 20, "Pkt length mismatch");

	/* So memset affects the length exactly as write does */

	/* Sometimes you might want to advance in the buffer without caring
	 * what's written there since you'll eventually come back for that.
	 * net_pkt_skip() is used for it.
	 * Note: usually you will not have to use that function a lot yourself.
	 */
	ret = net_pkt_skip(pkt, 20);
	zassert_true(ret == 0, "Pkt skip failed");

	/* Length should be 40 now */
	zassert_true(net_pkt_get_len(pkt) == 40, "Pkt length mismatch");

	/* Again, skip affected the length also, like a write
	 * But wait a minute: how to get back then, in order to write at
	 * the position we just skipped?
	 *
	 * So let's introduce the concept of buffer cursor. (which could
	 * be named 'cursor' if such name has more relevancy. Basically, each
	 * net_pkt embeds such 'cursor': it's like a head of a tape
	 * recorder/reader, it holds the current position in the buffer where
	 * you can r/w. All operations use and update it below.
	 * There is, however, a catch: buffer is described through net_buf
	 * and these are like a simple linked-list.
	 * Which means that unlike a tape recorder/reader: you are not
	 * able to go backward. Only back from starting point and forward.
	 * Thus why there is a net_pkt_cursor_init(pkt) which will let you going
	 * back from the start. We could hold more info in order to avoid that,
	 * but that would mean growing each an every net_buf.
	 */
	net_pkt_cursor_init(pkt);

	/* But isn't it so that if I want to go at the previous position I
	 * skipped, I'll use skip again but then won't it affect again the
	 * length?
	 * Answer is yes. Hopefully there is a mean to avoid that. Basically
	 * for data that already "exists" in the buffer (aka: data accounted
	 * for in the buffer, through the length) you'll need to set the packet
	 * to overwrite: all subsequent operations will then work on existing
	 * data and will not affect the length (it won't add more data)
	 */
	net_pkt_set_overwrite(pkt, true);

	zassert_true(net_pkt_is_being_overwritten(pkt),
		     "Pkt is not set to overwrite");

	/* Ok so previous skipped position was at offset 20 */
	ret = net_pkt_skip(pkt, 20);
	zassert_true(ret == 0, "Pkt skip failed");

	/* Length should _still_ be 40 */
	zassert_true(net_pkt_get_len(pkt) == 40, "Pkt length mismatch");

	/* And you can write stuff */
	ret = net_pkt_write_le32(pkt, 0);
	zassert_true(ret == 0, "Pkt write failed");

	/* Again, length should _still_ be 40 */
	zassert_true(net_pkt_get_len(pkt) == 40, "Pkt length mismatch");

	/* Let's memset the rest */
	ret = net_pkt_memset(pkt, 0, 16);
	zassert_true(ret == 0, "Pkt memset failed");

	/* Again, length should _still_ be 40 */
	zassert_true(net_pkt_get_len(pkt) == 40, "Pkt length mismatch");

	/* We are now back at the end of the existing data in the buffer
	 * Since overwrite is still on, we should not be able to r/w
	 * anything.
	 * This is completely nominal, as being set, overwrite allows r/w only
	 * on existing data in the buffer:
	 */
	ret = net_pkt_write_be32(pkt, 0);
	zassert_true(ret != 0, "Pkt write succeeded where it shouldn't have");

	/* Logically, in order to be able to add new data in the buffer,
	 * overwrite should be disabled:
	 */
	net_pkt_set_overwrite(pkt, false);

	/* But it will fail: */
	ret = net_pkt_write_le32(pkt, 0);
	zassert_true(ret != 0, "Pkt write succeeded?");

	/* Why is that?
	 * This is because in case of r/w error: the iterator is invalidated.
	 * This a design choice, once you get a r/w error it means your code
	 * messed up requesting smaller buffer than you actually needed, or
	 * writing too much data than it should have been etc...).
	 * So you must drop your packet entirely.
	 */

	/* Freeing the packet */
	net_pkt_unref(pkt);
	zassert_true(atomic_get(&pkt->atomic_ref) == 0,
		     "Pkt not properly unreferenced");
}

void test_net_pkt_advanced_basics(void)
{
	struct net_pkt_cursor backup;
	struct net_pkt *pkt;
	int ret;

	pkt = net_pkt_alloc_with_buffer(eth_if, 512,
					AF_INET, IPPROTO_UDP, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	pkt_print_cursor(pkt);

	/* As stated earlier, initializing the cursor, is the way to go
	 * back from the start in the buffer (either header or payload then).
	 * We also showed that using net_pkt_skip() could be used to move
	 * forward in the buffer.
	 * But what if you are far in the buffer, you need to go backward,
	 * and back again to your previous position?
	 * You could certainly do:
	 */
	ret = net_pkt_write(pkt, small_buffer, 20);
	zassert_true(ret == 0, "Pkt write failed");

	pkt_print_cursor(pkt);

	net_pkt_cursor_init(pkt);

	pkt_print_cursor(pkt);

	/* ... do something here ... */

	/* And finally go back with overwrite/skip: */
	net_pkt_set_overwrite(pkt, true);
	ret = net_pkt_skip(pkt, 20);
	zassert_true(ret == 0, "Pkt skip failed");
	net_pkt_set_overwrite(pkt, false);

	pkt_print_cursor(pkt);

	/* In this example, do not focus on the 20 bytes. It is just for
	 * the sake of the example.
	 * The other method is backup/restore the packet cursor.
	 */
	net_pkt_cursor_backup(pkt, &backup);

	net_pkt_cursor_init(pkt);

	/* ... do something here ... */

	/* and restore: */
	net_pkt_cursor_restore(pkt, &backup);

	pkt_print_cursor(pkt);

	/* Another feature, is how you access your data. Earlier was
	 * presented basic r/w functions. But sometime you might want to
	 * access your data directly through a structure/type etc...
	 * Due to the "fragmented" possible nature of your buffer, you
	 * need to know if the data you are trying to access is in
	 * contiguous area.
	 * For this, you'll use:
	 */
	ret = (int) net_pkt_is_contiguous(pkt, 4);
	zassert_true(ret == 1, "Pkt contiguity check failed");

	/* If that's successful you should be able to get the actual
	 * position in the buffer and cast it to the type you want.
	 */
	{
		uint32_t *val = (uint32_t *)net_pkt_cursor_get_pos(pkt);

		*val = 0U;
		/* etc... */
	}

	/* However, to advance your cursor, since none of the usual r/w
	 * functions got used: net_pkt_skip() should be called relevantly:
	 */
	net_pkt_skip(pkt, 4);

	/* Freeing the packet */
	net_pkt_unref(pkt);
	zassert_true(atomic_get(&pkt->atomic_ref) == 0,
		     "Pkt not properly unreferenced");

	/* Obviously one will very rarely use these 2 last low level functions
	 * - net_pkt_is_contiguous()
	 * - net_pkt_cursor_update()
	 *
	 * Let's see why next.
	 */
}

void test_net_pkt_easier_rw_usage(void)
{
	struct net_pkt *pkt;
	int ret;

	pkt = net_pkt_alloc_with_buffer(eth_if, 512,
					AF_INET, IPPROTO_UDP, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	/* In net core, all goes down in fine to header manipulation.
	 * Either it's an IP header, UDP, ICMP, TCP one etc...
	 * One would then prefer to access those directly via there
	 * descriptors (struct net_udp_hdr, struct net_icmp_hdr, ...)
	 * rather than building it byte by bytes etc...
	 *
	 * As seen earlier, it is possible to cast on current position.
	 * However, due to the "fragmented" possible nature of the buffer,
	 * it should also be possible to handle the case the data being
	 * accessed is scattered on 1+ net_buf.
	 *
	 * To avoid redoing the contiguity check, cast or copy on failure,
	 * a complex type named struct net_pkt_header_access exists.
	 * It solves both cases (accessing data contiguous or not), without
	 * the need for runtime allocation (all is on stack)
	 */
	{
		NET_PKT_DATA_ACCESS_DEFINE(ip_access, struct net_ipv4_hdr);
		struct net_ipv4_hdr *ip_hdr;

		ip_hdr = (struct net_ipv4_hdr *)
			net_pkt_get_data(pkt, &ip_access);
		zassert_not_null(ip_hdr, "Accessor failed");

		ip_hdr->tos = 0x00;

		ret = net_pkt_set_data(pkt, &ip_access);
		zassert_true(ret == 0, "Accessor failed");

		zassert_true(net_pkt_get_len(pkt) == NET_IPV4H_LEN,
			     "Pkt length mismatch");
	}

	/* As you can notice: get/set take also care of handling the cursor
	 * and updating the packet length relevantly thus why packet length
	 * has properly grown.
	 */

	/* Freeing the packet */
	net_pkt_unref(pkt);
	zassert_true(atomic_get(&pkt->atomic_ref) == 0,
		     "Pkt not properly unreferenced");
}

uint8_t b5_data[10] = "qrstuvwxyz";
struct net_buf b5 = {
	.ref   = 1,
	.data  = b5_data,
	.len   = 0,
	.size  = 0,
	.__buf  = b5_data,
};

uint8_t b4_data[4] = "mnop";
struct net_buf b4 = {
	.frags = &b5,
	.ref   = 1,
	.data  = b4_data,
	.len   = sizeof(b4_data) - 2,
	.size  = sizeof(b4_data),
	.__buf  = b4_data,
};

struct net_buf b3 = {
	.frags = &b4,
	.ref   = 1,
	.data  = NULL,
	.__buf  = NULL,
};

uint8_t b2_data[8] = "efghijkl";
struct net_buf b2 = {
	.frags = &b3,
	.ref   = 1,
	.data  = b2_data,
	.len   = 0,
	.size  = sizeof(b2_data),
	.__buf  = b2_data,
};

uint8_t b1_data[4] = "abcd";
struct net_buf b1 = {
	.frags = &b2,
	.ref   = 1,
	.data  = b1_data,
	.len   = sizeof(b1_data) - 2,
	.size  = sizeof(b1_data),
	.__buf  = b1_data,
};

void test_net_pkt_copy(void)
{
	struct net_pkt *pkt_src;
	struct net_pkt *pkt_dst;

	pkt_src = net_pkt_alloc_on_iface(eth_if, K_NO_WAIT);
	zassert_true(pkt_src != NULL, "Pkt not allocated");

	pkt_print_cursor(pkt_src);

	/* Let's append the buffers */
	net_pkt_append_buffer(pkt_src, &b1);

	net_pkt_set_overwrite(pkt_src, true);

	/* There should be some space left */
	zassert_true(net_pkt_available_buffer(pkt_src) != 0, "No space left?");
	/* Length should be 4 */
	zassert_true(net_pkt_get_len(pkt_src) == 4, "Wrong length");

	/* Actual space left is 12 (in b1, b2 and b4) */
	zassert_true(net_pkt_available_buffer(pkt_src) == 12,
		     "Wrong space left?");

	pkt_print_cursor(pkt_src);

	/* Now let's clone the pkt
	 * This will test net_pkt_copy_new() as it uses it for the buffers
	 */
	pkt_dst = net_pkt_clone(pkt_src, K_NO_WAIT);
	zassert_true(pkt_dst != NULL, "Pkt not clone");

	/* Cloning does not take into account left space,
	 * but only occupied one
	 */
	zassert_true(net_pkt_available_buffer(pkt_dst) == 0, "Space left");
	zassert_true(net_pkt_get_len(pkt_src) == net_pkt_get_len(pkt_dst),
		     "Not same amount?");

	/* It also did not care to copy the net_buf itself, only the content
	 * so, knowing that the base buffer size is bigger than necessary,
	 * pkt_dst has only one net_buf
	 */
	zassert_true(pkt_dst->buffer->frags == NULL, "Not only one buffer?");

	/* Freeing the packet */
	pkt_src->buffer = NULL;
	net_pkt_unref(pkt_src);
	zassert_true(atomic_get(&pkt_src->atomic_ref) == 0,
		     "Pkt not properly unreferenced");
	net_pkt_unref(pkt_dst);
	zassert_true(atomic_get(&pkt_dst->atomic_ref) == 0,
		     "Pkt not properly unreferenced");
}

#define PULL_TEST_PKT_DATA_SIZE 600

void test_net_pkt_pull(void)
{
	const int PULL_AMOUNT = 8;
	const int LARGE_PULL_AMOUNT = 200;
	struct net_pkt *dummy_pkt;
	static uint8_t pkt_data[PULL_TEST_PKT_DATA_SIZE];
	static uint8_t pkt_data_readback[PULL_TEST_PKT_DATA_SIZE];
	size_t len;
	int i, ret;

	for (i = 0; i < PULL_TEST_PKT_DATA_SIZE; ++i) {
		pkt_data[i] = i & 0xff;
	}

	dummy_pkt = net_pkt_alloc_with_buffer(eth_if,
					      PULL_TEST_PKT_DATA_SIZE,
					      AF_UNSPEC,
					      0,
					      K_NO_WAIT);
	zassert_true(dummy_pkt != NULL, "Pkt not allocated");

	zassert_true(net_pkt_write(dummy_pkt,
				   pkt_data,
				   PULL_TEST_PKT_DATA_SIZE) == 0,
		     "Write packet failed");

	net_pkt_cursor_init(dummy_pkt);
	net_pkt_pull(dummy_pkt, PULL_AMOUNT);
	zassert_equal(net_pkt_get_len(dummy_pkt),
		      PULL_TEST_PKT_DATA_SIZE - PULL_AMOUNT,
		      "Pull failed to set new size");
	zassert_true(net_pkt_read(dummy_pkt,
				  pkt_data_readback,
				  PULL_TEST_PKT_DATA_SIZE - PULL_AMOUNT) == 0,
		     "Read packet failed");
	zassert_mem_equal(pkt_data_readback,
			  &pkt_data[PULL_AMOUNT],
			  PULL_TEST_PKT_DATA_SIZE - PULL_AMOUNT,
			  "Packet data changed");

	net_pkt_cursor_init(dummy_pkt);
	net_pkt_pull(dummy_pkt, LARGE_PULL_AMOUNT);
	zassert_equal(net_pkt_get_len(dummy_pkt),
		      PULL_TEST_PKT_DATA_SIZE - PULL_AMOUNT -
		      LARGE_PULL_AMOUNT,
		      "Large pull failed to set new size (%d vs %d)",
		      net_pkt_get_len(dummy_pkt),
		      PULL_TEST_PKT_DATA_SIZE - PULL_AMOUNT -
		      LARGE_PULL_AMOUNT);

	net_pkt_cursor_init(dummy_pkt);
	net_pkt_pull(dummy_pkt, net_pkt_get_len(dummy_pkt));
	zassert_equal(net_pkt_get_len(dummy_pkt), 0,
		      "Full pull failed to set new size (%d)",
		      net_pkt_get_len(dummy_pkt));

	net_pkt_cursor_init(dummy_pkt);
	ret = net_pkt_pull(dummy_pkt, 1);
	zassert_equal(ret, -ENOBUFS, "Did not return error");
	zassert_equal(net_pkt_get_len(dummy_pkt), 0,
		      "Empty pull set new size (%d)",
		      net_pkt_get_len(dummy_pkt));

	net_pkt_unref(dummy_pkt);

	dummy_pkt = net_pkt_alloc_with_buffer(eth_if,
					      PULL_TEST_PKT_DATA_SIZE,
					      AF_UNSPEC,
					      0,
					      K_NO_WAIT);
	zassert_true(dummy_pkt != NULL, "Pkt not allocated");

	zassert_true(net_pkt_write(dummy_pkt,
				   pkt_data,
				   PULL_TEST_PKT_DATA_SIZE) == 0,
		     "Write packet failed");

	net_pkt_cursor_init(dummy_pkt);
	ret = net_pkt_pull(dummy_pkt, net_pkt_get_len(dummy_pkt) + 1);
	zassert_equal(ret, -ENOBUFS, "Did not return error");
	zassert_equal(net_pkt_get_len(dummy_pkt), 0,
		      "Not empty after full pull (%d)",
		      net_pkt_get_len(dummy_pkt));

	net_pkt_unref(dummy_pkt);

	dummy_pkt = net_pkt_alloc_with_buffer(eth_if,
					      PULL_TEST_PKT_DATA_SIZE,
					      AF_UNSPEC,
					      0,
					      K_NO_WAIT);
	zassert_true(dummy_pkt != NULL, "Pkt not allocated");

	zassert_true(net_pkt_write(dummy_pkt,
				   pkt_data,
				   PULL_TEST_PKT_DATA_SIZE) == 0,
		     "Write packet failed");

	net_pkt_cursor_init(dummy_pkt);
	len = net_pkt_get_len(dummy_pkt);

	for (i = 0; i < len; i++) {
		ret = net_pkt_pull(dummy_pkt, 1);
		zassert_equal(ret, 0, "Did return error");
	}

	ret = net_pkt_pull(dummy_pkt, 1);
	zassert_equal(ret, -ENOBUFS, "Did not return error");

	zassert_equal(dummy_pkt->buffer, NULL, "buffer list not empty");

	net_pkt_unref(dummy_pkt);
}

void test_net_pkt_clone(void)
{
	uint8_t buf[26] = {"abcdefghijklmnopqrstuvwxyz"};
	struct net_pkt *pkt;
	struct net_pkt *cloned_pkt;
	int ret;

	pkt = net_pkt_alloc_with_buffer(eth_if, 64,
					AF_UNSPEC, 0, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	ret = net_pkt_write(pkt, buf, sizeof(buf));
	zassert_true(ret == 0, "Pkt write failed");

	zassert_true(net_pkt_get_len(pkt) == sizeof(buf),
		     "Pkt length mismatch");

	net_pkt_cursor_init(pkt);
	net_pkt_set_overwrite(pkt, true);
	net_pkt_skip(pkt, 6);
	zassert_true(sizeof(buf) - 6 == net_pkt_remaining_data(pkt),
		     "Pkt remaining data mismatch");

	cloned_pkt = net_pkt_clone(pkt, K_NO_WAIT);
	zassert_true(cloned_pkt != NULL, "Pkt not cloned");

	zassert_true(net_pkt_get_len(cloned_pkt) == sizeof(buf),
		     "Cloned pkt length mismatch");

	zassert_true(sizeof(buf) - 6 == net_pkt_remaining_data(pkt),
		     "Pkt remaining data mismatch");

	zassert_true(sizeof(buf) - 6 == net_pkt_remaining_data(cloned_pkt),
		     "Cloned pkt remaining data mismatch");

	net_pkt_unref(pkt);
	net_pkt_unref(cloned_pkt);
}

NET_BUF_POOL_FIXED_DEFINE(test_net_pkt_headroom_pool, 4, 2, NULL);
void test_net_pkt_headroom(void)
{
	struct net_pkt *pkt;
	struct net_buf *frag1;
	struct net_buf *frag2;
	struct net_buf *frag3;
	struct net_buf *frag4;

	/*
	 * Create a net_pkt; append net_bufs with reserved bytes (headroom).
	 *
	 * Layout to be crafted before writing to the net_buf: "HA|HH|HA|AA"
	 *  H: Headroom
	 *  |: net_buf/fragment delimiter
	 *  A: available byte
	 */
	pkt = net_pkt_alloc_on_iface(eth_if, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	/* 1st fragment has 1 byte headroom and one byte available: "HA" */
	frag1 = net_buf_alloc_len(&test_net_pkt_headroom_pool, 2, K_NO_WAIT);
	net_buf_reserve(frag1, 1);
	net_pkt_append_buffer(pkt, frag1);
	zassert_equal(net_pkt_available_buffer(pkt), 1, "Wrong space left");
	zassert_equal(net_pkt_get_len(pkt), 0, "Length mismatch");

	/* 2nd fragment affecting neither size nor length: "HH" */
	frag2 = net_buf_alloc_len(&test_net_pkt_headroom_pool, 2, K_NO_WAIT);
	net_buf_reserve(frag2, 2);
	net_pkt_append_buffer(pkt, frag2);
	zassert_equal(net_pkt_available_buffer(pkt), 1, "Wrong space left");
	zassert_equal(net_pkt_get_len(pkt), 0, "Length mismatch");

	/* 3rd fragment has 1 byte headroom and one byte available: "HA" */
	frag3 = net_buf_alloc_len(&test_net_pkt_headroom_pool, 2, K_NO_WAIT);
	net_buf_reserve(frag3, 1);
	net_pkt_append_buffer(pkt, frag3);
	zassert_equal(net_pkt_available_buffer(pkt), 2, "Wrong space left");
	zassert_equal(net_pkt_get_len(pkt), 0, "Length mismatch");

	/* 4th fragment has no headroom and two available bytes: "AA" */
	frag4 = net_buf_alloc_len(&test_net_pkt_headroom_pool, 2, K_NO_WAIT);
	net_pkt_append_buffer(pkt, frag4);
	zassert_equal(net_pkt_available_buffer(pkt), 4, "Wrong space left");
	zassert_equal(net_pkt_get_len(pkt), 0, "Length mismatch");

	/* Writing net_pkt via cursor, spanning all 4 fragments */
	net_pkt_cursor_init(pkt);
	zassert_true(net_pkt_write(pkt, "1234", 4) == 0, "Pkt write failed");

	/* Expected layout across all four fragments: "H1|HH|H2|34" */
	zassert_equal(frag1->size, 2, "Size mismatch");
	zassert_equal(frag1->len, 1, "Length mismatch");
	zassert_equal(frag2->size, 2, "Size mismatch");
	zassert_equal(frag2->len, 0, "Length mismatch");
	zassert_equal(frag3->size, 2, "Size mismatch");
	zassert_equal(frag3->len, 1, "Length mismatch");
	zassert_equal(frag4->size, 2, "Size mismatch");
	zassert_equal(frag4->len, 2, "Length mismatch");
	net_pkt_cursor_init(pkt);
	zassert_true(net_pkt_read(pkt, small_buffer, 4) == 0, "Read failed");
	zassert_mem_equal(small_buffer, "1234", 4, "Data mismatch");

	/* Making use of the headrooms */
	net_buf_push_u8(frag3, 'D');
	net_buf_push_u8(frag2, 'C');
	net_buf_push_u8(frag2, 'B');
	net_buf_push_u8(frag1, 'A');
	net_pkt_cursor_init(pkt);
	zassert_true(net_pkt_read(pkt, small_buffer, 8) == 0, "Read failed");
	zassert_mem_equal(small_buffer, "A1BCD234", 8, "Data mismatch");

	net_pkt_unref(pkt);
}

NET_BUF_POOL_FIXED_DEFINE(test_net_pkt_headroom_copy_pool, 2, 4, NULL);
void test_net_pkt_headroom_copy(void)
{
	struct net_pkt *pkt_src;
	struct net_pkt *pkt_dst;
	struct net_buf *frag1_dst;
	struct net_buf *frag2_dst;

	/* Create et_pkt containing the bytes "0123" */
	pkt_src = net_pkt_alloc_with_buffer(eth_if, 4,
					AF_UNSPEC, 0, K_NO_WAIT);
	zassert_true(pkt_src != NULL, "Pkt not allocated");
	net_pkt_write(pkt_src, "0123", 4);

	/* Create net_pkt consisting of net_buf fragments with reserved bytes */
	pkt_dst = net_pkt_alloc_on_iface(eth_if, K_NO_WAIT);
	zassert_true(pkt_src != NULL, "Pkt not allocated");

	frag1_dst = net_buf_alloc_len(&test_net_pkt_headroom_copy_pool, 2,
				      K_NO_WAIT);
	net_buf_reserve(frag1_dst, 1);
	net_pkt_append_buffer(pkt_dst, frag1_dst);
	frag2_dst = net_buf_alloc_len(&test_net_pkt_headroom_copy_pool, 4,
				      K_NO_WAIT);
	net_buf_reserve(frag2_dst, 1);
	net_pkt_append_buffer(pkt_dst, frag2_dst);
	zassert_equal(net_pkt_available_buffer(pkt_dst), 4, "Wrong space left");
	zassert_equal(net_pkt_get_len(pkt_dst), 0, "Length missmatch");

	/* Copy to net_pkt which contains fragments with reserved bytes */
	net_pkt_cursor_init(pkt_src);
	net_pkt_cursor_init(pkt_dst);
	net_pkt_copy(pkt_dst, pkt_src, 4);
	zassert_equal(net_pkt_available_buffer(pkt_dst), 0, "Wrong space left");
	zassert_equal(net_pkt_get_len(pkt_dst), 4, "Length missmatch");

	net_pkt_cursor_init(pkt_dst);
	zassert_true(net_pkt_read(pkt_dst, small_buffer, 4) == 0,
		     "Pkt read failed");
	zassert_mem_equal(small_buffer, "0123", 4, "Data mismatch");

	net_pkt_unref(pkt_dst);
	net_pkt_unref(pkt_src);
}

static void test_net_pkt_get_contiguous_len(void)
{
	size_t cont_len;
	int res;
	/* Allocate pkt with 2 fragments */
	struct net_pkt *pkt = net_pkt_rx_alloc_with_buffer(
					   NULL, CONFIG_NET_BUF_DATA_SIZE * 2,
					   AF_UNSPEC, 0, K_NO_WAIT);

	zassert_not_null(pkt, "Pkt not allocated");

	net_pkt_cursor_init(pkt);

	cont_len = net_pkt_get_contiguous_len(pkt);
	zassert_equal(CONFIG_NET_BUF_DATA_SIZE, cont_len,
		      "Expected one complete available net_buf");

	net_pkt_set_overwrite(pkt, false);

	/* now write 3 byte into the pkt */
	for (int i = 0; i < 3; ++i) {
		res = net_pkt_write_u8(pkt, 0xAA);
		zassert_equal(0, res, "Write packet failed");
	}

	cont_len = net_pkt_get_contiguous_len(pkt);
	zassert_equal(CONFIG_NET_BUF_DATA_SIZE - 3, cont_len,
		      "Expected a three byte reduction");

	/* Fill the first fragment up until only 3 bytes are free */
	for (int i = 0; i < CONFIG_NET_BUF_DATA_SIZE - 6; ++i) {
		res = net_pkt_write_u8(pkt, 0xAA);
		zassert_equal(0, res, "Write packet failed");
	}

	cont_len = net_pkt_get_contiguous_len(pkt);
	zassert_equal(3, cont_len, "Expected only three bytes are available");

	/* Fill the complete first fragment, so the cursor points to the second
	 * fragment.
	 */
	for (int i = 0; i < 3; ++i) {
		res = net_pkt_write_u8(pkt, 0xAA);
		zassert_equal(0, res, "Write packet failed");
	}

	cont_len = net_pkt_get_contiguous_len(pkt);
	zassert_equal(CONFIG_NET_BUF_DATA_SIZE, cont_len,
		      "Expected next full net_buf is available");

	/* Fill the last fragment */
	for (int i = 0; i < CONFIG_NET_BUF_DATA_SIZE; ++i) {
		res = net_pkt_write_u8(pkt, 0xAA);
		zassert_equal(0, res, "Write packet failed");
	}

	cont_len = net_pkt_get_contiguous_len(pkt);
	zassert_equal(0, cont_len, "Expected no available space");

	net_pkt_unref(pkt);
}

void test_net_pkt_remove_tail(void)
{
	struct net_pkt *pkt;
	int err;

	pkt = net_pkt_alloc_with_buffer(NULL,
					CONFIG_NET_BUF_DATA_SIZE * 2 + 3,
					AF_UNSPEC, 0, K_NO_WAIT);
	zassert_true(pkt != NULL, "Pkt not allocated");

	net_pkt_cursor_init(pkt);
	net_pkt_write(pkt, small_buffer, CONFIG_NET_BUF_DATA_SIZE * 2 + 3);

	zassert_equal(net_pkt_get_len(pkt), CONFIG_NET_BUF_DATA_SIZE * 2 + 3,
		      "Pkt length is invalid");
	zassert_equal(pkt->frags->frags->frags->len, 3,
		      "3rd buffer length is invalid");

	/* Remove some bytes from last buffer */
	err = net_pkt_remove_tail(pkt, 2);
	zassert_equal(err, 0, "Failed to remove tail");

	zassert_equal(net_pkt_get_len(pkt), CONFIG_NET_BUF_DATA_SIZE * 2 + 1,
		      "Pkt length is invalid");
	zassert_not_equal(pkt->frags->frags->frags, NULL,
			  "3rd buffer was removed");
	zassert_equal(pkt->frags->frags->frags->len, 1,
		      "3rd buffer length is invalid");

	/* Remove last byte from last buffer */
	err = net_pkt_remove_tail(pkt, 1);
	zassert_equal(err, 0, "Failed to remove tail");

	zassert_equal(net_pkt_get_len(pkt), CONFIG_NET_BUF_DATA_SIZE * 2,
		      "Pkt length is invalid");
	zassert_equal(pkt->frags->frags->frags, NULL,
		      "3rd buffer was not removed");
	zassert_equal(pkt->frags->frags->len, CONFIG_NET_BUF_DATA_SIZE,
		      "2nd buffer length is invalid");

	/* Remove 2nd buffer and one byte from 1st buffer */
	err = net_pkt_remove_tail(pkt, CONFIG_NET_BUF_DATA_SIZE + 1);
	zassert_equal(err, 0, "Failed to remove tail");

	zassert_equal(net_pkt_get_len(pkt), CONFIG_NET_BUF_DATA_SIZE - 1,
		      "Pkt length is invalid");
	zassert_equal(pkt->frags->frags, NULL,
		      "2nd buffer was not removed");
	zassert_equal(pkt->frags->len, CONFIG_NET_BUF_DATA_SIZE - 1,
		      "1st buffer length is invalid");

	net_pkt_unref(pkt);

	pkt = net_pkt_rx_alloc_with_buffer(NULL,
					   CONFIG_NET_BUF_DATA_SIZE * 2 + 3,
					   AF_UNSPEC, 0, K_NO_WAIT);

	net_pkt_cursor_init(pkt);
	net_pkt_write(pkt, small_buffer, CONFIG_NET_BUF_DATA_SIZE * 2 + 3);

	zassert_equal(net_pkt_get_len(pkt), CONFIG_NET_BUF_DATA_SIZE * 2 + 3,
		      "Pkt length is invalid");
	zassert_equal(pkt->frags->frags->frags->len, 3,
		      "3rd buffer length is invalid");

	/* Remove bytes spanning 3 buffers */
	err = net_pkt_remove_tail(pkt, CONFIG_NET_BUF_DATA_SIZE + 5);
	zassert_equal(err, 0, "Failed to remove tail");

	zassert_equal(net_pkt_get_len(pkt), CONFIG_NET_BUF_DATA_SIZE - 2,
		      "Pkt length is invalid");
	zassert_equal(pkt->frags->frags, NULL,
		      "2nd buffer was not removed");
	zassert_equal(pkt->frags->len, CONFIG_NET_BUF_DATA_SIZE - 2,
		      "1st buffer length is invalid");

	/* Try to remove more bytes than packet has */
	err = net_pkt_remove_tail(pkt, CONFIG_NET_BUF_DATA_SIZE);
	zassert_equal(err, -EINVAL,
		      "Removing more bytes than available should fail");

	net_pkt_unref(pkt);
}

void test_main(void)
{
	eth_if = net_if_get_default();

	ztest_test_suite(net_pkt_tests,
			 ztest_unit_test(test_net_pkt_allocate_wo_buffer),
			 ztest_unit_test(test_net_pkt_allocate_with_buffer),
			 ztest_unit_test(test_net_pkt_basics_of_rw),
			 ztest_unit_test(test_net_pkt_advanced_basics),
			 ztest_unit_test(test_net_pkt_easier_rw_usage),
			 ztest_unit_test(test_net_pkt_copy),
			 ztest_unit_test(test_net_pkt_pull),
			 ztest_unit_test(test_net_pkt_clone),
			 ztest_unit_test(test_net_pkt_headroom),
			 ztest_unit_test(test_net_pkt_headroom_copy),
			 ztest_unit_test(test_net_pkt_get_contiguous_len),
			 ztest_unit_test(test_net_pkt_remove_tail)
		);

	ztest_run_test_suite(net_pkt_tests);
}