Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
/*
 * Copyright (c) 2013-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief New thread creation for ARM Cortex-M and Cortex-R
 *
 * Core thread related primitives for the ARM Cortex-M and Cortex-R
 * processor architecture.
 */

#include <kernel.h>
#include <ksched.h>
#include <wait_q.h>

#if (MPU_GUARD_ALIGN_AND_SIZE_FLOAT > MPU_GUARD_ALIGN_AND_SIZE)
#define FP_GUARD_EXTRA_SIZE	(MPU_GUARD_ALIGN_AND_SIZE_FLOAT - \
				 MPU_GUARD_ALIGN_AND_SIZE)
#else
#define FP_GUARD_EXTRA_SIZE	0
#endif

#ifndef EXC_RETURN_FTYPE
/* bit [4] allocate stack for floating-point context: 0=done 1=skipped  */
#define EXC_RETURN_FTYPE           (0x00000010UL)
#endif

/* Default last octet of EXC_RETURN, for threads that have not run yet.
 * The full EXC_RETURN value will be e.g. 0xFFFFFFBC.
 */
#if defined(CONFIG_ARM_NONSECURE_FIRMWARE)
#define DEFAULT_EXC_RETURN 0xBC;
#else
#define DEFAULT_EXC_RETURN 0xFD;
#endif

#if !defined(CONFIG_MULTITHREADING) && defined(CONFIG_CPU_CORTEX_M)
extern K_THREAD_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE);
#endif

/* An initial context, to be "restored" by z_arm_pendsv(), is put at the other
 * end of the stack, and thus reusable by the stack when not needed anymore.
 *
 * The initial context is an exception stack frame (ESF) since exiting the
 * PendSV exception will want to pop an ESF. Interestingly, even if the lsb of
 * an instruction address to jump to must always be set since the CPU always
 * runs in thumb mode, the ESF expects the real address of the instruction,
 * with the lsb *not* set (instructions are always aligned on 16 bit
 * halfwords).  Since the compiler automatically sets the lsb of function
 * addresses, we have to unset it manually before storing it in the 'pc' field
 * of the ESF.
 */
void arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack,
		     char *stack_ptr, k_thread_entry_t entry,
		     void *p1, void *p2, void *p3)
{
	struct __basic_sf *iframe;

#ifdef CONFIG_MPU_STACK_GUARD
#if defined(CONFIG_USERSPACE)
	if (z_stack_is_user_capable(stack)) {
		/* Guard area is carved-out of the buffer instead of reserved
		 * for stacks that can host user threads
		 */
		thread->stack_info.start += MPU_GUARD_ALIGN_AND_SIZE;
		thread->stack_info.size -= MPU_GUARD_ALIGN_AND_SIZE;
	}
#endif /* CONFIG_USERSPACE */
#if FP_GUARD_EXTRA_SIZE > 0
	if ((thread->base.user_options & K_FP_REGS) != 0) {
		/* Larger guard needed due to lazy stacking of FP regs may
		 * overshoot the guard area without writing anything. We
		 * carve it out of the stack buffer as-needed instead of
		 * unconditionally reserving it.
		 */
		thread->stack_info.start += FP_GUARD_EXTRA_SIZE;
		thread->stack_info.size -= FP_GUARD_EXTRA_SIZE;
	}
#endif /* FP_GUARD_EXTRA_SIZE */
#endif /* CONFIG_MPU_STACK_GUARD */

	iframe = Z_STACK_PTR_TO_FRAME(struct __basic_sf, stack_ptr);
#if defined(CONFIG_USERSPACE)
	if ((thread->base.user_options & K_USER) != 0) {
		iframe->pc = (uint32_t)arch_user_mode_enter;
	} else {
		iframe->pc = (uint32_t)z_thread_entry;
	}
#else
	iframe->pc = (uint32_t)z_thread_entry;
#endif

#if defined(CONFIG_CPU_CORTEX_M)
	/* force ARM mode by clearing LSB of address */
	iframe->pc &= 0xfffffffe;
#endif
	iframe->a1 = (uint32_t)entry;
	iframe->a2 = (uint32_t)p1;
	iframe->a3 = (uint32_t)p2;
	iframe->a4 = (uint32_t)p3;

#if defined(CONFIG_CPU_CORTEX_M)
	iframe->xpsr =
		0x01000000UL; /* clear all, thumb bit is 1, even if RO */
#else
	iframe->xpsr = A_BIT | MODE_SYS;
#if defined(CONFIG_COMPILER_ISA_THUMB2)
	iframe->xpsr |= T_BIT;
#endif /* CONFIG_COMPILER_ISA_THUMB2 */
#endif /* CONFIG_CPU_CORTEX_M */

	thread->callee_saved.psp = (uint32_t)iframe;
	thread->arch.basepri = 0;

#if defined(CONFIG_ARM_STORE_EXC_RETURN) || defined(CONFIG_USERSPACE)
	thread->arch.mode = 0;
#if defined(CONFIG_ARM_STORE_EXC_RETURN)
	thread->arch.mode_exc_return = DEFAULT_EXC_RETURN;
#endif
#if FP_GUARD_EXTRA_SIZE > 0
	if ((thread->base.user_options & K_FP_REGS) != 0) {
		thread->arch.mode |= Z_ARM_MODE_MPU_GUARD_FLOAT_Msk;
	}
#endif
#if defined(CONFIG_USERSPACE)
	thread->arch.priv_stack_start = 0;
#endif
#endif
	/*
	 * initial values in all other registers/thread entries are
	 * irrelevant.
	 */
}

#if defined(CONFIG_MPU_STACK_GUARD) && defined(CONFIG_FPU) \
	&& defined(CONFIG_FPU_SHARING)

static inline void z_arm_thread_stack_info_adjust(struct k_thread *thread,
	bool use_large_guard)
{
	if (use_large_guard) {
		/* Switch to use a large MPU guard if not already. */
		if ((thread->arch.mode &
			Z_ARM_MODE_MPU_GUARD_FLOAT_Msk) == 0) {
			/* Default guard size is used. Update required. */
			thread->arch.mode |= Z_ARM_MODE_MPU_GUARD_FLOAT_Msk;
#if defined(CONFIG_USERSPACE)
			if (thread->arch.priv_stack_start) {
				/* User thread */
				thread->arch.priv_stack_start +=
					FP_GUARD_EXTRA_SIZE;
			} else
#endif /* CONFIG_USERSPACE */
			{
				/* Privileged thread */
				thread->stack_info.start +=
					FP_GUARD_EXTRA_SIZE;
				thread->stack_info.size -=
					FP_GUARD_EXTRA_SIZE;
			}
		}
	} else {
		/* Switch to use the default MPU guard size if not already. */
		if ((thread->arch.mode &
			Z_ARM_MODE_MPU_GUARD_FLOAT_Msk) != 0) {
			/* Large guard size is used. Update required. */
			thread->arch.mode &= ~Z_ARM_MODE_MPU_GUARD_FLOAT_Msk;
#if defined(CONFIG_USERSPACE)
			if (thread->arch.priv_stack_start) {
				/* User thread */
				thread->arch.priv_stack_start -=
					FP_GUARD_EXTRA_SIZE;
			} else
#endif /* CONFIG_USERSPACE */
			{
				/* Privileged thread */
				thread->stack_info.start -=
					FP_GUARD_EXTRA_SIZE;
				thread->stack_info.size +=
					FP_GUARD_EXTRA_SIZE;
			}
		}
	}
}

/*
 * Adjust the MPU stack guard size together with the FPU
 * policy and the stack_info values for the thread that is
 * being switched in.
 */
uint32_t z_arm_mpu_stack_guard_and_fpu_adjust(struct k_thread *thread)
{
	if (((thread->base.user_options & K_FP_REGS) != 0) ||
		((thread->arch.mode_exc_return & EXC_RETURN_FTYPE) == 0)) {
		/* The thread has been pre-tagged (at creation or later) with
		 * K_FP_REGS, i.e. it is expected to be using the FPU registers
		 * (if not already). Activate lazy stacking and program a large
		 * MPU guard to safely detect privilege thread stack overflows.
		 *
		 * OR
		 * The thread is not pre-tagged with K_FP_REGS, but it has
		 * generated an FP context. Activate lazy stacking and
		 * program a large MPU guard to detect privilege thread
		 * stack overflows.
		 */
		FPU->FPCCR |= FPU_FPCCR_LSPEN_Msk;

		z_arm_thread_stack_info_adjust(thread, true);

		/* Tag the thread with K_FP_REGS */
		thread->base.user_options |= K_FP_REGS;

		return MPU_GUARD_ALIGN_AND_SIZE_FLOAT;
	}

	/* Thread is not pre-tagged with K_FP_REGS, and it has
	 * not been using the FPU. Since there is no active FPU
	 * context, de-activate lazy stacking and program the
	 * default MPU guard size.
	 */
	FPU->FPCCR &= (~FPU_FPCCR_LSPEN_Msk);

	z_arm_thread_stack_info_adjust(thread, false);

	return MPU_GUARD_ALIGN_AND_SIZE;
}
#endif

#ifdef CONFIG_USERSPACE
FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
					void *p1, void *p2, void *p3)
{

	/* Set up privileged stack before entering user mode */
	_current->arch.priv_stack_start =
		(uint32_t)z_priv_stack_find(_current->stack_obj);
#if defined(CONFIG_MPU_STACK_GUARD)
#if defined(CONFIG_THREAD_STACK_INFO)
	/* We're dropping to user mode which means the guard area is no
	 * longer used here, it instead is moved to the privilege stack
	 * to catch stack overflows there. Un-do the calculations done
	 * which accounted for memory borrowed from the thread stack.
	 */
#if FP_GUARD_EXTRA_SIZE > 0
	if ((_current->arch.mode & Z_ARM_MODE_MPU_GUARD_FLOAT_Msk) != 0) {
		_current->stack_info.start -= FP_GUARD_EXTRA_SIZE;
		_current->stack_info.size += FP_GUARD_EXTRA_SIZE;
	}
#endif /* FP_GUARD_EXTRA_SIZE */
	_current->stack_info.start -= MPU_GUARD_ALIGN_AND_SIZE;
	_current->stack_info.size += MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_THREAD_STACK_INFO */

	/* Stack guard area reserved at the bottom of the thread's
	 * privileged stack. Adjust the available (writable) stack
	 * buffer area accordingly.
	 */
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
	_current->arch.priv_stack_start +=
		((_current->arch.mode & Z_ARM_MODE_MPU_GUARD_FLOAT_Msk) != 0) ?
		MPU_GUARD_ALIGN_AND_SIZE_FLOAT : MPU_GUARD_ALIGN_AND_SIZE;
#else
	_current->arch.priv_stack_start += MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
#endif /* CONFIG_MPU_STACK_GUARD */

	z_arm_userspace_enter(user_entry, p1, p2, p3,
			     (uint32_t)_current->stack_info.start,
			     _current->stack_info.size -
			     _current->stack_info.delta);
	CODE_UNREACHABLE;
}

#endif

#if defined(CONFIG_BUILTIN_STACK_GUARD)
/*
 * @brief Configure ARM built-in stack guard
 *
 * This function configures per thread stack guards by reprogramming
 * the built-in Process Stack Pointer Limit Register (PSPLIM).
 * The functionality is meant to be used during context switch.
 *
 * @param thread thread info data structure.
 */
void configure_builtin_stack_guard(struct k_thread *thread)
{
#if defined(CONFIG_USERSPACE)
	if ((thread->arch.mode & CONTROL_nPRIV_Msk) != 0) {
		/* Only configure stack limit for threads in privileged mode
		 * (i.e supervisor threads or user threads doing system call).
		 * User threads executing in user mode do not require a stack
		 * limit protection.
		 */
		__set_PSPLIM(0);
		return;
	}
	/* Only configure PSPLIM to guard the privileged stack area, if
	 * the thread is currently using it, otherwise guard the default
	 * thread stack. Note that the conditional check relies on the
	 * thread privileged stack being allocated in higher memory area
	 * than the default thread stack (ensured by design).
	 */
	uint32_t guard_start =
		((thread->arch.priv_stack_start) &&
			(__get_PSP() >= thread->arch.priv_stack_start)) ?
		(uint32_t)thread->arch.priv_stack_start :
		(uint32_t)thread->stack_obj;

	__ASSERT(thread->stack_info.start == ((uint32_t)thread->stack_obj),
		"stack_info.start does not point to the start of the"
		"thread allocated area.");
#else
	uint32_t guard_start = thread->stack_info.start;
#endif
#if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
	__set_PSPLIM(guard_start);
#else
#error "Built-in PSP limit checks not supported by HW"
#endif
}
#endif /* CONFIG_BUILTIN_STACK_GUARD */

#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)

#define IS_MPU_GUARD_VIOLATION(guard_start, guard_len, fault_addr, stack_ptr) \
	((fault_addr != -EINVAL) ? \
	((fault_addr >= guard_start) && \
	(fault_addr < (guard_start + guard_len)) && \
	(stack_ptr < (guard_start + guard_len))) \
	: \
	(stack_ptr < (guard_start + guard_len)))

/**
 * @brief Assess occurrence of current thread's stack corruption
 *
 * This function performs an assessment whether a memory fault (on a
 * given memory address) is the result of stack memory corruption of
 * the current thread.
 *
 * Thread stack corruption for supervisor threads or user threads in
 * privilege mode (when User Space is supported) is reported upon an
 * attempt to access the stack guard area (if MPU Stack Guard feature
 * is supported). Additionally the current PSP (process stack pointer)
 * must be pointing inside or below the guard area.
 *
 * Thread stack corruption for user threads in user mode is reported,
 * if the current PSP is pointing below the start of the current
 * thread's stack.
 *
 * Notes:
 * - we assume a fully descending stack,
 * - we assume a stacking error has occurred,
 * - the function shall be called when handling MemManage and Bus fault,
 *   and only if a Stacking error has been reported.
 *
 * If stack corruption is detected, the function returns the lowest
 * allowed address where the Stack Pointer can safely point to, to
 * prevent from errors when un-stacking the corrupted stack frame
 * upon exception return.
 *
 * @param fault_addr memory address on which memory access violation
 *                   has been reported. It can be invalid (-EINVAL),
 *                   if only Stacking error has been reported.
 * @param psp        current address the PSP points to
 *
 * @return The lowest allowed stack frame pointer, if error is a
 *         thread stack corruption, otherwise return 0.
 */
uint32_t z_check_thread_stack_fail(const uint32_t fault_addr, const uint32_t psp)
{
#if defined(CONFIG_MULTITHREADING)
	const struct k_thread *thread = _current;

	if (thread == NULL) {
		return 0;
	}
#endif

#if (defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)) && \
	defined(CONFIG_MPU_STACK_GUARD)
	uint32_t guard_len =
		((_current->arch.mode & Z_ARM_MODE_MPU_GUARD_FLOAT_Msk) != 0) ?
		MPU_GUARD_ALIGN_AND_SIZE_FLOAT : MPU_GUARD_ALIGN_AND_SIZE;
#else
	/* If MPU_STACK_GUARD is not enabled, the guard length is
	 * effectively zero. Stack overflows may be detected only
	 * for user threads in nPRIV mode.
	 */
	uint32_t guard_len = MPU_GUARD_ALIGN_AND_SIZE;
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */

#if defined(CONFIG_USERSPACE)
	if (thread->arch.priv_stack_start) {
		/* User thread */
		if ((__get_CONTROL() & CONTROL_nPRIV_Msk) == 0U) {
			/* User thread in privilege mode */
			if (IS_MPU_GUARD_VIOLATION(
				thread->arch.priv_stack_start - guard_len,
					guard_len,
				fault_addr, psp)) {
				/* Thread's privilege stack corruption */
				return thread->arch.priv_stack_start;
			}
		} else {
			if (psp < (uint32_t)thread->stack_obj) {
				/* Thread's user stack corruption */
				return (uint32_t)thread->stack_obj;
			}
		}
	} else {
		/* Supervisor thread */
		if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start -
				guard_len,
				guard_len,
				fault_addr, psp)) {
			/* Supervisor thread stack corruption */
			return thread->stack_info.start;
		}
	}
#else /* CONFIG_USERSPACE */
#if defined(CONFIG_MULTITHREADING)
	if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start - guard_len,
			guard_len,
			fault_addr, psp)) {
		/* Thread stack corruption */
		return thread->stack_info.start;
	}
#else
	if (IS_MPU_GUARD_VIOLATION((uint32_t)z_main_stack,
			guard_len,
			fault_addr, psp)) {
		/* Thread stack corruption */
		return (uint32_t)Z_THREAD_STACK_BUFFER(z_main_stack);
	}
#endif
#endif /* CONFIG_USERSPACE */

	return 0;
}
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */

#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
int arch_float_disable(struct k_thread *thread)
{
	if (thread != _current) {
		return -EINVAL;
	}

	if (arch_is_in_isr()) {
		return -EINVAL;
	}

	/* Disable all floating point capabilities for the thread */

	/* K_FP_REG flag is used in SWAP and stack check fail. Locking
	 * interrupts here prevents a possible context-switch or MPU
	 * fault to take an outdated thread user_options flag into
	 * account.
	 */
	int key = arch_irq_lock();

	thread->base.user_options &= ~K_FP_REGS;

	__set_CONTROL(__get_CONTROL() & (~CONTROL_FPCA_Msk));

	/* No need to add an ISB barrier after setting the CONTROL
	 * register; arch_irq_unlock() already adds one.
	 */

	arch_irq_unlock(key);

	return 0;
}

int arch_float_enable(struct k_thread *thread, unsigned int options)
{
	/* This is not supported in Cortex-M and Cortex-R does not have FPU */
	return -ENOTSUP;
}
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */

/* Internal function for Cortex-M initialization,
 * applicable to either case of running Zephyr
 * with or without multi-threading support.
 */
static void z_arm_prepare_switch_to_main(void)
{
#if defined(CONFIG_FPU)
	/* Initialize the Floating Point Status and Control Register when in
	 * Unshared FP Registers mode (In Shared FP Registers mode, FPSCR is
	 * initialized at thread creation for threads that make use of the FP).
	 */
	__set_FPSCR(0);
#if defined(CONFIG_FPU_SHARING)
	/* In Sharing mode clearing FPSCR may set the CONTROL.FPCA flag. */
	__set_CONTROL(__get_CONTROL() & (~(CONTROL_FPCA_Msk)));
	__ISB();
#endif /* CONFIG_FPU_SHARING */
#endif /* CONFIG_FPU */
}

void arch_switch_to_main_thread(struct k_thread *main_thread, char *stack_ptr,
				k_thread_entry_t _main)
{
	z_arm_prepare_switch_to_main();

	_current = main_thread;
#ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING
	z_thread_mark_switched_in();
#endif

	/* the ready queue cache already contains the main thread */

#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
	/*
	 * If stack protection is enabled, make sure to set it
	 * before jumping to thread entry function
	 */
	z_arm_configure_dynamic_mpu_regions(main_thread);
#endif

#if defined(CONFIG_BUILTIN_STACK_GUARD)
	/* Set PSPLIM register for built-in stack guarding of main thread. */
#if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
	__set_PSPLIM(main_thread->stack_info.start);
#else
#error "Built-in PSP limit checks not supported by HW"
#endif
#endif /* CONFIG_BUILTIN_STACK_GUARD */

	/*
	 * Set PSP to the highest address of the main stack
	 * before enabling interrupts and jumping to main.
	 */
	__asm__ volatile (
	"mov   r0,  %0\n\t"	/* Store _main in R0 */
#if defined(CONFIG_CPU_CORTEX_M)
	"msr   PSP, %1\n\t"	/* __set_PSP(stack_ptr) */
#endif

	"movs r1, #0\n\t"
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE) \
			|| defined(CONFIG_ARMV7_R)
	"cpsie i\n\t"		/* __enable_irq() */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	"cpsie if\n\t"		/* __enable_irq(); __enable_fault_irq() */
	"msr   BASEPRI, r1\n\t"	/* __set_BASEPRI(0) */
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
	"isb\n\t"
	"movs r2, #0\n\t"
	"movs r3, #0\n\t"
	"bl z_thread_entry\n\t"	/* z_thread_entry(_main, 0, 0, 0); */
	:
	: "r" (_main), "r" (stack_ptr)
	: "r0" /* not to be overwritten by msr PSP, %1 */
	);

	CODE_UNREACHABLE;
}

#if !defined(CONFIG_MULTITHREADING) && defined(CONFIG_CPU_CORTEX_M)

FUNC_NORETURN void z_arm_switch_to_main_no_multithreading(
	k_thread_entry_t main_entry, void *p1, void *p2, void *p3)
{
	z_arm_prepare_switch_to_main();

	/* Set PSP to the highest address of the main stack. */
	char *psp =	Z_THREAD_STACK_BUFFER(z_main_stack) +
		K_THREAD_STACK_SIZEOF(z_main_stack);

#if defined(CONFIG_BUILTIN_STACK_GUARD)
	char *psplim = (Z_THREAD_STACK_BUFFER(z_main_stack));
	/* Clear PSPLIM before setting it to guard the main stack area. */
	__set_PSPLIM(0);
#endif

	/* Store all required input in registers, to be accesible
	 * after stack pointer change. The function is not going
	 * to return, so callee-saved registers do not need to be
	 * stacked.
	 */
	register void *p1_inreg __asm__("r0") = p1;
	register void *p2_inreg __asm__("r1") = p2;
	register void *p3_inreg __asm__("r2") = p3;

	__asm__ volatile (
#ifdef CONFIG_BUILTIN_STACK_GUARD
	"msr  PSPLIM, %[_psplim]\n\t"
#endif
	"msr  PSP, %[_psp]\n\t"       /* __set_PSP(psp) */
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
	"cpsie i\n\t"         /* enable_irq() */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	"cpsie if\n\t"		/* __enable_irq(); __enable_fault_irq() */
	"mov r3, #0\n\t"
	"msr   BASEPRI, r3\n\t"	/* __set_BASEPRI(0) */
#endif
	"isb\n\t"
	"blx  %[_main_entry]\n\t"     /* main_entry(p1, p2, p3) */
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
	"cpsid i\n\t"         /* disable_irq() */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	"msr BASEPRI, %[basepri]\n\t"/* __set_BASEPRI(_EXC_IRQ_DEFAULT_PRIO) */
	"isb\n\t"
#endif
	"loop: b loop\n\t"    /* while (true); */
	:
	: "r" (p1_inreg), "r" (p2_inreg), "r" (p3_inreg),
	  [_psp]"r" (psp), [_main_entry]"r" (main_entry)
#if defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	, [basepri] "r" (_EXC_IRQ_DEFAULT_PRIO)
#endif
#ifdef CONFIG_BUILTIN_STACK_GUARD
	, [_psplim]"r" (psplim)
#endif
	:
	);

	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}
#endif /* !CONFIG_MULTITHREADING && CONFIG_CPU_CORTEX_M */