Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
/*
 * Copyright (c) 2020 Piotr Mienkowski
 * Copyright (c) 2020 Linaro Limited
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT st_stm32_qspi_nor

#include <errno.h>
#include <kernel.h>
#include <toolchain.h>
#include <arch/common/ffs.h>
#include <sys/util.h>
#include <soc.h>
#include <pinmux/pinmux_stm32.h>
#include <drivers/clock_control/stm32_clock_control.h>
#include <drivers/clock_control.h>
#include <drivers/flash.h>
#include <drivers/dma.h>
#include <drivers/dma/dma_stm32.h>

#include <stm32_ll_dma.h>

#include "spi_nor.h"
#include "jesd216.h"

#include <logging/log.h>
LOG_MODULE_REGISTER(flash_stm32_qspi, CONFIG_FLASH_LOG_LEVEL);

#define STM32_QSPI_FIFO_THRESHOLD         8
#define STM32_QSPI_CLOCK_PRESCALER_MAX  255

#define STM32_QSPI_USE_DMA DT_NODE_HAS_PROP(DT_PARENT(DT_DRV_INST(0)), dmas)

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_qspi_nor)

uint32_t table_m_size[] = {
	LL_DMA_MDATAALIGN_BYTE,
	LL_DMA_MDATAALIGN_HALFWORD,
	LL_DMA_MDATAALIGN_WORD,
};

uint32_t table_p_size[] = {
	LL_DMA_PDATAALIGN_BYTE,
	LL_DMA_PDATAALIGN_HALFWORD,
	LL_DMA_PDATAALIGN_WORD,
};

typedef void (*irq_config_func_t)(const struct device *dev);


struct stream {
	DMA_TypeDef *reg;
	const struct device *dev;
	uint32_t channel;
	struct dma_config cfg;
};

struct flash_stm32_qspi_config {
	QUADSPI_TypeDef *regs;
	struct stm32_pclken pclken;
	irq_config_func_t irq_config;
	size_t flash_size;
	uint32_t max_frequency;
	const struct soc_gpio_pinctrl *pinctrl_list;
	size_t pinctrl_list_size;
};

struct flash_stm32_qspi_data {
	QSPI_HandleTypeDef hqspi;
	struct k_sem sem;
	struct k_sem sync;
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
	struct flash_pages_layout layout;
#endif
	struct jesd216_erase_type erase_types[JESD216_NUM_ERASE_TYPES];
	/* Number of bytes per page */
	uint16_t page_size;
	int cmd_status;
	struct stream dma;
};

#define DEV_NAME(dev) ((dev)->name)
#define DEV_CFG(dev) \
	(const struct flash_stm32_qspi_config * const)(dev->config)
#define DEV_DATA(dev) \
	(struct flash_stm32_qspi_data * const)(dev->data)

static inline void qspi_lock_thread(const struct device *dev)
{
	struct flash_stm32_qspi_data *dev_data = DEV_DATA(dev);

	k_sem_take(&dev_data->sem, K_FOREVER);
}

static inline void qspi_unlock_thread(const struct device *dev)
{
	struct flash_stm32_qspi_data *dev_data = DEV_DATA(dev);

	k_sem_give(&dev_data->sem);
}

/*
 * Send a command over QSPI bus.
 */
static int qspi_send_cmd(const struct device *dev, QSPI_CommandTypeDef *cmd)
{
	const struct flash_stm32_qspi_config *dev_cfg = DEV_CFG(dev);
	struct flash_stm32_qspi_data *dev_data = DEV_DATA(dev);
	HAL_StatusTypeDef hal_ret;

	ARG_UNUSED(dev_cfg);

	LOG_DBG("Instruction 0x%x", cmd->Instruction);

	dev_data->cmd_status = 0;

	hal_ret = HAL_QSPI_Command_IT(&dev_data->hqspi, cmd);
	if (hal_ret != HAL_OK) {
		LOG_ERR("%d: Failed to send QSPI instruction", hal_ret);
		return -EIO;
	}
	LOG_DBG("CCR 0x%x", dev_cfg->regs->CCR);

	k_sem_take(&dev_data->sync, K_FOREVER);

	return dev_data->cmd_status;
}

/*
 * Perform a read access over QSPI bus.
 */
static int qspi_read_access(const struct device *dev, QSPI_CommandTypeDef *cmd,
			    uint8_t *data, size_t size)
{
	const struct flash_stm32_qspi_config *dev_cfg = DEV_CFG(dev);
	struct flash_stm32_qspi_data *dev_data = DEV_DATA(dev);
	HAL_StatusTypeDef hal_ret;

	ARG_UNUSED(dev_cfg);

	cmd->NbData = size;

	dev_data->cmd_status = 0;

	hal_ret = HAL_QSPI_Command_IT(&dev_data->hqspi, cmd);
	if (hal_ret != HAL_OK) {
		LOG_ERR("%d: Failed to send QSPI instruction", hal_ret);
		return -EIO;
	}

#if STM32_QSPI_USE_DMA
	hal_ret = HAL_QSPI_Receive_DMA(&dev_data->hqspi, data);
#else
	hal_ret = HAL_QSPI_Receive_IT(&dev_data->hqspi, data);
#endif
	if (hal_ret != HAL_OK) {
		LOG_ERR("%d: Failed to read data", hal_ret);
		return -EIO;
	}

	k_sem_take(&dev_data->sync, K_FOREVER);

	return dev_data->cmd_status;
}

/*
 * Perform a write access over QSPI bus.
 */
static int qspi_write_access(const struct device *dev, QSPI_CommandTypeDef *cmd,
			     const uint8_t *data, size_t size)
{
	const struct flash_stm32_qspi_config *dev_cfg = DEV_CFG(dev);
	struct flash_stm32_qspi_data *dev_data = DEV_DATA(dev);
	HAL_StatusTypeDef hal_ret;

	ARG_UNUSED(dev_cfg);

	LOG_DBG("Instruction 0x%x", cmd->Instruction);

	cmd->NbData = size;

	dev_data->cmd_status = 0;

	hal_ret = HAL_QSPI_Command_IT(&dev_data->hqspi, cmd);
	if (hal_ret != HAL_OK) {
		LOG_ERR("%d: Failed to send QSPI instruction", hal_ret);
		return -EIO;
	}

#if STM32_QSPI_USE_DMA
	hal_ret = HAL_QSPI_Transmit_DMA(&dev_data->hqspi, (uint8_t *)data);
#else
	hal_ret = HAL_QSPI_Transmit_IT(&dev_data->hqspi, (uint8_t *)data);
#endif
	if (hal_ret != HAL_OK) {
		LOG_ERR("%d: Failed to read data", hal_ret);
		return -EIO;
	}
	LOG_DBG("CCR 0x%x", dev_cfg->regs->CCR);

	k_sem_take(&dev_data->sync, K_FOREVER);

	return dev_data->cmd_status;
}

/*
 * Read Serial Flash Discovery Parameter
 */
static int qspi_read_sfdp(const struct device *dev, off_t addr, uint8_t *data,
			  size_t size)
{
	QSPI_CommandTypeDef cmd = {
		.Instruction = JESD216_CMD_READ_SFDP,
		.Address = addr,
		.AddressSize = QSPI_ADDRESS_24_BITS,
		.DummyCycles = 8,
		.InstructionMode = QSPI_INSTRUCTION_1_LINE,
		.AddressMode = QSPI_ADDRESS_1_LINE,
		.DataMode = QSPI_DATA_1_LINE,
	};

	return qspi_read_access(dev, &cmd, data, size);
}

static bool qspi_address_is_valid(const struct device *dev, off_t addr,
				  size_t size)
{
	const struct flash_stm32_qspi_config *dev_cfg = DEV_CFG(dev);
	size_t flash_size = dev_cfg->flash_size;

	return (addr >= 0) && ((uint64_t)addr + (uint64_t)size <= flash_size);
}

static int flash_stm32_qspi_read(const struct device *dev, off_t addr,
				 void *data, size_t size)
{
	int ret;

	if (!qspi_address_is_valid(dev, addr, size)) {
		LOG_DBG("Error: address or size exceeds expected values: "
			"addr 0x%lx, size %zu", (long)addr, size);
		return -EINVAL;
	}

	QSPI_CommandTypeDef cmd = {
		.Instruction = SPI_NOR_CMD_READ,
		.Address = addr,
		.AddressSize = QSPI_ADDRESS_24_BITS,
		.InstructionMode = QSPI_INSTRUCTION_1_LINE,
		.AddressMode = QSPI_ADDRESS_1_LINE,
		.DataMode = QSPI_DATA_1_LINE,
	};

	qspi_lock_thread(dev);

	ret = qspi_read_access(dev, &cmd, data, size);

	qspi_unlock_thread(dev);

	return ret;
}

static int qspi_wait_until_ready(const struct device *dev)
{
	uint8_t reg;
	int ret;

	QSPI_CommandTypeDef cmd = {
		.Instruction = SPI_NOR_CMD_RDSR,
		.InstructionMode = QSPI_INSTRUCTION_1_LINE,
		.DataMode = QSPI_DATA_1_LINE,
	};

	do {
		ret = qspi_read_access(dev, &cmd, &reg, sizeof(reg));
	} while (!ret && (reg & SPI_NOR_WIP_BIT));

	return ret;
}

static int flash_stm32_qspi_write(const struct device *dev, off_t addr,
				  const void *data, size_t size)
{
	int ret = 0;

	if (!qspi_address_is_valid(dev, addr, size)) {
		LOG_DBG("Error: address or size exceeds expected values: "
			"addr 0x%lx, size %zu", (long)addr, size);
		return -EINVAL;
	}

	QSPI_CommandTypeDef cmd_write_en = {
		.Instruction = SPI_NOR_CMD_WREN,
		.InstructionMode = QSPI_INSTRUCTION_1_LINE,
	};

	QSPI_CommandTypeDef cmd_pp = {
		.Instruction = SPI_NOR_CMD_PP,
		.AddressSize = QSPI_ADDRESS_24_BITS,
		.InstructionMode = QSPI_INSTRUCTION_1_LINE,
		.AddressMode = QSPI_ADDRESS_1_LINE,
		.DataMode = QSPI_DATA_1_LINE,
	};

	qspi_lock_thread(dev);

	while (size > 0) {
		size_t to_write = size;

		/* Don't write more than a page. */
		if (to_write >= SPI_NOR_PAGE_SIZE) {
			to_write = SPI_NOR_PAGE_SIZE;
		}

		/* Don't write across a page boundary */
		if (((addr + to_write - 1U) / SPI_NOR_PAGE_SIZE)
		    != (addr / SPI_NOR_PAGE_SIZE)) {
			to_write = SPI_NOR_PAGE_SIZE -
						(addr % SPI_NOR_PAGE_SIZE);
		}

		ret = qspi_send_cmd(dev, &cmd_write_en);
		if (ret != 0) {
			break;
		}

		cmd_pp.Address = addr;
		ret = qspi_write_access(dev, &cmd_pp, data, to_write);
		if (ret != 0) {
			break;
		}

		size -= to_write;
		data = (const uint8_t *)data + to_write;
		addr += to_write;

		ret = qspi_wait_until_ready(dev);
		if (ret != 0) {
			break;
		}
	}

	qspi_unlock_thread(dev);

	return ret;
}

static int flash_stm32_qspi_erase(const struct device *dev, off_t addr,
				  size_t size)
{
	const struct flash_stm32_qspi_config *dev_cfg = DEV_CFG(dev);
	struct flash_stm32_qspi_data *dev_data = DEV_DATA(dev);
	int ret = 0;

	if (!qspi_address_is_valid(dev, addr, size)) {
		LOG_DBG("Error: address or size exceeds expected values: "
			"addr 0x%lx, size %zu", (long)addr, size);
		return -EINVAL;
	}

	QSPI_CommandTypeDef cmd_write_en = {
		.Instruction = SPI_NOR_CMD_WREN,
		.InstructionMode = QSPI_INSTRUCTION_1_LINE,
	};

	QSPI_CommandTypeDef cmd_erase = {
		.Instruction = 0,
		.AddressSize = QSPI_ADDRESS_24_BITS,
		.InstructionMode = QSPI_INSTRUCTION_1_LINE,
		.AddressMode = QSPI_ADDRESS_1_LINE,
	};

	qspi_lock_thread(dev);

	while ((size > 0) && (ret == 0)) {
		cmd_erase.Address = addr;
		qspi_send_cmd(dev, &cmd_write_en);

		if (size == dev_cfg->flash_size) {
			/* chip erase */
			cmd_erase.Instruction = SPI_NOR_CMD_CE;
			cmd_erase.AddressMode = QSPI_ADDRESS_NONE;
			qspi_send_cmd(dev, &cmd_erase);
			size -= dev_cfg->flash_size;
		} else {
			const struct jesd216_erase_type *erase_types =
							dev_data->erase_types;
			const struct jesd216_erase_type *bet = NULL;

			for (uint8_t ei = 0;
				ei < JESD216_NUM_ERASE_TYPES; ++ei) {
				const struct jesd216_erase_type *etp =
							&erase_types[ei];

				if ((etp->exp != 0)
				    && SPI_NOR_IS_ALIGNED(addr, etp->exp)
				    && SPI_NOR_IS_ALIGNED(size, etp->exp)
				    && ((bet == NULL)
					|| (etp->exp > bet->exp))) {
					bet = etp;
					cmd_erase.Instruction = bet->cmd;
				}
			}
			if (bet != NULL) {
				qspi_send_cmd(dev, &cmd_erase);
				addr += BIT(bet->exp);
				size -= BIT(bet->exp);
			} else {
				LOG_ERR("Can't erase %zu at 0x%lx",
					size, (long)addr);
				ret = -EINVAL;
			}
		}
		qspi_wait_until_ready(dev);
	}

	qspi_unlock_thread(dev);

	return ret;
}

static const struct flash_parameters flash_stm32_qspi_parameters = {
	.write_block_size = 1,
	.erase_value = 0xff
};

static const struct flash_parameters *
flash_stm32_qspi_get_parameters(const struct device *dev)
{
	ARG_UNUSED(dev);

	return &flash_stm32_qspi_parameters;
}

static void flash_stm32_qspi_isr(const struct device *dev)
{
	struct flash_stm32_qspi_data *dev_data = DEV_DATA(dev);

	HAL_QSPI_IRQHandler(&dev_data->hqspi);
}

/* This function is executed in the interrupt context */
#if STM32_QSPI_USE_DMA
static void qspi_dma_callback(const struct device *dev, void *arg,
			 uint32_t channel, int status)
{
	DMA_HandleTypeDef *hdma = arg;

	if (status != 0) {
		LOG_ERR("DMA callback error with channel %d.", channel);

	}

	HAL_DMA_IRQHandler(hdma);
}
#endif

__weak HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma)
{
	return HAL_OK;
}

/*
 * Transfer Error callback.
 */
void HAL_QSPI_ErrorCallback(QSPI_HandleTypeDef *hqspi)
{
	struct flash_stm32_qspi_data *dev_data =
		CONTAINER_OF(hqspi, struct flash_stm32_qspi_data, hqspi);

	LOG_DBG("Enter");

	dev_data->cmd_status = -EIO;

	k_sem_give(&dev_data->sync);
}

/*
 * Command completed callback.
 */
void HAL_QSPI_CmdCpltCallback(QSPI_HandleTypeDef *hqspi)
{
	struct flash_stm32_qspi_data *dev_data =
		CONTAINER_OF(hqspi, struct flash_stm32_qspi_data, hqspi);

	k_sem_give(&dev_data->sync);
}

/*
 * Rx Transfer completed callback.
 */
void HAL_QSPI_RxCpltCallback(QSPI_HandleTypeDef *hqspi)
{
	struct flash_stm32_qspi_data *dev_data =
		CONTAINER_OF(hqspi, struct flash_stm32_qspi_data, hqspi);

	k_sem_give(&dev_data->sync);
}

/*
 * Tx Transfer completed callback.
 */
void HAL_QSPI_TxCpltCallback(QSPI_HandleTypeDef *hqspi)
{
	struct flash_stm32_qspi_data *dev_data =
		CONTAINER_OF(hqspi, struct flash_stm32_qspi_data, hqspi);

	k_sem_give(&dev_data->sync);
}

/*
 * Status Match callback.
 */
void HAL_QSPI_StatusMatchCallback(QSPI_HandleTypeDef *hqspi)
{
	struct flash_stm32_qspi_data *dev_data =
		CONTAINER_OF(hqspi, struct flash_stm32_qspi_data, hqspi);

	k_sem_give(&dev_data->sync);
}

/*
 * Timeout callback.
 */
void HAL_QSPI_TimeOutCallback(QSPI_HandleTypeDef *hqspi)
{
	struct flash_stm32_qspi_data *dev_data =
		CONTAINER_OF(hqspi, struct flash_stm32_qspi_data, hqspi);

	LOG_DBG("Enter");

	dev_data->cmd_status = -EIO;

	k_sem_give(&dev_data->sync);
}

#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static void flash_stm32_qspi_pages_layout(const struct device *dev,
				const struct flash_pages_layout **layout,
				size_t *layout_size)
{
	struct flash_stm32_qspi_data *dev_data = DEV_DATA(dev);

	*layout = &dev_data->layout;
	*layout_size = 1;
}
#endif

static const struct flash_driver_api flash_stm32_qspi_driver_api = {
	.read = flash_stm32_qspi_read,
	.write = flash_stm32_qspi_write,
	.erase = flash_stm32_qspi_erase,
	.get_parameters = flash_stm32_qspi_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
	.page_layout = flash_stm32_qspi_pages_layout,
#endif
};

#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static int setup_pages_layout(const struct device *dev)
{
	const struct flash_stm32_qspi_config *dev_cfg = DEV_CFG(dev);
	struct flash_stm32_qspi_data *data = DEV_DATA(dev);
	const size_t flash_size = dev_cfg->flash_size;
	uint32_t layout_page_size = data->page_size;
	uint8_t exp = 0;
	int rv = 0;

	/* Find the smallest erase size. */
	for (size_t i = 0; i < ARRAY_SIZE(data->erase_types); ++i) {
		const struct jesd216_erase_type *etp = &data->erase_types[i];

		if ((etp->cmd != 0)
		    && ((exp == 0) || (etp->exp < exp))) {
			exp = etp->exp;
		}
	}

	if (exp == 0) {
		return -ENOTSUP;
	}

	uint32_t erase_size = BIT(exp);

	/* We need layout page size to be compatible with erase size */
	if ((layout_page_size % erase_size) != 0) {
		LOG_DBG("layout page %u not compatible with erase size %u",
			layout_page_size, erase_size);
		LOG_DBG("erase size will be used as layout page size");
		layout_page_size = erase_size;
	}

	/* Warn but accept layout page sizes that leave inaccessible
	 * space.
	 */
	if ((flash_size % layout_page_size) != 0) {
		LOG_INF("layout page %u wastes space with device size %zu",
			layout_page_size, flash_size);
	}

	data->layout.pages_size = layout_page_size;
	data->layout.pages_count = flash_size / layout_page_size;
	LOG_DBG("layout %u x %u By pages", data->layout.pages_count,
					   data->layout.pages_size);

	return rv;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */

static int spi_nor_process_bfp(const struct device *dev,
			       const struct jesd216_param_header *php,
			       const struct jesd216_bfp *bfp)
{
	const struct flash_stm32_qspi_config *dev_cfg = DEV_CFG(dev);
	struct flash_stm32_qspi_data *data = DEV_DATA(dev);
	struct jesd216_erase_type *etp = data->erase_types;
	const size_t flash_size = jesd216_bfp_density(bfp) / 8U;

	if (flash_size != dev_cfg->flash_size) {
		LOG_ERR("Unexpected flash size: %u", flash_size);
	}

	LOG_INF("%s: %u MiBy flash", dev->name, (uint32_t)(flash_size >> 20));

	/* Copy over the erase types, preserving their order.  (The
	 * Sector Map Parameter table references them by index.)
	 */
	memset(data->erase_types, 0, sizeof(data->erase_types));
	for (uint8_t ti = 1; ti <= ARRAY_SIZE(data->erase_types); ++ti) {
		if (jesd216_bfp_erase(bfp, ti, etp) == 0) {
			LOG_DBG("Erase %u with %02x",
					(uint32_t)BIT(etp->exp), etp->cmd);
		}
		++etp;
	}

	data->page_size = jesd216_bfp_page_size(php, bfp);

	LOG_DBG("Page size %u bytes", data->page_size);
	LOG_DBG("Flash size %u bytes", flash_size);
	return 0;
}

static int flash_stm32_qspi_init(const struct device *dev)
{
	const struct flash_stm32_qspi_config *dev_cfg = DEV_CFG(dev);
	struct flash_stm32_qspi_data *dev_data = DEV_DATA(dev);
	uint32_t ahb_clock_freq;
	uint32_t prescaler = 0;
	int ret;

	/* Signals configuration */
	ret = stm32_dt_pinctrl_configure(dev_cfg->pinctrl_list,
					 dev_cfg->pinctrl_list_size,
					 (uint32_t)dev_cfg->regs);
	if (ret < 0) {
		LOG_ERR("QSPI pinctrl setup failed (%d)", ret);
		return ret;
	}

#if STM32_QSPI_USE_DMA
	/*
	 * DMA configuration
	 * Due to use of QSPI HAL API in current driver,
	 * both HAL and Zephyr DMA drivers should be configured.
	 * The required configuration for Zephyr DMA driver should only provide
	 * the minimum information to inform the DMA slot will be in used and
	 * how to route callbacks.
	 */
	struct dma_config dma_cfg = dev_data->dma.cfg;
	static DMA_HandleTypeDef hdma;

	if (!device_is_ready(dev_data->dma.dev)) {
		LOG_ERR("%s device not ready", dev_data->dma.dev->name);
		return -ENODEV;
	}

	/* Proceed to the minimum Zephyr DMA driver init */
	dma_cfg.user_data = &hdma;
	/* HACK: This field is used to inform driver that it is overridden */
	dma_cfg.linked_channel = STM32_DMA_HAL_OVERRIDE;
	ret = dma_config(dev_data->dma.dev, dev_data->dma.channel, &dma_cfg);
	if (ret != 0) {
		return ret;
	}

	/* Proceed to the HAL DMA driver init */
	if (dma_cfg.source_data_size != dma_cfg.dest_data_size) {
		LOG_ERR("Source and destination data sizes not aligned");
		return -EINVAL;
	}

	int index = find_lsb_set(dma_cfg.source_data_size) - 1;

	hdma.Init.PeriphDataAlignment = table_p_size[index];
	hdma.Init.MemDataAlignment = table_m_size[index];
	hdma.Init.PeriphInc = DMA_PINC_DISABLE;
	hdma.Init.MemInc = DMA_MINC_ENABLE;
	hdma.Init.Mode = DMA_NORMAL;
	hdma.Init.Priority = dma_cfg.channel_priority;
#ifdef CONFIG_DMA_STM32_V1
	/* TODO: Not tested in this configuration */
	hdma.Init.Channel = dma_cfg.dma_slot;
	hdma.Instance = __LL_DMA_GET_STREAM_INSTANCE(dev_data->dma.reg,
						     dev_data->dma.channel);
#else
	hdma.Init.Request = dma_cfg.dma_slot;
#ifdef CONFIG_DMAMUX_STM32
	/* HAL expects a valid DMA channel (not DAMMUX) */
	/* TODO: Get DMA instance from DT */
	hdma.Instance = __LL_DMA_GET_CHANNEL_INSTANCE(DMA1,
						      dev_data->dma.channel+1);
#else
	hdma.Instance = __LL_DMA_GET_CHANNEL_INSTANCE(dev_data->dma.reg,
						      dev_data->dma.channel-1);
#endif
#endif /* CONFIG_DMA_STM32_V1 */

	/* Initialize DMA HAL */
	__HAL_LINKDMA(&dev_data->hqspi, hdma, hdma);
	HAL_DMA_Init(&hdma);

#endif /* STM32_QSPI_USE_DMA */

	/* Clock configuration */
	if (clock_control_on(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
			     (clock_control_subsys_t) &dev_cfg->pclken) != 0) {
		LOG_DBG("Could not enable QSPI clock");
		return -EIO;
	}

	if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
			(clock_control_subsys_t) &dev_cfg->pclken,
			&ahb_clock_freq) < 0) {
		LOG_DBG("Failed to get AHB clock frequency");
		return -EIO;
	}

	for (; prescaler <= STM32_QSPI_CLOCK_PRESCALER_MAX; prescaler++) {
		uint32_t clk = ahb_clock_freq / (prescaler + 1);

		if (clk <= dev_cfg->max_frequency) {
			break;
		}
	}
	__ASSERT_NO_MSG(prescaler <= STM32_QSPI_CLOCK_PRESCALER_MAX);
	/* Initialize QSPI HAL */
	dev_data->hqspi.Init.ClockPrescaler = prescaler;
	dev_data->hqspi.Init.FlashSize = find_lsb_set(dev_cfg->flash_size);

	HAL_QSPI_Init(&dev_data->hqspi);

	/* Initialize semaphores */
	k_sem_init(&dev_data->sem, 1, 1);
	k_sem_init(&dev_data->sync, 0, 1);

	/* Run IRQ init */
	dev_cfg->irq_config(dev);

	/* Run NOR init */
	const uint8_t decl_nph = 2;
	union {
		/* We only process BFP so use one parameter block */
		uint8_t raw[JESD216_SFDP_SIZE(decl_nph)];
		struct jesd216_sfdp_header sfdp;
	} u;
	const struct jesd216_sfdp_header *hp = &u.sfdp;

	ret = qspi_read_sfdp(dev, 0, u.raw, sizeof(u.raw));
	if (ret != 0) {
		LOG_ERR("SFDP read failed: %d", ret);
		return ret;
	}

	uint32_t magic = jesd216_sfdp_magic(hp);

	if (magic != JESD216_SFDP_MAGIC) {
		LOG_ERR("SFDP magic %08x invalid", magic);
		return -EINVAL;
	}

	LOG_INF("%s: SFDP v %u.%u AP %x with %u PH", dev->name,
		hp->rev_major, hp->rev_minor, hp->access, 1 + hp->nph);

	const struct jesd216_param_header *php = hp->phdr;
	const struct jesd216_param_header *phpe = php +
						     MIN(decl_nph, 1 + hp->nph);

	while (php != phpe) {
		uint16_t id = jesd216_param_id(php);

		LOG_INF("PH%u: %04x rev %u.%u: %u DW @ %x",
			(php - hp->phdr), id, php->rev_major, php->rev_minor,
			php->len_dw, jesd216_param_addr(php));

		if (id == JESD216_SFDP_PARAM_ID_BFP) {
			union {
				uint32_t dw[MIN(php->len_dw, 20)];
				struct jesd216_bfp bfp;
			} u;
			const struct jesd216_bfp *bfp = &u.bfp;

			ret = qspi_read_sfdp(dev, jesd216_param_addr(php),
					     (uint8_t *)u.dw, sizeof(u.dw));
			if (ret == 0) {
				ret = spi_nor_process_bfp(dev, php, bfp);
			}

			if (ret != 0) {
				LOG_ERR("SFDP BFP failed: %d", ret);
				break;
			}
		}
		++php;
	}

#if defined(CONFIG_FLASH_PAGE_LAYOUT)
	ret = setup_pages_layout(dev);
	if (ret != 0) {
		LOG_ERR("layout setup failed: %d", ret);
		return -ENODEV;
	}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */

	LOG_INF("Device %s initialized", DEV_NAME(dev));

	return 0;
}

#define DMA_CHANNEL_CONFIG(node, dir)					\
		DT_DMAS_CELL_BY_NAME(node, dir, channel_config)

#define QSPI_DMA_CHANNEL_INIT(node, dir)				\
	.dev = DEVICE_DT_GET(DT_DMAS_CTLR(node)),			\
	.channel = DT_DMAS_CELL_BY_NAME(node, dir, channel),		\
	.reg = (DMA_TypeDef *)DT_REG_ADDR(				\
				   DT_PHANDLE_BY_NAME(node, dmas, dir)),\
	.cfg = {							\
		.dma_slot = DT_DMAS_CELL_BY_NAME(node, dir, slot),	\
		.source_data_size = STM32_DMA_CONFIG_PERIPHERAL_DATA_SIZE( \
					DMA_CHANNEL_CONFIG(node, dir)), \
		.dest_data_size = STM32_DMA_CONFIG_MEMORY_DATA_SIZE(    \
					DMA_CHANNEL_CONFIG(node, dir)), \
		.channel_priority = STM32_DMA_CONFIG_PRIORITY(		\
					DMA_CHANNEL_CONFIG(node, dir)), \
		.dma_callback = qspi_dma_callback,			\
	},								\

#define QSPI_DMA_CHANNEL(node, dir)					\
	.dma = {							\
		COND_CODE_1(DT_DMAS_HAS_NAME(node, dir),		\
			(QSPI_DMA_CHANNEL_INIT(node, dir)),		\
			(NULL))						\
		},

#define QSPI_FLASH_MODULE(drv_id, flash_id) 				\
		(DT_DRV_INST(drv_id), qspi_nor_flash_##flash_id)

static void flash_stm32_qspi_irq_config_func(const struct device *dev);

static const struct soc_gpio_pinctrl qspi_pins[] =
					ST_STM32_DT_PINCTRL(quadspi, 0);

#define STM32_QSPI_NODE DT_PARENT(DT_DRV_INST(0))

static const struct flash_stm32_qspi_config flash_stm32_qspi_cfg = {
	.regs = (QUADSPI_TypeDef *)DT_REG_ADDR(STM32_QSPI_NODE),
	.pclken = {
		.enr = DT_CLOCKS_CELL(STM32_QSPI_NODE, bits),
		.bus = DT_CLOCKS_CELL(STM32_QSPI_NODE, bus)
	},
	.irq_config = flash_stm32_qspi_irq_config_func,
	.flash_size = DT_INST_PROP(0, size) / 8U,
	.max_frequency = DT_INST_PROP(0, qspi_max_frequency),
	.pinctrl_list = qspi_pins,
	.pinctrl_list_size = ARRAY_SIZE(qspi_pins),
};

static struct flash_stm32_qspi_data flash_stm32_qspi_dev_data = {
	.hqspi = {
		.Instance = (QUADSPI_TypeDef *)DT_REG_ADDR(STM32_QSPI_NODE),
		.Init = {
			.FifoThreshold = STM32_QSPI_FIFO_THRESHOLD,
			.SampleShifting = QSPI_SAMPLE_SHIFTING_NONE,
			.ChipSelectHighTime = QSPI_CS_HIGH_TIME_1_CYCLE,
			.ClockMode = QSPI_CLOCK_MODE_0,
			},
	},
	QSPI_DMA_CHANNEL(STM32_QSPI_NODE, tx_rx)
};

DEVICE_DT_INST_DEFINE(0, &flash_stm32_qspi_init, NULL,
		      &flash_stm32_qspi_dev_data, &flash_stm32_qspi_cfg,
		      POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
		      &flash_stm32_qspi_driver_api);

static void flash_stm32_qspi_irq_config_func(const struct device *dev)
{
	IRQ_CONNECT(DT_IRQN(STM32_QSPI_NODE), DT_IRQ(STM32_QSPI_NODE, priority),
		    flash_stm32_qspi_isr, DEVICE_DT_INST_GET(0), 0);
	irq_enable(DT_IRQN(STM32_QSPI_NODE));
}

#endif