Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/*
 * Copyright (c) 2019 Song Qiang <songqiang1304521@gmail.com>
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @brief DMA low level driver implementation for F2/F4/F7 series SoCs.
 */

#include "dma_stm32.h"

#define LOG_LEVEL CONFIG_DMA_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(dma_stm32_v1);

/* DMA burst length */
#define BURST_TRANS_LENGTH_1			0

uint32_t dma_stm32_id_to_stream(uint32_t id)
{
	static const uint32_t stream_nr[] = {
		LL_DMA_STREAM_0,
		LL_DMA_STREAM_1,
		LL_DMA_STREAM_2,
		LL_DMA_STREAM_3,
		LL_DMA_STREAM_4,
		LL_DMA_STREAM_5,
		LL_DMA_STREAM_6,
		LL_DMA_STREAM_7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(stream_nr));

	return stream_nr[id];
}

#if !defined(CONFIG_DMAMUX_STM32)
uint32_t dma_stm32_slot_to_channel(uint32_t slot)
{
	static const uint32_t channel_nr[] = {
		LL_DMA_CHANNEL_0,
		LL_DMA_CHANNEL_1,
		LL_DMA_CHANNEL_2,
		LL_DMA_CHANNEL_3,
		LL_DMA_CHANNEL_4,
		LL_DMA_CHANNEL_5,
		LL_DMA_CHANNEL_6,
		LL_DMA_CHANNEL_7,
	};

	__ASSERT_NO_MSG(slot < ARRAY_SIZE(channel_nr));

	return channel_nr[slot];
}
#endif

void dma_stm32_clear_ht(DMA_TypeDef *DMAx, uint32_t id)
{
	static const dma_stm32_clear_flag_func func[] = {
		LL_DMA_ClearFlag_HT0,
		LL_DMA_ClearFlag_HT1,
		LL_DMA_ClearFlag_HT2,
		LL_DMA_ClearFlag_HT3,
		LL_DMA_ClearFlag_HT4,
		LL_DMA_ClearFlag_HT5,
		LL_DMA_ClearFlag_HT6,
		LL_DMA_ClearFlag_HT7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(func));

	func[id](DMAx);
}

void dma_stm32_clear_tc(DMA_TypeDef *DMAx, uint32_t id)
{
	static const dma_stm32_clear_flag_func func[] = {
		LL_DMA_ClearFlag_TC0,
		LL_DMA_ClearFlag_TC1,
		LL_DMA_ClearFlag_TC2,
		LL_DMA_ClearFlag_TC3,
		LL_DMA_ClearFlag_TC4,
		LL_DMA_ClearFlag_TC5,
		LL_DMA_ClearFlag_TC6,
		LL_DMA_ClearFlag_TC7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(func));

	func[id](DMAx);
}

bool dma_stm32_is_ht_active(DMA_TypeDef *DMAx, uint32_t id)
{
	static const dma_stm32_check_flag_func func[] = {
		LL_DMA_IsActiveFlag_HT0,
		LL_DMA_IsActiveFlag_HT1,
		LL_DMA_IsActiveFlag_HT2,
		LL_DMA_IsActiveFlag_HT3,
		LL_DMA_IsActiveFlag_HT4,
		LL_DMA_IsActiveFlag_HT5,
		LL_DMA_IsActiveFlag_HT6,
		LL_DMA_IsActiveFlag_HT7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(func));

	return func[id](DMAx);
}

bool dma_stm32_is_tc_active(DMA_TypeDef *DMAx, uint32_t id)
{
	static const dma_stm32_check_flag_func func[] = {
		LL_DMA_IsActiveFlag_TC0,
		LL_DMA_IsActiveFlag_TC1,
		LL_DMA_IsActiveFlag_TC2,
		LL_DMA_IsActiveFlag_TC3,
		LL_DMA_IsActiveFlag_TC4,
		LL_DMA_IsActiveFlag_TC5,
		LL_DMA_IsActiveFlag_TC6,
		LL_DMA_IsActiveFlag_TC7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(func));

	return func[id](DMAx);
}

void dma_stm32_clear_te(DMA_TypeDef *DMAx, uint32_t id)
{
	static const dma_stm32_clear_flag_func func[] = {
		LL_DMA_ClearFlag_TE0,
		LL_DMA_ClearFlag_TE1,
		LL_DMA_ClearFlag_TE2,
		LL_DMA_ClearFlag_TE3,
		LL_DMA_ClearFlag_TE4,
		LL_DMA_ClearFlag_TE5,
		LL_DMA_ClearFlag_TE6,
		LL_DMA_ClearFlag_TE7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(func));

	func[id](DMAx);
}

void dma_stm32_clear_dme(DMA_TypeDef *DMAx, uint32_t id)
{
	static const dma_stm32_clear_flag_func func[] = {
		LL_DMA_ClearFlag_DME0,
		LL_DMA_ClearFlag_DME1,
		LL_DMA_ClearFlag_DME2,
		LL_DMA_ClearFlag_DME3,
		LL_DMA_ClearFlag_DME4,
		LL_DMA_ClearFlag_DME5,
		LL_DMA_ClearFlag_DME6,
		LL_DMA_ClearFlag_DME7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(func));

	func[id](DMAx);
}

void dma_stm32_clear_fe(DMA_TypeDef *DMAx, uint32_t id)
{
	static const dma_stm32_clear_flag_func func[] = {
		LL_DMA_ClearFlag_FE0,
		LL_DMA_ClearFlag_FE1,
		LL_DMA_ClearFlag_FE2,
		LL_DMA_ClearFlag_FE3,
		LL_DMA_ClearFlag_FE4,
		LL_DMA_ClearFlag_FE5,
		LL_DMA_ClearFlag_FE6,
		LL_DMA_ClearFlag_FE7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(func));

	func[id](DMAx);
}

bool dma_stm32_is_te_active(DMA_TypeDef *DMAx, uint32_t id)
{
	static const dma_stm32_check_flag_func func[] = {
		LL_DMA_IsActiveFlag_TE0,
		LL_DMA_IsActiveFlag_TE1,
		LL_DMA_IsActiveFlag_TE2,
		LL_DMA_IsActiveFlag_TE3,
		LL_DMA_IsActiveFlag_TE4,
		LL_DMA_IsActiveFlag_TE5,
		LL_DMA_IsActiveFlag_TE6,
		LL_DMA_IsActiveFlag_TE7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(func));

	return func[id](DMAx);
}

bool dma_stm32_is_dme_active(DMA_TypeDef *DMAx, uint32_t id)
{
	static const dma_stm32_check_flag_func func[] = {
		LL_DMA_IsActiveFlag_DME0,
		LL_DMA_IsActiveFlag_DME1,
		LL_DMA_IsActiveFlag_DME2,
		LL_DMA_IsActiveFlag_DME3,
		LL_DMA_IsActiveFlag_DME4,
		LL_DMA_IsActiveFlag_DME5,
		LL_DMA_IsActiveFlag_DME6,
		LL_DMA_IsActiveFlag_DME7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(func));

	return func[id](DMAx);
}

bool dma_stm32_is_fe_active(DMA_TypeDef *DMAx, uint32_t id)
{
	static const dma_stm32_check_flag_func func[] = {
		LL_DMA_IsActiveFlag_FE0,
		LL_DMA_IsActiveFlag_FE1,
		LL_DMA_IsActiveFlag_FE2,
		LL_DMA_IsActiveFlag_FE3,
		LL_DMA_IsActiveFlag_FE4,
		LL_DMA_IsActiveFlag_FE5,
		LL_DMA_IsActiveFlag_FE6,
		LL_DMA_IsActiveFlag_FE7,
	};

	__ASSERT_NO_MSG(id < ARRAY_SIZE(func));

	return func[id](DMAx);
}

void stm32_dma_dump_stream_irq(DMA_TypeDef *dma, uint32_t id)
{
	LOG_INF("tc: %d, ht: %d, te: %d, dme: %d, fe: %d",
		dma_stm32_is_tc_active(dma, id),
		dma_stm32_is_ht_active(dma, id),
		dma_stm32_is_te_active(dma, id),
		dma_stm32_is_dme_active(dma, id),
		dma_stm32_is_fe_active(dma, id));
}

inline bool stm32_dma_is_tc_irq_active(DMA_TypeDef *dma, uint32_t id)
{
	return LL_DMA_IsEnabledIT_TC(dma, dma_stm32_id_to_stream(id)) &&
	       dma_stm32_is_tc_active(dma, id);
}

inline bool stm32_dma_is_ht_irq_active(DMA_TypeDef *dma, uint32_t id)
{
	return LL_DMA_IsEnabledIT_HT(dma, dma_stm32_id_to_stream(id)) &&
	       dma_stm32_is_ht_active(dma, id);
}

static inline bool stm32_dma_is_te_irq_active(DMA_TypeDef *dma, uint32_t id)
{
	return LL_DMA_IsEnabledIT_TE(dma, dma_stm32_id_to_stream(id)) &&
	       dma_stm32_is_te_active(dma, id);
}

static inline bool stm32_dma_is_dme_irq_active(DMA_TypeDef *dma, uint32_t id)
{
	return LL_DMA_IsEnabledIT_DME(dma, dma_stm32_id_to_stream(id)) &&
	       dma_stm32_is_dme_active(dma, id);
}

static inline bool stm32_dma_is_fe_irq_active(DMA_TypeDef *dma, uint32_t id)
{
	return LL_DMA_IsEnabledIT_FE(dma, dma_stm32_id_to_stream(id)) &&
	       dma_stm32_is_fe_active(dma, id);
}

bool stm32_dma_is_irq_active(DMA_TypeDef *dma, uint32_t id)
{
	return stm32_dma_is_tc_irq_active(dma, id) ||
	       stm32_dma_is_ht_irq_active(dma, id) ||
	       stm32_dma_is_te_irq_active(dma, id) ||
	       stm32_dma_is_dme_irq_active(dma, id) ||
	       stm32_dma_is_fe_irq_active(dma, id);
}

void stm32_dma_clear_stream_irq(DMA_TypeDef *dma, uint32_t id)
{
	dma_stm32_clear_te(dma, id);
	dma_stm32_clear_dme(dma, id);
	dma_stm32_clear_fe(dma, id);
}

bool stm32_dma_is_irq_happened(DMA_TypeDef *dma, uint32_t id)
{
	if (LL_DMA_IsEnabledIT_FE(dma, dma_stm32_id_to_stream(id)) &&
	    dma_stm32_is_fe_active(dma, id)) {
		return true;
	}

	return false;
}

bool stm32_dma_is_unexpected_irq_happened(DMA_TypeDef *dma, uint32_t id)
{
	if (LL_DMA_IsEnabledIT_FE(dma, dma_stm32_id_to_stream(id)) &&
	    dma_stm32_is_fe_active(dma, id)) {
		LOG_ERR("FiFo error.");
		stm32_dma_dump_stream_irq(dma, id);
		stm32_dma_clear_stream_irq(dma, id);

		return true;
	}

	return false;
}

void stm32_dma_enable_stream(DMA_TypeDef *dma, uint32_t id)
{
	LL_DMA_EnableStream(dma, dma_stm32_id_to_stream(id));
}

int stm32_dma_disable_stream(DMA_TypeDef *dma, uint32_t id)
{
	LL_DMA_DisableStream(dma, dma_stm32_id_to_stream(id));

	if (!LL_DMA_IsEnabledStream(dma, dma_stm32_id_to_stream(id))) {
		return 0;
	}

	return -EAGAIN;
}

void stm32_dma_disable_fifo_irq(DMA_TypeDef *dma, uint32_t id)
{
	LL_DMA_DisableIT_FE(dma, dma_stm32_id_to_stream(id));
}

#if !defined(CONFIG_DMAMUX_STM32)
void stm32_dma_config_channel_function(DMA_TypeDef *dma, uint32_t id,
					uint32_t slot)
{
	LL_DMA_SetChannelSelection(dma, dma_stm32_id_to_stream(id),
			dma_stm32_slot_to_channel(slot));
}
#endif

uint32_t stm32_dma_get_mburst(struct dma_config *config, bool source_periph)
{
	uint32_t memory_burst;

	if (source_periph) {
		memory_burst = config->dest_burst_length;
	} else {
		memory_burst = config->source_burst_length;
	}

	switch (memory_burst) {
	case 1:
		return LL_DMA_MBURST_SINGLE;
	case 4:
		return LL_DMA_MBURST_INC4;
	case 8:
		return LL_DMA_MBURST_INC8;
	case 16:
		return LL_DMA_MBURST_INC16;
	default:
		LOG_ERR("Memory burst size error,"
			"using single burst as default");
		return LL_DMA_MBURST_SINGLE;
	}
}

uint32_t stm32_dma_get_pburst(struct dma_config *config, bool source_periph)
{
	uint32_t periph_burst;

	if (source_periph) {
		periph_burst = config->source_burst_length;
	} else {
		periph_burst = config->dest_burst_length;
	}

	switch (periph_burst) {
	case 1:
		return LL_DMA_PBURST_SINGLE;
	case 4:
		return LL_DMA_PBURST_INC4;
	case 8:
		return LL_DMA_PBURST_INC8;
	case 16:
		return LL_DMA_PBURST_INC16;
	default:
		LOG_ERR("Peripheral burst size error,"
			"using single burst as default");
		return LL_DMA_PBURST_SINGLE;
	}
}

/*
 * This function checks if the msize, mburst and fifo level is
 * compitable. If they are not compitable, refer to the 'FIFO'
 * section in the 'DMA' chapter in the Reference Manual for more
 * information.
 * break is emitted since every path of the code has 'return'.
 * This function does not have the obligation of checking the parameters.
 */
bool stm32_dma_check_fifo_mburst(LL_DMA_InitTypeDef *DMAx)
{
	uint32_t msize = DMAx->MemoryOrM2MDstDataSize;
	uint32_t fifo_level = DMAx->FIFOThreshold;
	uint32_t mburst = DMAx->MemBurst;

	switch (msize) {
	case LL_DMA_MDATAALIGN_BYTE:
		switch (mburst) {
		case LL_DMA_MBURST_INC4:
			return true;
		case LL_DMA_MBURST_INC8:
			if (fifo_level == LL_DMA_FIFOTHRESHOLD_1_2 ||
			    fifo_level == LL_DMA_FIFOTHRESHOLD_FULL) {
				return true;
			} else {
				return false;
			}
		case LL_DMA_MBURST_INC16:
			if (fifo_level == LL_DMA_FIFOTHRESHOLD_FULL) {
				return true;
			} else {
				return false;
			}
		}
	case LL_DMA_MDATAALIGN_HALFWORD:
		switch (mburst) {
		case LL_DMA_MBURST_INC4:
			if (fifo_level == LL_DMA_FIFOTHRESHOLD_1_2 ||
			    fifo_level == LL_DMA_FIFOTHRESHOLD_FULL) {
				return true;
			} else {
				return false;
			}
		case LL_DMA_MBURST_INC8:
			if (fifo_level == LL_DMA_FIFOTHRESHOLD_FULL) {
				return true;
			} else {
				return false;
			}
		case LL_DMA_MBURST_INC16:
			return false;
		}
	case LL_DMA_MDATAALIGN_WORD:
		if (mburst == LL_DMA_MBURST_INC4 &&
		    fifo_level == LL_DMA_FIFOTHRESHOLD_FULL) {
			return true;
		} else {
			return false;
		}
	default:
		return false;
	}
}

uint32_t stm32_dma_get_fifo_threshold(uint16_t fifo_mode_control)
{
	switch (fifo_mode_control) {
	case 0:
		return LL_DMA_FIFOTHRESHOLD_1_4;
	case 1:
		return LL_DMA_FIFOTHRESHOLD_1_2;
	case 2:
		return LL_DMA_FIFOTHRESHOLD_3_4;
	case 3:
		return LL_DMA_FIFOTHRESHOLD_FULL;
	default:
		LOG_WRN("FIFO threshold parameter error, reset to 1/4");
		return LL_DMA_FIFOTHRESHOLD_1_4;
	}
}