Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | /* * Copyright (c) 2016 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <ztest.h> #include <irq_offload.h> #define STACK_SIZE (512 + CONFIG_TEST_EXTRA_STACKSIZE) #define STACK_LEN 4 #define HIGH_T1 0xaaa #define HIGH_T2 0xbbb #define LOW_PRIO 0xccc /**TESTPOINT: init via K_STACK_DEFINE*/ K_STACK_DEFINE(kstack, STACK_LEN); K_STACK_DEFINE(kstack_test_alloc, STACK_LEN); struct k_stack stack; K_THREAD_STACK_DEFINE(threadstack1, STACK_SIZE); struct k_thread thread_data1; K_THREAD_STACK_DEFINE(threadstack_t1, STACK_SIZE); static struct k_thread high_pro_thread_t1; K_THREAD_STACK_DEFINE(threadstack_t2, STACK_SIZE); static struct k_thread high_pro_thread_t2; static ZTEST_DMEM stack_data_t data[STACK_LEN] = { 0xABCD, 0x1234 }; struct k_sem end_sema1; static void tstack_push(struct k_stack *pstack) { for (int i = 0; i < STACK_LEN; i++) { /**TESTPOINT: stack push*/ k_stack_push(pstack, data[i]); } } static void tstack_pop(struct k_stack *pstack) { stack_data_t rx_data; for (int i = STACK_LEN - 1; i >= 0; i--) { /**TESTPOINT: stack pop*/ zassert_false(k_stack_pop(pstack, &rx_data, K_NO_WAIT), NULL); zassert_equal(rx_data, data[i], NULL); } } /*entry of contexts*/ static void tIsr_entry_push(const void *p) { tstack_push((struct k_stack *)p); } static void tIsr_entry_pop(const void *p) { tstack_pop((struct k_stack *)p); } static void tThread_entry(void *p1, void *p2, void *p3) { tstack_pop((struct k_stack *)p1); k_sem_give(&end_sema1); tstack_push((struct k_stack *)p1); k_sem_give(&end_sema1); } static void tstack_thread_thread(struct k_stack *pstack) { k_sem_init(&end_sema1, 0, 1); /**TESTPOINT: thread-thread data passing via stack*/ k_tid_t tid = k_thread_create(&thread_data1, threadstack1, STACK_SIZE, tThread_entry, pstack, NULL, NULL, K_PRIO_PREEMPT(0), K_USER | K_INHERIT_PERMS, K_NO_WAIT); tstack_push(pstack); k_sem_take(&end_sema1, K_FOREVER); k_sem_take(&end_sema1, K_FOREVER); tstack_pop(pstack); /* clear the spawn thread to avoid side effect */ k_thread_abort(tid); } static void tstack_thread_isr(struct k_stack *pstack) { k_sem_init(&end_sema1, 0, 1); /**TESTPOINT: thread-isr data passing via stack*/ irq_offload(tIsr_entry_push, (const void *)pstack); tstack_pop(pstack); tstack_push(pstack); irq_offload(tIsr_entry_pop, (const void *)pstack); } /** * @addtogroup kernel_stack_tests * @{ */ /** * @brief Test to verify data passing between threads via stack * * @details Static define and Dynamic define stacks, * Then initialize them. * Current thread push or pop data item into the stack. * Create a new thread pop or push data item into the stack. * Controlled by semaphore. * Verify data passing between threads via stack * And verify stack can be define at compile time. * * @ingroup kernel_stack_tests * * @see k_stack_init(), k_stack_push(), #K_STACK_DEFINE(x), k_stack_pop() */ void test_stack_thread2thread(void) { /**TESTPOINT: test k_stack_init stack*/ k_stack_init(&stack, data, STACK_LEN); tstack_thread_thread(&stack); /**TESTPOINT: test K_STACK_DEFINE stack*/ tstack_thread_thread(&kstack); } #ifdef CONFIG_USERSPACE /** * @brief Verifies data passing between user threads via stack * @see k_stack_init(), k_stack_push(), #K_STACK_DEFINE(x), k_stack_pop() */ void test_stack_user_thread2thread(void) { struct k_stack *stack = k_object_alloc(K_OBJ_STACK); zassert_not_null(stack, "couldn't allocate stack object"); zassert_false(k_stack_alloc_init(stack, STACK_LEN), "stack init failed"); tstack_thread_thread(stack); } #endif /** * @brief Verifies data passing between thread and ISR via stack * @see k_stack_init(), k_stack_push(), #K_STACK_DEFINE(x), k_stack_pop() */ void test_stack_thread2isr(void) { /**TESTPOINT: test k_stack_init stack*/ k_stack_init(&stack, data, STACK_LEN); tstack_thread_isr(&stack); /**TESTPOINT: test K_STACK_DEFINE stack*/ tstack_thread_isr(&kstack); } /** * @see k_stack_alloc_init(), k_stack_push(), #K_STACK_DEFINE(x), k_stack_pop(), * k_stack_cleanup() */ void test_stack_alloc_thread2thread(void) { int ret; k_stack_alloc_init(&kstack_test_alloc, STACK_LEN); k_sem_init(&end_sema1, 0, 1); /**TESTPOINT: thread-thread data passing via stack*/ k_tid_t tid = k_thread_create(&thread_data1, threadstack1, STACK_SIZE, tThread_entry, &kstack_test_alloc, NULL, NULL, K_PRIO_PREEMPT(0), 0, K_NO_WAIT); tstack_push(&kstack_test_alloc); k_sem_take(&end_sema1, K_FOREVER); k_sem_take(&end_sema1, K_FOREVER); tstack_pop(&kstack_test_alloc); /* clear the spawn thread to avoid side effect */ k_thread_abort(tid); k_stack_cleanup(&kstack_test_alloc); /** Requested buffer allocation from the test pool.*/ ret = k_stack_alloc_init(&kstack_test_alloc, (STACK_SIZE/2)+1); zassert_true(ret == -ENOMEM, "resource pool is smaller then requested buffer"); } static void low_prio_wait_for_stack(void *p1, void *p2, void *p3) { struct k_stack *pstack = p1; stack_data_t output; k_stack_pop(pstack, &output, K_FOREVER); zassert_true(output == LOW_PRIO, "The low priority thread get the stack data failed lastly"); } static void high_prio_t1_wait_for_stack(void *p1, void *p2, void *p3) { struct k_stack *pstack = p1; stack_data_t output; k_stack_pop(pstack, &output, K_FOREVER); zassert_true(output == HIGH_T1, "The highest priority and waited longest get the stack data failed firstly"); } static void high_prio_t2_wait_for_stack(void *p1, void *p2, void *p3) { struct k_stack *pstack = p1; stack_data_t output; k_stack_pop(pstack, &output, K_FOREVER); zassert_true(output == HIGH_T2, "The higher priority and waited longer get the stack data failed secondly"); } /** * @brief Test multi-threads to get data from stack. * * @details Define three threads, and set a higher priority for two of them, * and set a lower priority for the last one. Then Add a delay between * creating the two high priority threads. * Test point: * 1. Any number of threads may wait(K_FOREVER set) on an empty stack * simultaneously. * 2. When data is pushed, it is given to the highest priority * thread that has waited longest. * * @ingroup kernel_stack_tests */ void test_stack_multithread_competition(void) { int old_prio = k_thread_priority_get(k_current_get()); int prio = 10; stack_data_t test_data[3]; memset(test_data, 0, sizeof(test_data)); k_thread_priority_set(k_current_get(), prio); /* Set up some values */ test_data[0] = HIGH_T1; test_data[1] = HIGH_T2; test_data[2] = LOW_PRIO; k_thread_create(&thread_data1, threadstack1, STACK_SIZE, low_prio_wait_for_stack, &stack, NULL, NULL, prio + 4, 0, K_NO_WAIT); k_thread_create(&high_pro_thread_t1, threadstack_t1, STACK_SIZE, high_prio_t1_wait_for_stack, &stack, NULL, NULL, prio + 2, 0, K_NO_WAIT); /* Make thread thread_data1 and high_pro_thread_t1 wait more time */ k_sleep(K_MSEC(10)); k_thread_create(&high_pro_thread_t2, threadstack_t2, STACK_SIZE, high_prio_t2_wait_for_stack, &stack, NULL, NULL, prio + 2, 0, K_NO_WAIT); /* Initialize them and block */ k_sleep(K_MSEC(50)); /* Insert some data to wake up thread */ k_stack_push(&stack, test_data[0]); k_stack_push(&stack, test_data[1]); k_stack_push(&stack, test_data[2]); /* Wait for thread exiting */ k_thread_join(&thread_data1, K_FOREVER); k_thread_join(&high_pro_thread_t1, K_FOREVER); k_thread_join(&high_pro_thread_t2, K_FOREVER); /* Revert priority of the main thread */ k_thread_priority_set(k_current_get(), old_prio); } /** * @} */ |