Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/*
 *
 * Copyright (c) 2021 Linaro Limited
 *
 * SPDX-License-Identifier: Apache-2.0
 */


#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_utils.h>
#include <stm32_ll_system.h>
#include <drivers/clock_control.h>
#include <sys/util.h>
#include <stm32_ll_utils.h>
#include <drivers/clock_control/stm32_clock_control.h>

/* Macros to fill up prescaler values */
#define z_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define ahb_prescaler(v) z_ahb_prescaler(v)

#define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) z_apb1_prescaler(v)

#define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) z_apb2_prescaler(v)

#define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v
#define apb3_prescaler(v) z_apb3_prescaler(v)


#if STM32_AHB_PRESCALER > 1
/*
 * AHB prescaler allows to set a HCLK frequency (feeding cortex systick)
 * lower than SYSCLK frequency (actual core frequency).
 * Though, zephyr doesn't make a difference today between these two clocks.
 * So, changing this prescaler is not allowed until it is made possible to
 * use them independently in zephyr clock subsystem.
 */
#error "AHB prescaler can't be higher than 1"
#endif

#if STM32_SYSCLK_SRC_PLL

/**
 * @brief fill in pll configuration structure
 */
static void config_pll_init(LL_UTILS_PLLInitTypeDef *pllinit)
{
	pllinit->PLLM = STM32_PLL_M_DIVISOR;
	pllinit->PLLN = STM32_PLL_N_MULTIPLIER;
	pllinit->PLLR = STM32_PLL_R_DIVISOR;
}
#endif /* STM32_SYSCLK_SRC_PLL */

/**
 * @brief Activate default clocks
 */
void config_enable_default_clocks(void)
{
	/* Enable the power interface clock */
	LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR);

#if STM32_LSE_CLOCK
	if (!LL_PWR_IsEnabledBkUpAccess()) {
		/* Enable write access to Backup domain */
		LL_PWR_EnableBkUpAccess();
		while (!LL_PWR_IsEnabledBkUpAccess()) {
			/* Wait for Backup domain access */
		}
	}

	/* Enable LSE Oscillator */
	LL_RCC_LSE_Enable();
	/* Wait for LSE ready */
	while (!LL_RCC_LSE_IsReady()) {
	}

	/* Enable LSESYS additionnally */
	SET_BIT(RCC->BDCR, RCC_BDCR_LSESYSEN);
	/* Wait till LSESYS is ready */
	while (READ_BIT(RCC->BDCR, RCC_BDCR_LSESYSRDY) == 0U) {
	}

	LL_PWR_DisableBkUpAccess();
#endif	/* STM32_LSE_CLOCK */
}

/**
 * @brief fill in AHB/APB buses configuration structure
 */
static void config_bus_clk_init(LL_UTILS_ClkInitTypeDef *clk_init)
{
	clk_init->AHBCLKDivider = ahb_prescaler(STM32_AHB_PRESCALER);
	clk_init->APB1CLKDivider = apb1_prescaler(STM32_APB1_PRESCALER);
	clk_init->APB2CLKDivider = apb2_prescaler(STM32_APB2_PRESCALER);
	clk_init->APB3CLKDivider = apb3_prescaler(STM32_APB3_PRESCALER);
}

static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
	return clock / prescaler;
}

static inline int stm32_clock_control_on(const struct device *dev,
					 clock_control_subsys_t sub_system)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);

	ARG_UNUSED(dev);

	switch (pclken->bus) {
	case STM32_CLOCK_BUS_AHB1:
		LL_AHB1_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_AHB2:
		LL_AHB2_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_AHB3:
		LL_AHB3_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB1:
		LL_APB1_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB1_2:
		LL_APB1_GRP2_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB2:
		LL_APB2_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB3:
		LL_APB3_GRP1_EnableClock(pclken->enr);
		break;
	default:
		return -ENOTSUP;
	}

	return 0;
}

static inline int stm32_clock_control_off(const struct device *dev,
					  clock_control_subsys_t sub_system)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);

	ARG_UNUSED(dev);

	switch (pclken->bus) {
	case STM32_CLOCK_BUS_AHB1:
		LL_AHB1_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_AHB2:
		LL_AHB2_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_AHB3:
		LL_AHB3_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB1:
		LL_APB1_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB1_2:
		LL_APB1_GRP2_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB2:
		LL_APB2_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB3:
		LL_APB3_GRP1_DisableClock(pclken->enr);
		break;
	default:
		return -ENOTSUP;
	}

	return 0;
}

static int stm32_clock_control_get_subsys_rate(const struct device *dev,
					       clock_control_subsys_t sys,
					       uint32_t *rate)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sys);
	/*
	 * Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
	 * SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
	 * since it will be updated after clock configuration and hence
	 * more likely to contain actual clock speed
	 */
	uint32_t ahb_clock = SystemCoreClock;
	uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER);
	uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER);
	uint32_t apb3_clock = get_bus_clock(ahb_clock, STM32_APB3_PRESCALER);

	ARG_UNUSED(dev);

	switch (pclken->bus) {
	case STM32_CLOCK_BUS_AHB1:
	case STM32_CLOCK_BUS_AHB2:
	case STM32_CLOCK_BUS_AHB3:
		*rate = ahb_clock;
		break;
	case STM32_CLOCK_BUS_APB1:
	case STM32_CLOCK_BUS_APB1_2:
		*rate = apb1_clock;
		break;
	case STM32_CLOCK_BUS_APB2:
		*rate = apb2_clock;
		break;
	case STM32_CLOCK_BUS_APB3:
		*rate = apb3_clock;
		break;
	default:
		return -ENOTSUP;
	}

	return 0;
}

static struct clock_control_driver_api stm32_clock_control_api = {
	.on = stm32_clock_control_on,
	.off = stm32_clock_control_off,
	.get_rate = stm32_clock_control_get_subsys_rate,
};

/*
 * Unconditionally switch the system clock source to HSI.
 */
__unused
static void clock_switch_to_hsi(uint32_t ahb_prescaler)
{
	/* Enable HSI if not enabled */
	if (LL_RCC_HSI_IsReady() != 1) {
		/* Enable HSI */
		LL_RCC_HSI_Enable();
		while (LL_RCC_HSI_IsReady() != 1) {
		/* Wait for HSI ready */
		}
	}

	/* Set HSI as SYSCLCK source */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
	LL_RCC_SetAHBPrescaler(ahb_prescaler);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
	}
}

#if STM32_SYSCLK_SRC_MSIS || STM32_PLL_SRC_MSIS
__unused
static void set_up_clk_msis(void)
{
	/* Set MSIS Range */
	LL_RCC_MSI_EnableRangeSelection();

	LL_RCC_MSIS_SetRange(STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos);

	if (STM32_MSIS_RANGE < 4) {
		/* MSI clock trimming for ranges 0 to 3 */
		LL_RCC_MSI_SetCalibTrimming(0, LL_RCC_MSI_OSCILLATOR_0);
	} else if (STM32_MSIS_RANGE < 8) {
		/* MSI clock trimming for ranges 4 to 7 */
		LL_RCC_MSI_SetCalibTrimming(0, LL_RCC_MSI_OSCILLATOR_1);
	} else if (STM32_MSIS_RANGE < 12) {
		/* MSI clock trimming for ranges 8 to 11 */
		LL_RCC_MSI_SetCalibTrimming(0, LL_RCC_MSI_OSCILLATOR_2);
	} else {
		/* MSI clock trimming for ranges 12 to 15 */
		LL_RCC_MSI_SetCalibTrimming(0, LL_RCC_MSI_OSCILLATOR_3);
	}

#if STM32_MSIS_PLL_MODE

#if !STM32_LSE_CLOCK
#error "MSI Hardware auto calibration requires LSE clock activation"
#endif
	/* Enable MSI hardware auto calibration */
	LL_RCC_MSI_EnablePLLMode();
#endif

	/* Set MSIS Range */
	LL_RCC_MSIS_Enable();

	/* Wait till MSIS is ready */
	while (LL_RCC_MSIS_IsReady() != 1) {
	}
}
#endif /* STM32_SYSCLK_SRC_MSIS || STM32_PLL_SRC_MSIS */

#if STM32_SYSCLK_SRC_PLL
/*
 * Configure PLL as source of SYSCLK
 */
void config_src_sysclk_pll(LL_UTILS_ClkInitTypeDef s_ClkInitStruct)
{
	LL_UTILS_PLLInitTypeDef s_PLLInitStruct;

	/* configure PLL input settings */
	config_pll_init(&s_PLLInitStruct);

	/*
	 * Switch to HSI and disable the PLL before configuration.
	 * (Switching to HSI makes sure we have a SYSCLK source in
	 * case we're currently running from the PLL we're about to
	 * turn off and reconfigure.)
	 *
	 * Don't use s_ClkInitStruct.AHBCLKDivider as the AHB
	 * prescaler here. In this configuration, that's the value to
	 * use when the SYSCLK source is the PLL, not HSI.
	 */
	clock_switch_to_hsi(LL_RCC_SYSCLK_DIV_1);
	LL_RCC_PLL1_Disable();

#if STM32_PLL_Q_DIVISOR
	LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR);
#endif /* STM32_PLL_Q_DIVISOR */

#if STM32_PLL_SRC_MSIS

	/*
	 * For now, an issue detected in function LL_PLL_ConfigSystemClock_MSI
	 * doesn't allow it's use in current Cube package version (1.0.0).
	 * So we're using step by step configuration, with fixed flash latency
	 * setting.
	 * This has been tested using max supported freq (160MHz), but could
	 * have limitations in lower speed settings.
	 */

	LL_FLASH_SetLatency(LL_FLASH_LATENCY_4);
	while (LL_FLASH_GetLatency() != LL_FLASH_LATENCY_4) {
	}

	set_up_clk_msis();

	LL_RCC_PLL1_ConfigDomain_SYS(LL_RCC_PLL1SOURCE_MSIS,
				     STM32_PLL_M_DIVISOR,
				     STM32_PLL_N_MULTIPLIER,
				     STM32_PLL_R_DIVISOR);

	if (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC >= 55) {
		/*
		 * Set EPOD prescaler based on PLL1 input freq (MSI/PLLM)
		 * Booster clock frequency should be between 4 and 16MHz
		 * This is done in following steps:
		 * Read MSI Frequency
		 * Didvide PLL1 input freq (MSI/PLLM) by the targeted freq (8MHz)
		 * Make sure value is not higher than 16
		 * Shift in the register space (/2)
		 */
		int tmp = __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSIRANGESEL_RUN,
				STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos);
		tmp = MIN(tmp / STM32_PLL_M_DIVISOR / 8000000, 16);
		tmp = tmp / 2;
		LL_RCC_SetPll1EPodPrescaler(tmp << RCC_PLL1CFGR_PLL1MBOOST_Pos);

		LL_PWR_EnableEPODBooster();
		while (LL_PWR_IsActiveFlag_BOOST() == 0) {
		}
	}

	LL_RCC_PLL1_EnableDomain_SYS();
	LL_RCC_PLL1_SetVCOInputRange(LL_RCC_PLLINPUTRANGE_4_8);

	LL_RCC_PLL1_Enable();

	/* Wait till PLL is ready */
	while (LL_RCC_PLL1_IsReady() != 1) {
	}

	/* Intermediate AHB prescaler 2 for target frequency clock > 80 MHz */
	LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2);
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);

	/* Wait till System clock is ready */
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
	}

	LL_RCC_SetAHBPrescaler(s_ClkInitStruct.AHBCLKDivider);
	LL_RCC_SetAPB1Prescaler(s_ClkInitStruct.APB1CLKDivider);
	LL_RCC_SetAPB2Prescaler(s_ClkInitStruct.APB2CLKDivider);
	LL_RCC_SetAPB3Prescaler(s_ClkInitStruct.APB3CLKDivider);

	LL_SetSystemCoreClock(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);

	/* Disable other clocks */
	LL_RCC_HSI_Disable();
	LL_RCC_HSE_Disable();

#elif STM32_PLL_SRC_HSI
	/* Switch to PLL with HSI as clock source */
	LL_PLL_ConfigSystemClock_HSI(&s_PLLInitStruct, &s_ClkInitStruct);

	/* Disable other clocks */
	LL_RCC_HSE_Disable();
	LL_RCC_MSIS_Disable();

#elif STM32_PLL_SRC_HSE
	int hse_bypass;

	if (IS_ENABLED(STM32_HSE_BYPASS)) {
		hse_bypass = LL_UTILS_HSEBYPASS_ON;
	} else {
		hse_bypass = LL_UTILS_HSEBYPASS_OFF;
	}

	/* Switch to PLL with HSE as clock source */
	LL_PLL1_ConfigSystemClock_HSE(CONFIG_CLOCK_STM32_HSE_CLOCK,
				      hse_bypass,
				      &s_PLLInitStruct,
				      &s_ClkInitStruct);

	/* Disable other clocks */
	LL_RCC_HSI_Disable();
	LL_RCC_MSIS_Disable();

#endif /* STM32_PLL_SRC_* */
}
#endif /* STM32_SYSCLK_SRC_PLL */

#if STM32_SYSCLK_SRC_HSE
/*
 * Configure HSE as source of SYSCLK
 */
void config_src_sysclk_hse(LL_UTILS_ClkInitTypeDef s_ClkInitStruct)
{
	uint32_t old_hclk_freq;
	uint32_t new_hclk_freq;

	old_hclk_freq = HAL_RCC_GetHCLKFreq();

	/* Calculate new SystemCoreClock variable based on HSE freq */
	new_hclk_freq = __LL_RCC_CALC_HCLK_FREQ(CONFIG_CLOCK_STM32_HSE_CLOCK,
						s_ClkInitStruct.AHBCLKDivider);

	__ASSERT(new_hclk_freq == CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
			 "Config mismatch HCLK frequency %u %u",
			 CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC, new_hclk_freq);

	/* If freq increases, set flash latency before any clock setting */
	if (new_hclk_freq > old_hclk_freq) {
		LL_SetFlashLatency(new_hclk_freq);
	}

	/* Enable HSE if not enabled */
	if (LL_RCC_HSE_IsReady() != 1) {
		/* Check if need to enable HSE bypass feature or not */
		if (IS_ENABLED(STM32_HSE_BYPASS)) {
			LL_RCC_HSE_EnableBypass();
		} else {
			LL_RCC_HSE_DisableBypass();
		}

		/* Enable HSE */
		LL_RCC_HSE_Enable();
		while (LL_RCC_HSE_IsReady() != 1) {
		/* Wait for HSE ready */
		}
	}

	/* Set HSE as SYSCLCK source */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
	LL_RCC_SetAHBPrescaler(s_ClkInitStruct.AHBCLKDivider);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
	}

	/* Update SystemCoreClock variable */
	LL_SetSystemCoreClock(new_hclk_freq);

	/* Set peripheral busses prescalers */
	LL_RCC_SetAPB1Prescaler(s_ClkInitStruct.APB1CLKDivider);
	LL_RCC_SetAPB2Prescaler(s_ClkInitStruct.APB2CLKDivider);
	LL_RCC_SetAPB3Prescaler(s_ClkInitStruct.APB3CLKDivider);

	/* If freq not increased, set flash latency after all clock setting */
	if (new_hclk_freq <= old_hclk_freq) {
		LL_SetFlashLatency(new_hclk_freq);
	}

	/* Disable other clocks */
	LL_RCC_HSI_Disable();
	LL_RCC_MSIS_Disable();
	LL_RCC_PLL1_Disable();
}
#endif	/* STM32_SYSCLK_SRC_HSE */

#if STM32_SYSCLK_SRC_MSIS
/*
 * Configure MSI as source of SYSCLK
 */
void config_src_sysclk_msis(LL_UTILS_ClkInitTypeDef s_ClkInitStruct)
{
	uint32_t old_hclk_freq;
	uint32_t new_hclk_freq;

	set_up_clk_msis();

	old_hclk_freq = HAL_RCC_GetHCLKFreq();

	/* Calculate new SystemCoreClock variable with MSI freq */
	/* MSI freq is defined from RUN range selection */
	new_hclk_freq =	__LL_RCC_CALC_HCLK_FREQ(
				__LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSIRANGESEL_RUN,
				STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos),
				s_ClkInitStruct.AHBCLKDivider);

	__ASSERT(new_hclk_freq == CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
			 "Config mismatch HCLK frequency %u %u",
			 CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC, new_hclk_freq);

	/* If freq increases, set flash latency before any clock setting */
	if (new_hclk_freq > old_hclk_freq) {
		LL_SetFlashLatency(new_hclk_freq);
	}

	/* Set MSIS as SYSCLCK source */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSIS);
	LL_RCC_SetAHBPrescaler(s_ClkInitStruct.AHBCLKDivider);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSIS) {
	}

	/* Update SystemCoreClock variable */
	LL_SetSystemCoreClock(new_hclk_freq);

	/* Set peripheral busses prescalers */
	LL_RCC_SetAPB1Prescaler(s_ClkInitStruct.APB1CLKDivider);
	LL_RCC_SetAPB2Prescaler(s_ClkInitStruct.APB2CLKDivider);
	LL_RCC_SetAPB3Prescaler(s_ClkInitStruct.APB3CLKDivider);

	/* If freq not increased, set flash latency after all clock setting */
	if (new_hclk_freq <= old_hclk_freq) {
		LL_SetFlashLatency(new_hclk_freq);
	}

	/* Disable other clocks */
	LL_RCC_HSE_Disable();
	LL_RCC_HSI_Disable();
	LL_RCC_PLL1_Disable();
}
#endif	/* STM32_SYSCLK_SRC_MSIS */

#if STM32_SYSCLK_SRC_HSI
/*
 * Configure HSI as source of SYSCLK
 */
void config_src_sysclk_hsi(LL_UTILS_ClkInitTypeDef s_ClkInitStruct)
{
	clock_switch_to_hsi(s_ClkInitStruct.AHBCLKDivider);

	/* Update SystemCoreClock variable */
	LL_SetSystemCoreClock(__LL_RCC_CALC_HCLK_FREQ(HSI_VALUE,
						s_ClkInitStruct.AHBCLKDivider));

	/* Set peripheral busses prescalers */
	LL_RCC_SetAPB1Prescaler(s_ClkInitStruct.APB1CLKDivider);
	LL_RCC_SetAPB2Prescaler(s_ClkInitStruct.APB2CLKDivider);
	LL_RCC_SetAPB3Prescaler(s_ClkInitStruct.APB3CLKDivider);

	/* Set flash latency */
	/* HSI used as SYSCLK, set latency to 0 */
	LL_FLASH_SetLatency(LL_FLASH_LATENCY_0);

	/* Disable other clocks */
	LL_RCC_HSE_Disable();
	LL_RCC_MSIS_Disable();
	LL_RCC_PLL1_Disable();
}
#endif	/* STM32_SYSCLK_SRC_HSI */

int stm32_clock_control_init(const struct device *dev)
{
	LL_UTILS_ClkInitTypeDef s_ClkInitStruct;

	ARG_UNUSED(dev);

	/* configure clock for AHB/APB buses */
	config_bus_clk_init((LL_UTILS_ClkInitTypeDef *)&s_ClkInitStruct);

	/* Some clocks would be activated by default */
	config_enable_default_clocks();

#if STM32_SYSCLK_SRC_PLL
	/* Configure PLL as source of SYSCLK */
	config_src_sysclk_pll(s_ClkInitStruct);
#elif STM32_SYSCLK_SRC_HSE
	/* Configure HSE as source of SYSCLK */
	config_src_sysclk_hse(s_ClkInitStruct);
#elif STM32_SYSCLK_SRC_MSIS
	/* Configure MSIS as source of SYSCLK */
	config_src_sysclk_msis(s_ClkInitStruct);
#elif STM32_SYSCLK_SRC_HSI
	/* Configure HSI as source of SYSCLK */
	config_src_sysclk_hsi(s_ClkInitStruct);
#endif /* STM32_SYSCLK_SRC_PLL... */

	return 0;
}

/**
 * @brief RCC device, note that priority is intentionally set to 1 so
 * that the device init runs just after SOC init
 */
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
		    &stm32_clock_control_init,
		    NULL,
		    NULL, NULL,
		    PRE_KERNEL_1,
		    CONFIG_CLOCK_CONTROL_STM32_DEVICE_INIT_PRIORITY,
		    &stm32_clock_control_api);