Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/*
 * Copyright (c) 2018 STMicroelectronics
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT st_stm32_i2s

#include <string.h>
#include <drivers/dma.h>
#include <drivers/i2s.h>
#include <drivers/dma/dma_stm32.h>
#include <soc.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_spi.h>
#include <drivers/clock_control/stm32_clock_control.h>
#include <drivers/clock_control.h>
#include <pinmux/pinmux_stm32.h>

#include "i2s_ll_stm32.h"
#include <logging/log.h>
LOG_MODULE_REGISTER(i2s_ll_stm32);

/* FIXME change to
 * #if __DCACHE_PRESENT == 1
 * when cache support is added
 */
#if 0
#define DCACHE_INVALIDATE(addr, size) \
	SCB_InvalidateDCache_by_Addr((uint32_t *)addr, size)
#define DCACHE_CLEAN(addr, size) \
	SCB_CleanDCache_by_Addr((uint32_t *)addr, size)
#else
#define DCACHE_INVALIDATE(addr, size) {; }
#define DCACHE_CLEAN(addr, size) {; }
#endif

#define MODULO_INC(val, max) { val = (++val < max) ? val : 0; }

static unsigned int div_round_closest(uint32_t dividend, uint32_t divisor)
{
	return (dividend + (divisor / 2U)) / divisor;
}

/*
 * Get data from the queue
 */
static int queue_get(struct ring_buf *rb, void **mem_block, size_t *size)
{
	unsigned int key;

	key = irq_lock();

	if (rb->tail == rb->head) {
		/* Ring buffer is empty */
		irq_unlock(key);
		return -ENOMEM;
	}

	*mem_block = rb->buf[rb->tail].mem_block;
	*size = rb->buf[rb->tail].size;
	MODULO_INC(rb->tail, rb->len);

	irq_unlock(key);

	return 0;
}

/*
 * Put data in the queue
 */
static int queue_put(struct ring_buf *rb, void *mem_block, size_t size)
{
	uint16_t head_next;
	unsigned int key;

	key = irq_lock();

	head_next = rb->head;
	MODULO_INC(head_next, rb->len);

	if (head_next == rb->tail) {
		/* Ring buffer is full */
		irq_unlock(key);
		return -ENOMEM;
	}

	rb->buf[rb->head].mem_block = mem_block;
	rb->buf[rb->head].size = size;
	rb->head = head_next;

	irq_unlock(key);

	return 0;
}

static int i2s_stm32_enable_clock(const struct device *dev)
{
	const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);
	const struct device *clk;
	int ret;

	clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);

	ret = clock_control_on(clk, (clock_control_subsys_t *) &cfg->pclken);
	if (ret != 0) {
		LOG_ERR("Could not enable I2S clock");
		return -EIO;
	}

	return 0;
}

#ifdef CONFIG_I2S_STM32_USE_PLLI2S_ENABLE
#define PLLI2S_MAX_MS_TIME	1 /* PLLI2S lock time is 300us max */
static uint16_t plli2s_ms_count;

#define z_pllr(v) LL_RCC_PLLI2SR_DIV_ ## v
#define pllr(v) z_pllr(v)
#endif

static int i2s_stm32_set_clock(const struct device *dev,
			       uint32_t bit_clk_freq)
{
	const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);
	uint32_t pll_src = LL_RCC_PLL_GetMainSource();
	int freq_in;
	uint8_t i2s_div, i2s_odd;

	freq_in = (pll_src == LL_RCC_PLLSOURCE_HSI) ?
		   HSI_VALUE : CONFIG_CLOCK_STM32_HSE_CLOCK;

#ifdef CONFIG_I2S_STM32_USE_PLLI2S_ENABLE
	/* Set PLLI2S */
	LL_RCC_PLLI2S_Disable();
	LL_RCC_PLLI2S_ConfigDomain_I2S(pll_src,
				       CONFIG_I2S_STM32_PLLI2S_PLLM,
				       CONFIG_I2S_STM32_PLLI2S_PLLN,
				       pllr(CONFIG_I2S_STM32_PLLI2S_PLLR));
	LL_RCC_PLLI2S_Enable();

	/* wait until PLLI2S gets locked */
	while (!LL_RCC_PLLI2S_IsReady()) {
		if (plli2s_ms_count++ > PLLI2S_MAX_MS_TIME) {
			return -EIO;
		}

		/* wait 1 ms */
		k_sleep(K_MSEC(1));
	}
	LOG_DBG("PLLI2S is locked");

	/* Adjust freq_in according to PLLM, PLLN, PLLR */
	float freq_tmp;

	freq_tmp = freq_in / CONFIG_I2S_STM32_PLLI2S_PLLM;
	freq_tmp *= CONFIG_I2S_STM32_PLLI2S_PLLN;
	freq_tmp /= CONFIG_I2S_STM32_PLLI2S_PLLR;
	freq_in = (int) freq_tmp;
#endif /* CONFIG_I2S_STM32_USE_PLLI2S_ENABLE */

	/* Select clock source */
	LL_RCC_SetI2SClockSource(cfg->i2s_clk_sel);

	/*
	 * The ratio between input clock (I2SxClk) and output
	 * clock on the pad (I2S_CK) is obtained using the
	 * following formula:
	 *   (i2s_div * 2) + i2s_odd
	 */
	i2s_div = div_round_closest(freq_in, bit_clk_freq);
	i2s_odd = (i2s_div & 0x1) ? 1 : 0;
	i2s_div >>= 1;

	LOG_DBG("i2s_div: %d - i2s_odd: %d", i2s_div, i2s_odd);

	LL_I2S_SetPrescalerLinear(cfg->i2s, i2s_div);
	LL_I2S_SetPrescalerParity(cfg->i2s, i2s_odd);

	return 0;
}

static int i2s_stm32_configure(const struct device *dev, enum i2s_dir dir,
			       const struct i2s_config *i2s_cfg)
{
	const struct i2s_stm32_cfg *const cfg = DEV_CFG(dev);
	struct i2s_stm32_data *const dev_data = DEV_DATA(dev);
	struct stream *stream;
	uint32_t bit_clk_freq;
	int ret;

	if (dir == I2S_DIR_RX) {
		stream = &dev_data->rx;
	} else if (dir == I2S_DIR_TX) {
		stream = &dev_data->tx;
	} else if (dir == I2S_DIR_BOTH) {
		return -ENOSYS;
	} else {
		LOG_ERR("Either RX or TX direction must be selected");
		return -EINVAL;
	}

	if (stream->state != I2S_STATE_NOT_READY &&
	    stream->state != I2S_STATE_READY) {
		LOG_ERR("invalid state");
		return -EINVAL;
	}

	stream->master = true;
	if (i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE ||
	    i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) {
		stream->master = false;
	}

	if (i2s_cfg->frame_clk_freq == 0U) {
		stream->queue_drop(stream);
		memset(&stream->cfg, 0, sizeof(struct i2s_config));
		stream->state = I2S_STATE_NOT_READY;
		return 0;
	}

	memcpy(&stream->cfg, i2s_cfg, sizeof(struct i2s_config));

	/* set I2S bitclock */
	bit_clk_freq = i2s_cfg->frame_clk_freq *
		       i2s_cfg->word_size * i2s_cfg->channels;

	ret = i2s_stm32_set_clock(dev, bit_clk_freq);
	if (ret < 0) {
		return ret;
	}

	/* set I2S Master Clock */
	if (stream->master) {
		LL_I2S_EnableMasterClock(cfg->i2s);
	} else {
		LL_I2S_DisableMasterClock(cfg->i2s);
	}

	/* set I2S Data Format */
	if (i2s_cfg->word_size == 16U) {
		LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_16B);
	} else if (i2s_cfg->word_size == 24U) {
		LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_24B);
	} else if (i2s_cfg->word_size == 32U) {
		LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_32B);
	} else {
		LOG_ERR("invalid word size");
		return -EINVAL;
	}

	/* set I2S Standard */
	switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) {
	case I2S_FMT_DATA_FORMAT_I2S:
		LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PHILIPS);
		break;

	case I2S_FMT_DATA_FORMAT_PCM_SHORT:
		LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PCM_SHORT);
		break;

	case I2S_FMT_DATA_FORMAT_PCM_LONG:
		LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PCM_LONG);
		break;

	case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED:
		LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_MSB);
		break;

	case I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED:
		LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_LSB);
		break;

	default:
		LOG_ERR("Unsupported I2S data format");
		return -EINVAL;
	}

	/* set I2S clock polarity */
	if ((i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) == I2S_FMT_BIT_CLK_INV)
		LL_I2S_SetClockPolarity(cfg->i2s, LL_I2S_POLARITY_HIGH);
	else
		LL_I2S_SetClockPolarity(cfg->i2s, LL_I2S_POLARITY_LOW);

	stream->state = I2S_STATE_READY;
	return 0;
}

static int i2s_stm32_trigger(const struct device *dev, enum i2s_dir dir,
			     enum i2s_trigger_cmd cmd)
{
	struct i2s_stm32_data *const dev_data = DEV_DATA(dev);
	struct stream *stream;
	unsigned int key;
	int ret;

	if (dir == I2S_DIR_RX) {
		stream = &dev_data->rx;
	} else if (dir == I2S_DIR_TX) {
		stream = &dev_data->tx;
	} else if (dir == I2S_DIR_BOTH) {
		return -ENOSYS;
	} else {
		LOG_ERR("Either RX or TX direction must be selected");
		return -EINVAL;
	}

	switch (cmd) {
	case I2S_TRIGGER_START:
		if (stream->state != I2S_STATE_READY) {
			LOG_ERR("START trigger: invalid state %d",
				    stream->state);
			return -EIO;
		}

		__ASSERT_NO_MSG(stream->mem_block == NULL);

		ret = stream->stream_start(stream, dev);
		if (ret < 0) {
			LOG_ERR("START trigger failed %d", ret);
			return ret;
		}

		stream->state = I2S_STATE_RUNNING;
		stream->last_block = false;
		break;

	case I2S_TRIGGER_STOP:
		key = irq_lock();
		if (stream->state != I2S_STATE_RUNNING) {
			irq_unlock(key);
			LOG_ERR("STOP trigger: invalid state");
			return -EIO;
		}
		irq_unlock(key);
		stream->stream_disable(stream, dev);
		stream->queue_drop(stream);
		stream->state = I2S_STATE_READY;
		stream->last_block = true;
		break;

	case I2S_TRIGGER_DRAIN:
		key = irq_lock();
		if (stream->state != I2S_STATE_RUNNING) {
			irq_unlock(key);
			LOG_ERR("DRAIN trigger: invalid state");
			return -EIO;
		}
		stream->stream_disable(stream, dev);
		stream->queue_drop(stream);
		stream->state = I2S_STATE_READY;
		irq_unlock(key);
		break;

	case I2S_TRIGGER_DROP:
		if (stream->state == I2S_STATE_NOT_READY) {
			LOG_ERR("DROP trigger: invalid state");
			return -EIO;
		}
		stream->stream_disable(stream, dev);
		stream->queue_drop(stream);
		stream->state = I2S_STATE_READY;
		break;

	case I2S_TRIGGER_PREPARE:
		if (stream->state != I2S_STATE_ERROR) {
			LOG_ERR("PREPARE trigger: invalid state");
			return -EIO;
		}
		stream->state = I2S_STATE_READY;
		stream->queue_drop(stream);
		break;

	default:
		LOG_ERR("Unsupported trigger command");
		return -EINVAL;
	}

	return 0;
}

static int i2s_stm32_read(const struct device *dev, void **mem_block,
			  size_t *size)
{
	struct i2s_stm32_data *const dev_data = DEV_DATA(dev);
	int ret;

	if (dev_data->rx.state == I2S_STATE_NOT_READY) {
		LOG_DBG("invalid state");
		return -EIO;
	}

	if (dev_data->rx.state != I2S_STATE_ERROR) {
		ret = k_sem_take(&dev_data->rx.sem,
				 SYS_TIMEOUT_MS(dev_data->rx.cfg.timeout));
		if (ret < 0) {
			return ret;
		}
	}

	/* Get data from the beginning of RX queue */
	ret = queue_get(&dev_data->rx.mem_block_queue, mem_block, size);
	if (ret < 0) {
		return -EIO;
	}

	return 0;
}

static int i2s_stm32_write(const struct device *dev, void *mem_block,
			   size_t size)
{
	struct i2s_stm32_data *const dev_data = DEV_DATA(dev);
	int ret;

	if (dev_data->tx.state != I2S_STATE_RUNNING &&
	    dev_data->tx.state != I2S_STATE_READY) {
		LOG_DBG("invalid state");
		return -EIO;
	}

	ret = k_sem_take(&dev_data->tx.sem,
			 SYS_TIMEOUT_MS(dev_data->tx.cfg.timeout));
	if (ret < 0) {
		return ret;
	}

	/* Add data to the end of the TX queue */
	queue_put(&dev_data->tx.mem_block_queue, mem_block, size);

	return 0;
}

static const struct i2s_driver_api i2s_stm32_driver_api = {
	.configure = i2s_stm32_configure,
	.read = i2s_stm32_read,
	.write = i2s_stm32_write,
	.trigger = i2s_stm32_trigger,
};

#define STM32_DMA_NUM_CHANNELS		8
static const struct device *active_dma_rx_channel[STM32_DMA_NUM_CHANNELS];
static const struct device *active_dma_tx_channel[STM32_DMA_NUM_CHANNELS];

static int reload_dma(const struct device *dev_dma, uint32_t channel,
		      struct dma_config *dcfg, void *src, void *dst,
		      uint32_t blk_size)
{
	int ret;

	ret = dma_reload(dev_dma, channel, (uint32_t)src, (uint32_t)dst, blk_size);
	if (ret < 0) {
		return ret;
	}

	ret = dma_start(dev_dma, channel);

	return ret;
}

static int start_dma(const struct device *dev_dma, uint32_t channel,
		     struct dma_config *dcfg, void *src,
		     bool src_addr_increment, void *dst,
		     bool dst_addr_increment, uint8_t fifo_threshold,
		     uint32_t blk_size)
{
	struct dma_block_config blk_cfg;
	int ret;

	memset(&blk_cfg, 0, sizeof(blk_cfg));
	blk_cfg.block_size = blk_size;
	blk_cfg.source_address = (uint32_t)src;
	blk_cfg.dest_address = (uint32_t)dst;
	if (src_addr_increment) {
		blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
	} else {
		blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
	}
	if (dst_addr_increment) {
		blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
	} else {
		blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
	}
	blk_cfg.fifo_mode_control = fifo_threshold;

	dcfg->head_block = &blk_cfg;

	ret = dma_config(dev_dma, channel, dcfg);
	if (ret < 0) {
		return ret;
	}

	ret = dma_start(dev_dma, channel);

	return ret;
}

static const struct device *get_dev_from_rx_dma_channel(uint32_t dma_channel);
static const struct device *get_dev_from_tx_dma_channel(uint32_t dma_channel);
static void rx_stream_disable(struct stream *stream, const struct device *dev);
static void tx_stream_disable(struct stream *stream, const struct device *dev);

/* This function is executed in the interrupt context */
static void dma_rx_callback(const struct device *dma_dev, void *arg,
			    uint32_t channel, int status)
{
	const struct device *dev = get_dev_from_rx_dma_channel(channel);
	const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);
	struct i2s_stm32_data *const dev_data = DEV_DATA(dev);
	struct stream *stream = &dev_data->rx;
	void *mblk_tmp;
	int ret;

	if (status != 0) {
		ret = -EIO;
		stream->state = I2S_STATE_ERROR;
		goto rx_disable;
	}

	__ASSERT_NO_MSG(stream->mem_block != NULL);

	/* Stop reception if there was an error */
	if (stream->state == I2S_STATE_ERROR) {
		goto rx_disable;
	}

	mblk_tmp = stream->mem_block;

	/* Prepare to receive the next data block */
	ret = k_mem_slab_alloc(stream->cfg.mem_slab, &stream->mem_block,
			       K_NO_WAIT);
	if (ret < 0) {
		stream->state = I2S_STATE_ERROR;
		goto rx_disable;
	}

	ret = reload_dma(stream->dev_dma, stream->dma_channel,
			&stream->dma_cfg,
			(void *)LL_SPI_DMA_GetRegAddr(cfg->i2s),
			stream->mem_block,
			stream->cfg.block_size);
	if (ret < 0) {
		LOG_DBG("Failed to start RX DMA transfer: %d", ret);
		goto rx_disable;
	}

	/* Assure cache coherency after DMA write operation */
	DCACHE_INVALIDATE(mblk_tmp, stream->cfg.block_size);

	/* All block data received */
	ret = queue_put(&stream->mem_block_queue, mblk_tmp,
			stream->cfg.block_size);
	if (ret < 0) {
		stream->state = I2S_STATE_ERROR;
		goto rx_disable;
	}
	k_sem_give(&stream->sem);

	/* Stop reception if we were requested */
	if (stream->state == I2S_STATE_STOPPING) {
		stream->state = I2S_STATE_READY;
		goto rx_disable;
	}

	return;

rx_disable:
	rx_stream_disable(stream, dev);
}

static void dma_tx_callback(const struct device *dma_dev, void *arg,
			    uint32_t channel, int status)
{
	const struct device *dev = get_dev_from_tx_dma_channel(channel);
	const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);
	struct i2s_stm32_data *const dev_data = DEV_DATA(dev);
	struct stream *stream = &dev_data->tx;
	size_t mem_block_size;
	int ret;

	if (status != 0) {
		ret = -EIO;
		stream->state = I2S_STATE_ERROR;
		goto tx_disable;
	}

	__ASSERT_NO_MSG(stream->mem_block != NULL);

	/* All block data sent */
	k_mem_slab_free(stream->cfg.mem_slab, &stream->mem_block);
	stream->mem_block = NULL;

	/* Stop transmission if there was an error */
	if (stream->state == I2S_STATE_ERROR) {
		LOG_ERR("TX error detected");
		goto tx_disable;
	}

	/* Stop transmission if we were requested */
	if (stream->last_block) {
		stream->state = I2S_STATE_READY;
		goto tx_disable;
	}

	/* Prepare to send the next data block */
	ret = queue_get(&stream->mem_block_queue, &stream->mem_block,
			&mem_block_size);
	if (ret < 0) {
		if (stream->state == I2S_STATE_STOPPING) {
			stream->state = I2S_STATE_READY;
		} else {
			stream->state = I2S_STATE_ERROR;
		}
		goto tx_disable;
	}
	k_sem_give(&stream->sem);

	/* Assure cache coherency before DMA read operation */
	DCACHE_CLEAN(stream->mem_block, mem_block_size);

	ret = reload_dma(stream->dev_dma, stream->dma_channel,
			&stream->dma_cfg,
			stream->mem_block,
			(void *)LL_SPI_DMA_GetRegAddr(cfg->i2s),
			stream->cfg.block_size);
	if (ret < 0) {
		LOG_DBG("Failed to start TX DMA transfer: %d", ret);
		goto tx_disable;
	}

	return;

tx_disable:
	tx_stream_disable(stream, dev);
}

static uint32_t i2s_stm32_irq_count;
static uint32_t i2s_stm32_irq_ovr_count;

static void i2s_stm32_isr(const struct device *dev)
{
	const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);
	struct i2s_stm32_data *const dev_data = DEV_DATA(dev);
	struct stream *stream = &dev_data->rx;

	LOG_ERR("%s: err=%d", __func__, (int)LL_I2S_ReadReg(cfg->i2s, SR));
	stream->state = I2S_STATE_ERROR;

	/* OVR error must be explicitly cleared */
	if (LL_I2S_IsActiveFlag_OVR(cfg->i2s)) {
		i2s_stm32_irq_ovr_count++;
		LL_I2S_ClearFlag_OVR(cfg->i2s);
	}

	i2s_stm32_irq_count++;
}

static int i2s_stm32_initialize(const struct device *dev)
{
	const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);
	struct i2s_stm32_data *const dev_data = DEV_DATA(dev);
	int ret, i;

	/* Enable I2S clock propagation */
	ret = i2s_stm32_enable_clock(dev);
	if (ret < 0) {
		LOG_ERR("%s: clock enabling failed: %d",  __func__, ret);
		return -EIO;
	}

	/* Configure dt provided device signals when available */
	ret = stm32_dt_pinctrl_configure(cfg->pinctrl_list,
					 cfg->pinctrl_list_size,
					 (uint32_t)cfg->i2s);
	if (ret < 0) {
		LOG_ERR("I2S pinctrl setup failed (%d)", ret);
		return ret;
	}

	cfg->irq_config(dev);

	k_sem_init(&dev_data->rx.sem, 0, CONFIG_I2S_STM32_RX_BLOCK_COUNT);
	k_sem_init(&dev_data->tx.sem, CONFIG_I2S_STM32_TX_BLOCK_COUNT,
		   CONFIG_I2S_STM32_TX_BLOCK_COUNT);

	for (i = 0; i < STM32_DMA_NUM_CHANNELS; i++) {
		active_dma_rx_channel[i] = NULL;
		active_dma_tx_channel[i] = NULL;
	}

	/* Get the binding to the DMA device */
	if (!device_is_ready(dev_data->tx.dev_dma)) {
		LOG_ERR("%s device not ready", dev_data->tx.dev_dma->name);
		return -ENODEV;
	}
	if (!device_is_ready(dev_data->rx.dev_dma)) {
		LOG_ERR("%s device not ready", dev_data->rx.dev_dma->name);
		return -ENODEV;
	}

	LOG_INF("%s inited", dev->name);

	return 0;
}

static int rx_stream_start(struct stream *stream, const struct device *dev)
{
	const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);
	int ret;

	ret = k_mem_slab_alloc(stream->cfg.mem_slab, &stream->mem_block,
			       K_NO_WAIT);
	if (ret < 0) {
		return ret;
	}

	if (stream->master) {
		LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_MASTER_RX);
	} else {
		LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_SLAVE_RX);
	}

	/* remember active RX DMA channel (used in callback) */
	active_dma_rx_channel[stream->dma_channel] = dev;

	ret = start_dma(stream->dev_dma, stream->dma_channel,
			&stream->dma_cfg,
			(void *)LL_SPI_DMA_GetRegAddr(cfg->i2s),
			stream->src_addr_increment, stream->mem_block,
			stream->dst_addr_increment, stream->fifo_threshold,
			stream->cfg.block_size);
	if (ret < 0) {
		LOG_ERR("Failed to start RX DMA transfer: %d", ret);
		return ret;
	}

	LL_I2S_EnableDMAReq_RX(cfg->i2s);

	LL_I2S_EnableIT_ERR(cfg->i2s);
	LL_I2S_Enable(cfg->i2s);

	return 0;
}

static int tx_stream_start(struct stream *stream, const struct device *dev)
{
	const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);
	size_t mem_block_size;
	int ret;

	ret = queue_get(&stream->mem_block_queue, &stream->mem_block,
			&mem_block_size);
	if (ret < 0) {
		return ret;
	}
	k_sem_give(&stream->sem);

	/* Assure cache coherency before DMA read operation */
	DCACHE_CLEAN(stream->mem_block, mem_block_size);

	if (stream->master) {
		LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_MASTER_TX);
	} else {
		LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_SLAVE_TX);
	}

	/* remember active TX DMA channel (used in callback) */
	active_dma_tx_channel[stream->dma_channel] = dev;

	ret = start_dma(stream->dev_dma, stream->dma_channel,
			&stream->dma_cfg,
			stream->mem_block, stream->src_addr_increment,
			(void *)LL_SPI_DMA_GetRegAddr(cfg->i2s),
			stream->dst_addr_increment, stream->fifo_threshold,
			stream->cfg.block_size);
	if (ret < 0) {
		LOG_ERR("Failed to start TX DMA transfer: %d", ret);
		return ret;
	}

	LL_I2S_EnableDMAReq_TX(cfg->i2s);

	LL_I2S_EnableIT_ERR(cfg->i2s);
	LL_I2S_Enable(cfg->i2s);

	return 0;
}

static void rx_stream_disable(struct stream *stream, const struct device *dev)
{
	const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);

	LL_I2S_DisableDMAReq_RX(cfg->i2s);
	LL_I2S_DisableIT_ERR(cfg->i2s);

	dma_stop(stream->dev_dma, stream->dma_channel);
	if (stream->mem_block != NULL) {
		k_mem_slab_free(stream->cfg.mem_slab, &stream->mem_block);
		stream->mem_block = NULL;
	}

	LL_I2S_Disable(cfg->i2s);

	active_dma_rx_channel[stream->dma_channel] = NULL;
}

static void tx_stream_disable(struct stream *stream, const struct device *dev)
{
	const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);

	LL_I2S_DisableDMAReq_TX(cfg->i2s);
	LL_I2S_DisableIT_ERR(cfg->i2s);

	dma_stop(stream->dev_dma, stream->dma_channel);
	if (stream->mem_block != NULL) {
		k_mem_slab_free(stream->cfg.mem_slab, &stream->mem_block);
		stream->mem_block = NULL;
	}

	LL_I2S_Disable(cfg->i2s);

	active_dma_tx_channel[stream->dma_channel] = NULL;
}

static void rx_queue_drop(struct stream *stream)
{
	size_t size;
	void *mem_block;

	while (queue_get(&stream->mem_block_queue, &mem_block, &size) == 0) {
		k_mem_slab_free(stream->cfg.mem_slab, &mem_block);
	}

	k_sem_reset(&stream->sem);
}

static void tx_queue_drop(struct stream *stream)
{
	size_t size;
	void *mem_block;
	unsigned int n = 0U;

	while (queue_get(&stream->mem_block_queue, &mem_block, &size) == 0) {
		k_mem_slab_free(stream->cfg.mem_slab, &mem_block);
		n++;
	}

	for (; n > 0; n--) {
		k_sem_give(&stream->sem);
	}
}

static const struct device *get_dev_from_rx_dma_channel(uint32_t dma_channel)
{
	return active_dma_rx_channel[dma_channel];
}

static const struct device *get_dev_from_tx_dma_channel(uint32_t dma_channel)
{
	return active_dma_tx_channel[dma_channel];
}

/* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */
#define I2S_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev)	\
.dir = {								\
	.dev_dma = DEVICE_DT_GET(DT_DMAS_CTLR_BY_NAME(DT_NODELABEL(i2s##index), dir)),\
	.dma_channel = \
		DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, channel),\
	.dma_cfg = {							\
		.block_count = 2,					\
		.dma_slot = \
		    DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, slot),\
		.channel_direction = src_dev##_TO_##dest_dev,		\
		.source_data_size = 2,  /* 16bit default */		\
		.dest_data_size = 2,    /* 16bit default */		\
		.source_burst_length = 1, /* SINGLE transfer */		\
		.dest_burst_length = 1,					\
		.channel_priority = STM32_DMA_CONFIG_PRIORITY(		\
	 DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, channel_config)),\
		.dma_callback = dma_##dir##_callback,			\
	},								\
	.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC(	\
	 DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, channel_config)),\
	.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC(	\
	 DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, channel_config)),\
	.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD(		\
	 DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, channel_config)),\
	.stream_start = dir##_stream_start,				\
	.stream_disable = dir##_stream_disable,				\
	.queue_drop = dir##_queue_drop,					\
	.mem_block_queue.buf = dir##_##index##_ring_buf,		\
	.mem_block_queue.len = ARRAY_SIZE(dir##_##index##_ring_buf)	\
}

#define I2S_INIT(index, clk_sel)					\
static const struct soc_gpio_pinctrl i2s_pins_##index[] =		\
				     ST_STM32_DT_PINCTRL(i2s##index, 0);\
									\
static void i2s_stm32_irq_config_func_##index(const struct device *dev);\
									\
static const struct i2s_stm32_cfg i2s_stm32_config_##index = {		\
	.i2s = (SPI_TypeDef *) DT_REG_ADDR(DT_NODELABEL(i2s##index)),	\
	.pclken = {							\
		.enr = DT_CLOCKS_CELL(DT_NODELABEL(i2s##index), bits),	\
		.bus = DT_CLOCKS_CELL(DT_NODELABEL(i2s##index), bus),	\
	},								\
	.i2s_clk_sel = CLK_SEL_##clk_sel,				\
	.pinctrl_list = i2s_pins_##index,				\
	.pinctrl_list_size = ARRAY_SIZE(i2s_pins_##index),		\
	.irq_config = i2s_stm32_irq_config_func_##index,		\
};									\
									\
struct queue_item rx_##index##_ring_buf[CONFIG_I2S_STM32_RX_BLOCK_COUNT + 1];\
struct queue_item tx_##index##_ring_buf[CONFIG_I2S_STM32_TX_BLOCK_COUNT + 1];\
									\
static struct i2s_stm32_data i2s_stm32_data_##index = {			\
	UTIL_AND(DT_DMAS_HAS_NAME(DT_NODELABEL(i2s##index), rx),	\
		I2S_DMA_CHANNEL_INIT(index, rx, RX, PERIPHERAL, MEMORY)),\
	UTIL_AND(DT_DMAS_HAS_NAME(DT_NODELABEL(i2s##index), tx),	\
		I2S_DMA_CHANNEL_INIT(index, tx, TX, MEMORY, PERIPHERAL)),\
};									\
DEVICE_DT_DEFINE(DT_NODELABEL(i2s##index),				\
		    &i2s_stm32_initialize, NULL,			\
		    &i2s_stm32_data_##index,				\
		    &i2s_stm32_config_##index, POST_KERNEL,		\
		    CONFIG_I2S_INIT_PRIORITY, &i2s_stm32_driver_api);	\
									\
static void i2s_stm32_irq_config_func_##index(const struct device *dev)	\
{									\
	IRQ_CONNECT(DT_IRQN(DT_NODELABEL(i2s##index)),			\
		    DT_IRQ(DT_NODELABEL(i2s##index), priority),		\
		    i2s_stm32_isr, DEVICE_DT_GET(DT_NODELABEL(i2s##index)), 0);\
	irq_enable(DT_IRQN(DT_NODELABEL(i2s##index)));			\
}

#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2s1), okay)
I2S_INIT(1, 2)
#endif

#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2s2), okay)
I2S_INIT(2, 1)
#endif

#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2s3), okay)
I2S_INIT(3, 1)
#endif

#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2s4), okay)
I2S_INIT(4, 2)
#endif

#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2s5), okay)
I2S_INIT(5, 2)
#endif